Let X, T1, T2 and A be given.
Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ ∀U : set, U ∈ T1 → x0 ∈ U → U ∩ A ≠ Empty) x Hx).
We prove the intermediate
claim Hcond:
∀U : set, U ∈ T1 → x ∈ U → U ∩ A ≠ Empty.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ ∀U : set, U ∈ T1 → x0 ∈ U → U ∩ A ≠ Empty) x Hx).
We prove the intermediate
claim Hcond2:
∀U : set, U ∈ T2 → x ∈ U → U ∩ A ≠ Empty.
Let U be given.
We prove the intermediate
claim HU1:
U ∈ T1.
An exact proof term for the current goal is (Hfin U HU2).
An exact proof term for the current goal is (Hcond U HU1 HxU).
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ ∀U : set, U ∈ T2 → x0 ∈ U → U ∩ A ≠ Empty) x HxX Hcond2).
∎