Let X, Tx, A and x be given.
Assume HTx: topology_on X Tx.
Assume HxX: x X.
We will prove x closure_of X Tx A (∀UTx, x UU A Empty).
Apply iffI to the current goal.
Assume Hx: x closure_of X Tx A.
We will prove ∀UTx, x UU A Empty.
An exact proof term for the current goal is (SepE2 X (λx0 ⇒ ∀U : set, U Txx0 UU A Empty) x Hx).
Assume Hcond: ∀UTx, x UU A Empty.
We will prove x closure_of X Tx A.
An exact proof term for the current goal is (SepI X (λx0 ⇒ ∀U : set, U Txx0 UU A Empty) x HxX Hcond).