Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ x0 = a ∨ order_rel X a x0) x HxUp).
We prove the intermediate
claim Hleft:
x = a ∨ order_rel X a x.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ x0 = a ∨ order_rel X a x0) x HxUp).
We prove the intermediate
claim Hright:
x = b ∨ order_rel X x b.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ x0 = b ∨ order_rel X x0 b) x HxLow).
rewrite the current goal using Hdef (from left to right).
∎