Let b be given.
Assume Hb.
Let x be given.
Assume Hxb.
We will prove ∃ucircular_regions, x u u b.
We prove the intermediate claim Hbprop: ∃a : set, ∃b0 : set, ∃c : set, ∃d0 : set, a R b0 R c R d0 R Rlt a b0 Rlt c d0 b = {pEuclidPlane|∃x0 : set, ∃y0 : set, p = (x0,y0) Rlt a x0 Rlt x0 b0 Rlt c y0 Rlt y0 d0}.
An exact proof term for the current goal is (SepE2 (𝒫 EuclidPlane) (λU0 : set∃a b c d : set, a R b R c R d R Rlt a b Rlt c d U0 = {p1EuclidPlane|∃x0 : set, ∃y0 : set, p1 = (x0,y0) Rlt a x0 Rlt x0 b Rlt c y0 Rlt y0 d}) b Hb).
Apply Hbprop to the current goal.
Let a be given.
Assume Hbprop2.
Apply Hbprop2 to the current goal.
Let b0 be given.
Assume Hbprop3.
Apply Hbprop3 to the current goal.
Let c be given.
Assume Hbprop4.
Apply Hbprop4 to the current goal.
Let d0 be given.
Assume Hbcore.
We prove the intermediate claim HbEq: b = {pEuclidPlane|∃x0 : set, ∃y0 : set, p = (x0,y0) Rlt a x0 Rlt x0 b0 Rlt c y0 Rlt y0 d0}.
An exact proof term for the current goal is (andER (a R b0 R c R d0 R Rlt a b0 Rlt c d0) (b = {pEuclidPlane|∃x0 : set, ∃y0 : set, p = (x0,y0) Rlt a x0 Rlt x0 b0 Rlt c y0 Rlt y0 d0}) Hbcore).
We prove the intermediate claim Hxb': x {pEuclidPlane|∃x0 : set, ∃y0 : set, p = (x0,y0) Rlt a x0 Rlt x0 b0 Rlt c y0 Rlt y0 d0}.
rewrite the current goal using HbEq (from right to left).
An exact proof term for the current goal is Hxb.
We prove the intermediate claim HxE: x EuclidPlane.
An exact proof term for the current goal is (SepE1 EuclidPlane (λp1 : set∃x0 : set, ∃y0 : set, p1 = (x0,y0) Rlt a x0 Rlt x0 b0 Rlt c y0 Rlt y0 d0) x Hxb').
Apply (ball_inside_rectangle b x Hb HxE Hxb) to the current goal.
Let r3 be given.
Assume Hrad2.
We prove the intermediate claim Hr3: Rlt 0 r3.
An exact proof term for the current goal is (andEL (Rlt 0 r3) (∀p : set, p EuclidPlaneRlt (distance_R2 p x) r3p b) Hrad2).
We prove the intermediate claim HradP: ∀p : set, p EuclidPlaneRlt (distance_R2 p x) r3p b.
An exact proof term for the current goal is (andER (Rlt 0 r3) (∀p : set, p EuclidPlaneRlt (distance_R2 p x) r3p b) Hrad2).
Set u to be the term {pEuclidPlane|Rlt (distance_R2 p x) r3}.
We use u to witness the existential quantifier.
Apply andI to the current goal.
We will prove u circular_regions.
We prove the intermediate claim HuDef: u = {pEuclidPlane|Rlt (distance_R2 p x) r3}.
Use reflexivity.
rewrite the current goal using HuDef (from left to right).
An exact proof term for the current goal is (circular_regionI x r3 HxE Hr3).
Apply andI to the current goal.
We will prove x u.
We prove the intermediate claim HxBall: Rlt (distance_R2 x x) r3.
rewrite the current goal using (distance_R2_refl_0 x HxE) (from left to right).
An exact proof term for the current goal is Hr3.
An exact proof term for the current goal is (SepI EuclidPlane (λp0 : setRlt (distance_R2 p0 x) r3) x HxE HxBall).
We will prove u b.
Let p be given.
Assume Hp: p u.
We prove the intermediate claim HpE: p EuclidPlane.
An exact proof term for the current goal is (SepE1 EuclidPlane (λp0 : setRlt (distance_R2 p0 x) r3) p Hp).
We prove the intermediate claim HpBall: Rlt (distance_R2 p x) r3.
An exact proof term for the current goal is (SepE2 EuclidPlane (λp0 : setRlt (distance_R2 p0 x) r3) p Hp).
An exact proof term for the current goal is (HradP p HpE HpBall).