Assume Hfiner.
Let x be given.
Assume HxX.
Let b be given.
Assume HbB Hxb.
An exact proof term for the current goal is (Hfiner b HbGen).
We prove the intermediate
claim Hbprop:
∀x0 ∈ b, ∃b' ∈ B', x0 ∈ b' ∧ b' ⊆ b.
An
exact proof term for the current goal is
(SepE2 (𝒫 X) (λU0 : set ⇒ ∀x0 ∈ U0, ∃b0 ∈ B', x0 ∈ b0 ∧ b0 ⊆ U0) b HbGen').
An exact proof term for the current goal is (Hbprop x Hxb).
∎