Let X, d, A, B, x and n be given.
Assume Hm: metric_on X d.
Assume HxX: x X.
Assume HB: B metric_topology X d.
Assume HxB: x B.
Assume HAcl: closed_in X (metric_topology X d) A.
Assume HAint: interior_of X (metric_topology X d) A = Empty.
Assume HnO: n ω.
We prove the intermediate claim HsuccO: ordsucc n ω.
An exact proof term for the current goal is (omega_ordsucc n HnO).
We prove the intermediate claim HaR: eps_ (ordsucc n) R.
An exact proof term for the current goal is (SNoS_omega_real (eps_ (ordsucc n)) (SNo_eps_SNoS_omega (ordsucc n) HsuccO)).
We prove the intermediate claim Ha0: Rlt 0 (eps_ (ordsucc n)).
An exact proof term for the current goal is (RltI 0 (eps_ (ordsucc n)) real_0 HaR (SNo_eps_pos (ordsucc n) HsuccO)).
An exact proof term for the current goal is (baire_step_metric_ball_bounded_closure X d A B x (eps_ (ordsucc n)) Hm HxX HB HxB HAcl HAint HaR Ha0).