Let A, B, Y, f, g and x be given.
Assume Hdisj: A B = Empty.
Assume Hdomf: graph_domain_subset f A.
Assume Hdomg: graph_domain_subset g B.
Assume Htotf: total_function_on f A Y.
Assume Htotg: total_function_on g B Y.
Assume Hfunf: functional_graph f.
Assume Hfung: functional_graph g.
Assume HxA: x A.
We prove the intermediate claim Hpairf: (x,apply_fun f x) f.
An exact proof term for the current goal is (total_function_on_apply_fun_in_graph f A Y x Htotf HxA).
We prove the intermediate claim HpairU: (x,apply_fun f x) (f g).
An exact proof term for the current goal is (binunionI1 f g (x,apply_fun f x) Hpairf).
We prove the intermediate claim HfunU: functional_graph (f g).
An exact proof term for the current goal is (functional_graph_union_disjoint_domains A B f g Hdisj Hdomf Hdomg Hfunf Hfung).
An exact proof term for the current goal is (functional_graph_apply_fun_eq (f g) x (apply_fun f x) HfunU HpairU).