Let X, Tx, net, J, le, A, x and i0 be given.
Assume HTx HdirJ Htot Hgraph Hdom HxX HaccU.
rewrite the current goal using Hcldef (from left to right).
Apply (SepI X (λx0 : set ⇒ ∀U : set, U ∈ Tx → x0 ∈ U → U ∩ A ≠ Empty) x HxX) to the current goal.
Let U be given.
Apply (HaccU U HU HxU i0 Hi0) to the current goal.
Let j be given.
We prove the intermediate
claim Hjleft:
j ∈ J ∧ (i0,j) ∈ le.
An
exact proof term for the current goal is
(andEL (j ∈ J ∧ (i0,j) ∈ le) (apply_fun net j ∈ U) Hjpack).
We prove the intermediate
claim HjJ:
j ∈ J.
An
exact proof term for the current goal is
(andEL (j ∈ J) ((i0,j) ∈ le) Hjleft).
We prove the intermediate
claim Hjle:
(i0,j) ∈ le.
An
exact proof term for the current goal is
(andER (j ∈ J) ((i0,j) ∈ le) Hjleft).
We prove the intermediate
claim HnetjU:
apply_fun net j ∈ U.
An
exact proof term for the current goal is
(andER (j ∈ J ∧ (i0,j) ∈ le) (apply_fun net j ∈ U) Hjpack).
We prove the intermediate
claim HnetjA:
apply_fun net j ∈ A.
An exact proof term for the current goal is (HtailA j HjJ Hjle).
∎