Let X, Tx, Y, d, fn, eps and x be given.
Assume HTx: topology_on X Tx.
Assume Hx: x U_eps X Tx Y d fn eps.
Set UFam to be the term {interior_of X Tx (A_N_eps X Y d fn N eps)|Nω}.
We prove the intermediate claim HUdef: U_eps X Tx Y d fn eps = UFam.
Use reflexivity.
We prove the intermediate claim HxUnion: x UFam.
rewrite the current goal using HUdef (from right to left).
An exact proof term for the current goal is Hx.
Apply (UnionE_impred UFam x HxUnion (∃N : set, N ω ∃U : set, U Tx x U U A_N_eps X Y d fn N eps)) to the current goal.
Let W be given.
Assume HxW: x W.
Assume HWUFam: W UFam.
Apply (ReplE_impred ω (λN0 : setinterior_of X Tx (A_N_eps X Y d fn N0 eps)) W HWUFam (∃N : set, N ω ∃U : set, U Tx x U U A_N_eps X Y d fn N eps)) to the current goal.
Let N be given.
Assume HN: N ω.
Assume HWdef: W = interior_of X Tx (A_N_eps X Y d fn N eps).
We prove the intermediate claim HxInt: x interior_of X Tx (A_N_eps X Y d fn N eps).
rewrite the current goal using HWdef (from right to left).
An exact proof term for the current goal is HxW.
We prove the intermediate claim HintDef: interior_of X Tx (A_N_eps X Y d fn N eps) = {x0X|∃U0 : set, U0 Tx x0 U0 U0 (A_N_eps X Y d fn N eps)}.
Use reflexivity.
We prove the intermediate claim HexU0: ∃U0 : set, U0 Tx x U0 U0 (A_N_eps X Y d fn N eps).
We prove the intermediate claim HxInt2: x {x0X|∃U0 : set, U0 Tx x0 U0 U0 (A_N_eps X Y d fn N eps)}.
rewrite the current goal using HintDef (from right to left).
An exact proof term for the current goal is HxInt.
An exact proof term for the current goal is (SepE2 X (λx0 : set∃U0 : set, U0 Tx x0 U0 U0 (A_N_eps X Y d fn N eps)) x HxInt2).
Apply HexU0 to the current goal.
Let U be given.
Assume HU: U Tx x U U (A_N_eps X Y d fn N eps).
We use N to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is HN.
We use U to witness the existential quantifier.
An exact proof term for the current goal is HU.