Let x, y and i be given.
Assume Hx: x R_omega_space.
Assume Hy: y R_omega_space.
Assume HiO: i ω.
Set A to be the term Romega_D_scaled_diffs x y.
Set l to be the term Romega_D_metric_value x y.
We prove the intermediate claim Hlub: R_lub A l.
An exact proof term for the current goal is (Romega_D_metric_value_is_lub x y Hx Hy).
We prove the intermediate claim Hcore: l R ∀a : set, a Aa RRle a l.
An exact proof term for the current goal is (andEL (l R ∀a : set, a Aa RRle a l) (∀u : set, u R(∀a : set, a Aa RRle a u)Rle l u) Hlub).
We prove the intermediate claim Hub: ∀a : set, a Aa RRle a l.
An exact proof term for the current goal is (andER (l R) (∀a : set, a Aa RRle a l) Hcore).
Set a to be the term mul_SNo (R_bounded_distance (apply_fun x i) (apply_fun y i)) (inv_nat (ordsucc i)).
We prove the intermediate claim HaA: a A.
An exact proof term for the current goal is (ReplI ω (λj : setmul_SNo (R_bounded_distance (apply_fun x j) (apply_fun y j)) (inv_nat (ordsucc j))) i HiO).
We prove the intermediate claim HxiR: apply_fun x i R.
An exact proof term for the current goal is (Romega_coord_in_R x i Hx HiO).
We prove the intermediate claim HyiR: apply_fun y i R.
An exact proof term for the current goal is (Romega_coord_in_R y i Hy HiO).
We prove the intermediate claim HbdR: R_bounded_distance (apply_fun x i) (apply_fun y i) R.
An exact proof term for the current goal is (R_bounded_distance_in_R (apply_fun x i) (apply_fun y i) HxiR HyiR).
We prove the intermediate claim HsuccO: ordsucc i ω.
An exact proof term for the current goal is (omega_ordsucc i HiO).
We prove the intermediate claim HinvR: inv_nat (ordsucc i) R.
An exact proof term for the current goal is (inv_nat_real (ordsucc i) HsuccO).
We prove the intermediate claim HaR: a R.
An exact proof term for the current goal is (real_mul_SNo (R_bounded_distance (apply_fun x i) (apply_fun y i)) HbdR (inv_nat (ordsucc i)) HinvR).
An exact proof term for the current goal is (Hub a HaA HaR).