Let x and y be given.
Assume Hx: x R_omega_space.
Assume Hy: y R_omega_space.
Set A to be the term Romega_D_scaled_diffs x y.
We prove the intermediate claim HAeq: A = Romega_D_scaled_diffs y x.
An exact proof term for the current goal is (Romega_D_scaled_diffs_sym x y Hx Hy).
We prove the intermediate claim Hlub1: R_lub A (Romega_D_metric_value x y).
An exact proof term for the current goal is (Romega_D_metric_value_is_lub x y Hx Hy).
We prove the intermediate claim Hlub2': R_lub A (Romega_D_metric_value y x).
rewrite the current goal using HAeq (from left to right).
An exact proof term for the current goal is (Romega_D_metric_value_is_lub y x Hy Hx).
An exact proof term for the current goal is (R_lub_unique A (Romega_D_metric_value x y) (Romega_D_metric_value y x) Hlub1 Hlub2').