Let x, y, i and r be given.
Assume Hx: x R_omega_space.
Assume Hy: y R_omega_space.
Assume HiO: i ω.
Assume Hlt: Rlt (Romega_D_metric_value x y) r.
Set a to be the term mul_SNo (R_bounded_distance (apply_fun x i) (apply_fun y i)) (inv_nat (ordsucc i)).
We prove the intermediate claim Hale: Rle a (Romega_D_metric_value x y).
An exact proof term for the current goal is (Romega_D_metric_value_ub_scaled x y i Hx Hy HiO).
An exact proof term for the current goal is (Rle_Rlt_tra a (Romega_D_metric_value x y) r Hale Hlt).