Let A and l be given.
Assume Hlub: R_lub A l.
We prove the intermediate claim Hcore: l R (∀a : set, a Aa RRle a l).
An exact proof term for the current goal is (andEL (l R (∀a : set, a Aa RRle a l)) (∀u : set, u R(∀a : set, a Aa RRle a u)Rle l u) Hlub).
An exact proof term for the current goal is (andEL (l R) (∀a : set, a Aa RRle a l) Hcore).