Let X and Fam be given.
Assume HFamEmpty: ¬ (∃T : set, T Fam).
Apply set_ext to the current goal.
Let U be given.
Assume HU: U Intersection_Fam X Fam.
An exact proof term for the current goal is (SepE1 (𝒫 X) (λU0 ⇒ ∀T : set, T FamU0 T) U HU).
Let U be given.
Assume HU: U 𝒫 X.
We prove the intermediate claim HAllT: ∀T : set, T FamU T.
Let T be given.
Assume HT: T Fam.
Apply FalseE to the current goal.
Apply HFamEmpty to the current goal.
We use T to witness the existential quantifier.
An exact proof term for the current goal is HT.
An exact proof term for the current goal is (SepI (𝒫 X) (λU0 ⇒ ∀T : set, T FamU0 T) U HU HAllT).