Let X, Tx, x1 and x2 be given.
Assume H: Hausdorff_space X Tx.
Assume Hx1: x1 X.
Assume Hx2: x2 X.
Assume Hneq: x1 x2.
We prove the intermediate claim Hsep: ∀a b : set, a Xb Xa b∃U V : set, U Tx V Tx a U b V U V = Empty.
An exact proof term for the current goal is (andER (topology_on X Tx) (∀x1 x2 : set, x1 Xx2 Xx1 x2∃U V : set, U Tx V Tx x1 U x2 V U V = Empty) H).
An exact proof term for the current goal is (Hsep x1 x2 Hx1 Hx2 Hneq).