We will prove metric_on_total EuclidPlane EuclidPlane_metric.
We will prove metric_on EuclidPlane EuclidPlane_metric total_function_on EuclidPlane_metric (setprod EuclidPlane EuclidPlane) R.
Apply andI to the current goal.
An exact proof term for the current goal is EuclidPlane_metric_is_metric_on.
We will prove total_function_on EuclidPlane_metric (setprod EuclidPlane EuclidPlane) R.
We will prove function_on EuclidPlane_metric (setprod EuclidPlane EuclidPlane) R ∀pq : set, pq (setprod EuclidPlane EuclidPlane)∃y : set, y R (pq,y) EuclidPlane_metric.
Apply andI to the current goal.
Let pq be given.
We will prove ∃y : set, y R (pq,y) EuclidPlane_metric.
We use (distance_R2 (pq 0) (pq 1)) to witness the existential quantifier.
Apply andI to the current goal.
We prove the intermediate claim Hp: (pq 0) EuclidPlane.
An exact proof term for the current goal is (ap0_Sigma EuclidPlane (λ_ : setEuclidPlane) pq Hpq).
We prove the intermediate claim Hq: (pq 1) EuclidPlane.
An exact proof term for the current goal is (ap1_Sigma EuclidPlane (λ_ : setEuclidPlane) pq Hpq).
An exact proof term for the current goal is (distance_R2_in_R (pq 0) (pq 1) Hp Hq).
An exact proof term for the current goal is (ReplI (setprod EuclidPlane EuclidPlane) (λpq0 : set(pq0,distance_R2 (pq0 0) (pq0 1))) pq Hpq).