Set f0 to be the term const_fun unit_interval 0.
We use f0 to witness the existential quantifier.
We will prove f0 C_I_R.
Apply (SepI (function_space unit_interval R) (λf1 : setcontinuous_real_on_I f1) f0) to the current goal.
We will prove f0 function_space unit_interval R.
We prove the intermediate claim Hpow: f0 𝒫 (setprod unit_interval R).
We will prove f0 𝒫 (setprod unit_interval R).
Apply (PowerI (setprod unit_interval R) f0) to the current goal.
Let p be given.
Assume Hp: p f0.
We will prove p setprod unit_interval R.
Apply (ReplE_impred unit_interval (λa : set(a,0)) p Hp (p setprod unit_interval R)) to the current goal.
Let a be given.
Assume Ha: a unit_interval.
Assume Heq: p = (a,0).
rewrite the current goal using Heq (from left to right).
An exact proof term for the current goal is (tuple_2_setprod_by_pair_Sigma unit_interval R a 0 Ha real_0).
We prove the intermediate claim Hfun: function_on f0 unit_interval R.
Let x be given.
Assume Hx: x unit_interval.
We will prove apply_fun f0 x R.
rewrite the current goal using (const_fun_apply unit_interval 0 x Hx) (from left to right).
An exact proof term for the current goal is real_0.
An exact proof term for the current goal is (SepI (𝒫 (setprod unit_interval R)) (λf : setfunction_on f unit_interval R) f0 Hpow Hfun).
We will prove continuous_real_on_I f0.
An exact proof term for the current goal is (const_fun_continuous unit_interval I_topology R R_standard_topology 0 I_topology_on R_standard_topology_is_topology real_0).