Let Y, x, X, g and y be given.
Assume Hy.
Let x' be given.
Assume Hx'.
We will
prove (1 + (x' + - x) * y) * g x' ∈ ⋃y ∈ Y{(1 + (x' + - x) * y) * g x'|x' ∈ X}.
Apply famunionI Y (λy ⇒ {(1 + (x' + - x) * y) * g x'|x' ∈ X}) y ((1 + (x' + - x) * y) * g x') Hy to the current goal.
We will
prove (1 + (x' + - x) * y) * g x' ∈ {(1 + (x' + - x) * y) * g x'|x' ∈ X}.
An
exact proof term for the current goal is
ReplI X (λx' ⇒ (1 + (x' + - x) * y) * g x') x' Hx'.
∎