Let x be given.
Assume H.
Apply H to the current goal.
Let k be given.
Assume H.
Apply H to the current goal.
Assume H.
Apply H to the current goal.
Let m be given.
Assume H.
Apply H to the current goal.
rewrite the current goal using Hxkm (from left to right).
We will
prove eps_ k * m ∈ SNoS_ ω.
We prove the intermediate
claim L1:
∀n ∈ ω, eps_ k * n ∈ SNoS_ ω.
Let n be given.
We will
prove eps_ k * n ∈ SNoS_ ω.
We prove the intermediate
claim L2:
∀n ∈ ω, eps_ k * (- n) ∈ SNoS_ ω.
Let n be given.
We will
prove eps_ k * (- n) ∈ SNoS_ ω.
rewrite the current goal using mul_SNo_minus_distrR (eps_ k) n (SNo_eps_ k Hk) (omega_SNo n Hn) (from left to right).
Apply minus_SNo_SNoS_omega to the current goal.
An
exact proof term for the current goal is
int_SNo_cases (λm ⇒ eps_ k * m ∈ SNoS_ ω) L1 L2 m Hm.
∎