Let z be given.
Assume Hz1: SNo z.
Assume Hz3: SNoEq_ (SNoLev z) z v.
Assume Hz4: SNoEq_ (SNoLev z) z y.
Assume Hz5: v < z.
Assume Hz6: z < y.
Assume Hz7: SNoLev z ∉ v.
Apply binintersectE (SNoLev v) (SNoLev y) (SNoLev z) Hz2 to the current goal.
Assume Hz2a Hz2b.
We prove the intermediate
claim Lzy:
z ∈ SNoL y.
An exact proof term for the current goal is SNoL_I y Hy z Hz1 Hz2b Hz6.
We prove the intermediate
claim Lzv:
z ∈ SNoR v.
An exact proof term for the current goal is SNoR_I v Hv z Hz1 Hz2a Hz5.
We prove the intermediate
claim Lxz:
SNo (x * z).
An
exact proof term for the current goal is
SNo_mul_SNo x z Hx Hz1.
We prove the intermediate
claim Luz:
SNo (u * z).
An
exact proof term for the current goal is
SNo_mul_SNo u z Hu Hz1.
We prove the intermediate
claim Lwz:
SNo (w * z).
An
exact proof term for the current goal is
SNo_mul_SNo w z Hw1 Hz1.
We prove the intermediate
claim L1:
w * y + x * z < x * y + w * z.
An exact proof term for the current goal is Hxy1 w Lwx z Lzy.
We prove the intermediate
claim L2:
w * v + u * z < u * v + w * z.
An exact proof term for the current goal is Huv2 w Lwu z Lzv.
We prove the intermediate
claim L3:
x * v + w * z < w * v + x * z.
An exact proof term for the current goal is Hxv3 w Lwx z Lzv.
We prove the intermediate
claim L4:
u * y + w * z < w * y + u * z.
An exact proof term for the current goal is Huy4 w Lwu z Lzy.
We prove the intermediate
claim Lwzwz:
SNo (w * z + w * z).
An
exact proof term for the current goal is
SNo_add_SNo (w * z) (w * z) Lwz Lwz.
Apply add_SNo_Lt1_cancel (u * y + x * v) (w * z + w * z) (x * y + u * v) Luyxv Lwzwz Lxyuv to the current goal.
We will
prove (u * y + x * v) + (w * z + w * z) < (x * y + u * v) + (w * z + w * z).
We prove the intermediate
claim Lwyuz:
SNo (w * y + u * z).
An
exact proof term for the current goal is
SNo_add_SNo (w * y) (u * z) Lwy Luz.
We prove the intermediate
claim Lwvxz:
SNo (w * v + x * z).
An
exact proof term for the current goal is
SNo_add_SNo (w * v) (x * z) Lwv Lxz.
We prove the intermediate
claim Luywz:
SNo (u * y + w * z).
An
exact proof term for the current goal is
SNo_add_SNo (u * y) (w * z) Huy Lwz.
We prove the intermediate
claim Lxvwz:
SNo (x * v + w * z).
An
exact proof term for the current goal is
SNo_add_SNo (x * v) (w * z) Hxv Lwz.
We prove the intermediate
claim Lwvuz:
SNo (w * v + u * z).
An
exact proof term for the current goal is
SNo_add_SNo (w * v) (u * z) Lwv Luz.
We prove the intermediate
claim Lxyxz:
SNo (x * y + x * z).
An
exact proof term for the current goal is
SNo_add_SNo (x * y) (x * z) Hxy Lxz.
We prove the intermediate
claim Lwyxz:
SNo (w * y + x * z).
An
exact proof term for the current goal is
SNo_add_SNo (w * y) (x * z) Lwy Lxz.
We prove the intermediate
claim Lxywz:
SNo (x * y + w * z).
An
exact proof term for the current goal is
SNo_add_SNo (x * y) (w * z) Hxy Lwz.
We prove the intermediate
claim Luvwz:
SNo (u * v + w * z).
An
exact proof term for the current goal is
SNo_add_SNo (u * v) (w * z) Huv Lwz.
Apply SNoLt_tra ((u * y + x * v) + (w * z + w * z)) ((w * y + u * z) + (w * v + x * z)) ((x * y + u * v) + (w * z + w * z)) (SNo_add_SNo (u * y + x * v) (w * z + w * z) Luyxv Lwzwz) (SNo_add_SNo (w * y + u * z) (w * v + x * z) Lwyuz Lwvxz) (SNo_add_SNo (x * y + u * v) (w * z + w * z) Lxyuv Lwzwz) to the current goal.
We will
prove (u * y + x * v) + (w * z + w * z) < (w * y + u * z) + (w * v + x * z).
rewrite the current goal using
add_SNo_com_4_inner_mid (u * y) (x * v) (w * z) (w * z) Huy Hxv Lwz Lwz (from left to right).
We will
prove (u * y + w * z) + (x * v + w * z) < (w * y + u * z) + (w * v + x * z).
Apply add_SNo_Lt3 (u * y + w * z) (x * v + w * z) (w * y + u * z) (w * v + x * z) Luywz Lxvwz Lwyuz Lwvxz to the current goal.
We will
prove u * y + w * z < w * y + u * z.
An exact proof term for the current goal is L4.
We will
prove x * v + w * z < w * v + x * z.
An exact proof term for the current goal is L3.
We will
prove (w * y + u * z) + (w * v + x * z) < (x * y + u * v) + (w * z + w * z).
rewrite the current goal using
add_SNo_com_4_inner_mid (x * y) (u * v) (w * z) (w * z) Hxy Huv Lwz Lwz (from left to right).
We will
prove (w * y + u * z) + (w * v + x * z) < (x * y + w * z) + (u * v + w * z).
rewrite the current goal using
add_SNo_com (w * y) (u * z) Lwy Luz (from left to right).
rewrite the current goal using
add_SNo_com_4_inner_mid (u * z) (w * y) (w * v) (x * z) Luz Lwy Lwv Lxz (from left to right).
rewrite the current goal using
add_SNo_com (w * v) (u * z) Lwv Luz (from right to left).
We will
prove (w * v + u * z) + (w * y + x * z) < (x * y + w * z) + (u * v + w * z).
rewrite the current goal using
add_SNo_com (w * v + u * z) (w * y + x * z) Lwvuz Lwyxz (from left to right).
We will
prove (w * y + x * z) + (w * v + u * z) < (x * y + w * z) + (u * v + w * z).
Apply add_SNo_Lt3 (w * y + x * z) (w * v + u * z) (x * y + w * z) (u * v + w * z) Lwyxz Lwvuz Lxywz Luvwz to the current goal.
An exact proof term for the current goal is L1.
An exact proof term for the current goal is L2.
Assume H5: SNoEq_ (SNoLev v) v y.
We prove the intermediate
claim Lvy:
v ∈ SNoL y.
An exact proof term for the current goal is SNoL_I y Hy v Hv H4 Hvy.
We prove the intermediate
claim L1:
w * y + x * v < x * y + w * v.
An exact proof term for the current goal is Hxy1 w Lwx v Lvy.
We prove the intermediate
claim L2:
u * y + w * v < w * y + u * v.
An exact proof term for the current goal is Huy4 w Lwu v Lvy.
We will
prove u * y + x * v < x * y + u * v.
Apply add_SNo_Lt2_cancel (w * y) (u * y + x * v) (x * y + u * v) Lwy Luyxv Lxyuv to the current goal.
We will
prove w * y + u * y + x * v < w * y + x * y + u * v.
Apply SNoLt_tra (w * y + u * y + x * v) (u * y + w * v + x * y) (w * y + x * y + u * v) (SNo_add_SNo (w * y) (u * y + x * v) Lwy Luyxv) (SNo_add_SNo (u * y) (w * v + x * y) Huy (SNo_add_SNo (w * v) (x * y) Lwv Hxy)) (SNo_add_SNo (w * y) (x * y + u * v) Lwy Lxyuv) to the current goal.
We will
prove w * y + u * y + x * v < u * y + w * v + x * y.
rewrite the current goal using
add_SNo_com_3_0_1 (w * y) (u * y) (x * v) Lwy Huy Hxv (from left to right).
We will
prove u * y + w * y + x * v < u * y + w * v + x * y.
rewrite the current goal using
add_SNo_com (w * v) (x * y) Lwv Hxy (from left to right).
An
exact proof term for the current goal is
add_SNo_Lt2 (u * y) (w * y + x * v) (x * y + w * v) Huy Lwyxv Lxywv L1.
We will
prove u * y + w * v + x * y < w * y + x * y + u * v.
rewrite the current goal using
add_SNo_assoc (u * y) (w * v) (x * y) Huy Lwv Hxy (from left to right).
We will
prove (u * y + w * v) + x * y < w * y + x * y + u * v.
rewrite the current goal using
add_SNo_com (x * y) (u * v) Hxy Huv (from left to right).
We will
prove (u * y + w * v) + x * y < w * y + u * v + x * y.
rewrite the current goal using
add_SNo_assoc (w * y) (u * v) (x * y) Lwy Huv Hxy (from left to right).
We will
prove (u * y + w * v) + x * y < (w * y + u * v) + x * y.
An
exact proof term for the current goal is
add_SNo_Lt1 (u * y + w * v) (x * y) (w * y + u * v) Luywv Hxy Lwyuv L2.
Assume H5: SNoEq_ (SNoLev y) v y.
Assume H6: SNoLev y ∉ v.
We prove the intermediate
claim Lyv:
y ∈ SNoR v.
An exact proof term for the current goal is SNoR_I v Hv y Hy H4 Hvy.
We prove the intermediate
claim L1:
x * v + w * y < w * v + x * y.
An exact proof term for the current goal is Hxv3 w Lwx y Lyv.
We prove the intermediate
claim L2:
w * v + u * y < u * v + w * y.
An exact proof term for the current goal is Huv2 w Lwu y Lyv.
We will
prove u * y + x * v < x * y + u * v.
Apply add_SNo_Lt2_cancel (w * y) (u * y + x * v) (x * y + u * v) Lwy Luyxv Lxyuv to the current goal.
We will
prove w * y + u * y + x * v < w * y + x * y + u * v.
Apply SNoLt_tra (w * y + u * y + x * v) (u * y + w * v + x * y) (w * y + x * y + u * v) (SNo_add_SNo (w * y) (u * y + x * v) Lwy Luyxv) (SNo_add_SNo (u * y) (w * v + x * y) Huy (SNo_add_SNo (w * v) (x * y) Lwv Hxy)) (SNo_add_SNo (w * y) (x * y + u * v) Lwy Lxyuv) to the current goal.
We will
prove w * y + u * y + x * v < u * y + w * v + x * y.
rewrite the current goal using
add_SNo_rotate_3_1 (u * y) (x * v) (w * y) Huy Hxv Lwy (from right to left).
We will
prove u * y + x * v + w * y < u * y + w * v + x * y.
An
exact proof term for the current goal is
add_SNo_Lt2 (u * y) (x * v + w * y) (w * v + x * y) Huy Lxvwy Lwvxy L1.
We will
prove u * y + w * v + x * y < w * y + x * y + u * v.
rewrite the current goal using
add_SNo_rotate_3_1 (w * y) (x * y) (u * v) Lwy Hxy Huv (from left to right).
We will
prove u * y + w * v + x * y < u * v + w * y + x * y.
rewrite the current goal using
add_SNo_assoc (u * y) (w * v) (x * y) Huy Lwv Hxy (from left to right).
rewrite the current goal using
add_SNo_assoc (u * v) (w * y) (x * y) Huv Lwy Hxy (from left to right).
We will
prove (u * y + w * v) + x * y < (u * v + w * y) + x * y.
rewrite the current goal using
add_SNo_com (u * y) (w * v) Huy Lwv (from left to right).
We will
prove (w * v + u * y) + x * y < (u * v + w * y) + x * y.
Apply add_SNo_Lt1 (w * v + u * y) (x * y) (u * v + w * y) Lwvuy Hxy Luvwy L2 to the current goal.