Let alpha be given.
Assume Ha.
Let z be given.
Assume Hz: SNo z.
We prove the intermediate
claim Lz1:
SNo (- z).
We prove the intermediate
claim Lz2:
SNoLev (- z) ∈ ordsucc alpha.
rewrite the current goal using
minus_SNo_Lev z Hz (from left to right).
An exact proof term for the current goal is H1.
We will
prove - alpha ≤ z.
We will
prove - alpha ≤ - - z.
We will
prove - z ≤ alpha.
An
exact proof term for the current goal is
ordinal_SNoLev_max_2 alpha Ha (- z) Lz1 Lz2.
∎