Let alpha be given.
Assume Ha.
Let x be given.
Apply SNoS_E2 alpha Ha x Hx to the current goal.
Assume Hx2: ordinal (SNoLev x).
Assume Hx3: SNo x.
Assume Hx4: SNo_ (SNoLev x) x.
We prove the intermediate
claim Lbmx:
SNo_ (SNoLev x) (- x).
An
exact proof term for the current goal is
minus_SNo_SNo_ (SNoLev x) Hx2 x Hx4.
An
exact proof term for the current goal is
SNoS_I alpha Ha (- x) (SNoLev x) Hx1 Lbmx.
∎