Let P be given.
Assume H1.
Let x be given.
We prove the intermediate
claim LLx:
ordinal (SNoLev x).
We prove the intermediate
claim LsLx:
ordinal (ordsucc (SNoLev x)).
An
exact proof term for the current goal is
ordinal_ordsucc (SNoLev x) LLx.
We prove the intermediate
claim LxsLx:
x ∈ SNoS_ (ordsucc (SNoLev x)).
An
exact proof term for the current goal is
SNoS_SNoLev x Hx.
An
exact proof term for the current goal is
H1 (ordsucc (SNoLev x)) LsLx x LxsLx.
∎