Let x be given.
Assume Hx: SNo x.
Set alpha to be the term SNoLev x.
We prove the intermediate claim La: ordinal alpha.
An exact proof term for the current goal is SNoLev_ordinal x Hx.
We will prove SNoEq_ alpha (SNo_extend1 x) x.
Set p to be the term λbeta ⇒ beta x of type setprop.
Set q to be the term λbeta ⇒ beta xbeta = alpha of type setprop.
We will prove PNoEq_ alpha (λbeta ⇒ beta PSNo (ordsucc alpha) q) p.
Apply PNoEq_tra_ alpha (λbeta ⇒ beta PSNo (ordsucc alpha) q) q p to the current goal.
We will prove PNoEq_ alpha (λbeta ⇒ beta PSNo (ordsucc alpha) q) q.
Apply PNoEq_antimon_ (λbeta ⇒ beta PSNo (ordsucc alpha) q) q (ordsucc alpha) (ordinal_ordsucc alpha La) alpha (ordsuccI2 alpha) to the current goal.
We will prove PNoEq_ (ordsucc alpha) (λbeta ⇒ beta PSNo (ordsucc alpha) q) q.
An exact proof term for the current goal is PNoEq_PSNo (ordsucc alpha) (ordinal_ordsucc alpha La) q.
We will prove PNoEq_ alpha q p.
Apply PNoEq_sym_ to the current goal.
An exact proof term for the current goal is PNo_extend1_eq alpha p.