Let P be given.
Assume H1: ∀x y z, SNo xSNo ySNo z(∀uSNoS_ (SNoLev x), P u y z)(∀vSNoS_ (SNoLev y), P x v z)(∀wSNoS_ (SNoLev z), P x y w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), P u v z)(∀uSNoS_ (SNoLev x), ∀wSNoS_ (SNoLev z), P u y w)(∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), P x v w)(∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), P u v w)P x y z.
We prove the intermediate claim L1: ∀alpha, ordinal alpha∀beta, ordinal beta∀gamma, ordinal gamma∀xSNoS_ alpha, ∀ySNoS_ beta, ∀zSNoS_ gamma, P x y z.
Apply ordinal_ind to the current goal.
Let alpha be given.
Assume Ha: ordinal alpha.
Assume IHa: ∀deltaalpha, ∀beta, ordinal beta∀gamma, ordinal gamma∀xSNoS_ delta, ∀ySNoS_ beta, ∀zSNoS_ gamma, P x y z.
Apply ordinal_ind to the current goal.
Let beta be given.
Assume Hb: ordinal beta.
Assume IHb: ∀deltabeta, ∀gamma, ordinal gamma∀xSNoS_ alpha, ∀ySNoS_ delta, ∀zSNoS_ gamma, P x y z.
Apply ordinal_ind to the current goal.
Let gamma be given.
Assume Hc: ordinal gamma.
Assume IHc: ∀deltagamma, ∀xSNoS_ alpha, ∀ySNoS_ beta, ∀zSNoS_ delta, P x y z.
Let x be given.
Assume Hx: x SNoS_ alpha.
Let y be given.
Assume Hy: y SNoS_ beta.
Let z be given.
Assume Hz: z SNoS_ gamma.
Apply SNoS_E2 alpha Ha x Hx to the current goal.
Assume Hx1: SNoLev x alpha.
Assume Hx2: ordinal (SNoLev x).
Assume Hx3: SNo x.
Assume Hx4: SNo_ (SNoLev x) x.
Apply SNoS_E2 beta Hb y Hy to the current goal.
Assume Hy1: SNoLev y beta.
Assume Hy2: ordinal (SNoLev y).
Assume Hy3: SNo y.
Assume Hy4: SNo_ (SNoLev y) y.
Apply SNoS_E2 gamma Hc z Hz to the current goal.
Assume Hz1: SNoLev z gamma.
Assume Hz2: ordinal (SNoLev z).
Assume Hz3: SNo z.
Assume Hz4: SNo_ (SNoLev z) z.
Apply H1 x y z Hx3 Hy3 Hz3 to the current goal.
We will prove ∀uSNoS_ (SNoLev x), P u y z.
Let u be given.
Assume Hu: u SNoS_ (SNoLev x).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 beta Hb gamma Hc u Hu y Hy z Hz.
We will prove ∀vSNoS_ (SNoLev y), P x v z.
Let v be given.
Assume Hv: v SNoS_ (SNoLev y).
An exact proof term for the current goal is IHb (SNoLev y) Hy1 gamma Hc x Hx v Hv z Hz.
We will prove ∀wSNoS_ (SNoLev z), P x y w.
An exact proof term for the current goal is IHc (SNoLev z) Hz1 x Hx y Hy.
We will prove ∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), P u v z.
Let u be given.
Assume Hu: u SNoS_ (SNoLev x).
Let v be given.
Assume Hv: v SNoS_ (SNoLev y).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 (SNoLev y) Hy2 gamma Hc u Hu v Hv z Hz.
We will prove ∀uSNoS_ (SNoLev x), ∀wSNoS_ (SNoLev z), P u y w.
Let u be given.
Assume Hu: u SNoS_ (SNoLev x).
Let w be given.
Assume Hw: w SNoS_ (SNoLev z).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 beta Hb (SNoLev z) Hz2 u Hu y Hy w Hw.
We will prove ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), P x v w.
Let v be given.
Assume Hv: v SNoS_ (SNoLev y).
Let w be given.
Assume Hw: w SNoS_ (SNoLev z).
An exact proof term for the current goal is IHb (SNoLev y) Hy1 (SNoLev z) Hz2 x Hx v Hv w Hw.
We will prove ∀uSNoS_ (SNoLev x), ∀vSNoS_ (SNoLev y), ∀wSNoS_ (SNoLev z), P u v w.
Let u be given.
Assume Hu: u SNoS_ (SNoLev x).
Let v be given.
Assume Hv: v SNoS_ (SNoLev y).
Let w be given.
Assume Hw: w SNoS_ (SNoLev z).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 (SNoLev y) Hy2 (SNoLev z) Hz2 u Hu v Hv w Hw.
An exact proof term for the current goal is SNo_ordinal_ind3 P L1.