Apply ordinal_ind to the current goal.
Let alpha be given.
Assume Ha: ordinal alpha.
Apply ordinal_ind to the current goal.
Let beta be given.
Assume Hb: ordinal beta.
Apply ordinal_ind to the current goal.
Let gamma be given.
Assume Hc: ordinal gamma.
Let x be given.
Let y be given.
Let z be given.
Apply SNoS_E2 alpha Ha x Hx to the current goal.
Apply SNoS_E2 beta Hb y Hy to the current goal.
Apply SNoS_E2 gamma Hc z Hz to the current goal.
Apply H1 x y z Hx3 Hy3 Hz3 to the current goal.
Let u be given.
An
exact proof term for the current goal is
IHa (SNoLev x) Hx1 beta Hb gamma Hc u Hu y Hy z Hz.
Let v be given.
An
exact proof term for the current goal is
IHb (SNoLev y) Hy1 gamma Hc x Hx v Hv z Hz.
An
exact proof term for the current goal is
IHc (SNoLev z) Hz1 x Hx y Hy.
Let u be given.
Let v be given.
An
exact proof term for the current goal is
IHa (SNoLev x) Hx1 (SNoLev y) Hy2 gamma Hc u Hu v Hv z Hz.
Let u be given.
Let w be given.
An
exact proof term for the current goal is
IHa (SNoLev x) Hx1 beta Hb (SNoLev z) Hz2 u Hu y Hy w Hw.
Let v be given.
Let w be given.
An
exact proof term for the current goal is
IHb (SNoLev y) Hy1 (SNoLev z) Hz2 x Hx v Hv w Hw.
Let u be given.
Let v be given.
Let w be given.
An
exact proof term for the current goal is
IHa (SNoLev x) Hx1 (SNoLev y) Hy2 (SNoLev z) Hz2 u Hu v Hv w Hw.