Let R and alpha be given.
Assume Ha.
Let p and q be given.
Assume Hpq: PNoEq_ alpha p q.
Assume H1: PNo_rel_strict_lowerbd R alpha p.
We will prove PNo_rel_strict_lowerbd R alpha q.
Let beta be given.
Assume Hb: beta alpha.
Let r be given.
Assume H2: PNo_upc R beta r.
We prove the intermediate claim Lb: ordinal beta.
An exact proof term for the current goal is ordinal_Hered alpha Ha beta Hb.
We will prove PNoLt alpha q beta r.
Apply PNoEqLt_tra alpha beta Ha Lb q p r to the current goal.
We will prove PNoEq_ alpha q p.
Apply PNoEq_sym_ to the current goal.
An exact proof term for the current goal is Hpq.
We will prove PNoLt alpha p beta r.
An exact proof term for the current goal is H1 beta Hb r H2.