Let R be given.
Assume H1: ∃x, (∃y : set → prop, R x y) ∧ (∀y z : set → prop, R x y → R x z → y = z).
An exact proof term for the current goal is (Eps_i_ex (λx ⇒ (∃y : set → prop, R x y) ∧ (∀y z : set → prop, R x y → R x z → y = z)) H1).
Apply L1 to the current goal.
Assume H2 H3.
An
exact proof term for the current goal is
Descr_Vo1_prop (λy ⇒ R (DescrR_i_io_1 R) y) H2 H3.
∎