rewrite the current goal using
OSNo_p0_k (from left to right).
rewrite the current goal using
mul_OSNo_proj0 i6 i3 ?? ?? (from left to right).
rewrite the current goal using
OSNo_p0_i6 (from left to right).
rewrite the current goal using
OSNo_p1_i6 (from left to right).
rewrite the current goal using
OSNo_p0_i3 (from left to right).
rewrite the current goal using
OSNo_p1_i3 (from left to right).
We will
prove 0 * 0 + - ((- i) ' * (- j)) = k.
rewrite the current goal using mul_HSNo_0L 0 HSNo_0 (from left to right).
rewrite the current goal using conj_minus_HSNo i HSNo_Complex_i (from left to right).
rewrite the current goal using conj_HSNo_i (from left to right).
rewrite the current goal using minus_HSNo_invol i HSNo_Complex_i (from left to right).
We will
prove 0 + - (i * (- j)) = k.
rewrite the current goal using minus_mul_HSNo_distrR i j HSNo_Complex_i HSNo_Quaternion_j (from left to right).
rewrite the current goal using Quaternion_i_j (from left to right).
rewrite the current goal using minus_HSNo_invol k HSNo_Quaternion_k (from left to right).
An exact proof term for the current goal is add_HSNo_0L k HSNo_Quaternion_k.