rewrite the current goal using
OSNo_p0_j (from left to right).
rewrite the current goal using
mul_OSNo_proj0 i3 i5 ?? ?? (from left to right).
rewrite the current goal using
OSNo_p0_i3 (from left to right).
rewrite the current goal using
OSNo_p1_i3 (from left to right).
rewrite the current goal using
OSNo_p0_i5 (from left to right).
rewrite the current goal using
OSNo_p1_i5 (from left to right).
We will
prove 0 * 0 + - ((- k) ' * (- i)) = j.
rewrite the current goal using mul_HSNo_0L 0 HSNo_0 (from left to right).
rewrite the current goal using conj_minus_HSNo k HSNo_Quaternion_k (from left to right).
rewrite the current goal using conj_HSNo_k (from left to right).
rewrite the current goal using minus_HSNo_invol k HSNo_Quaternion_k (from left to right).
We will
prove 0 + - (k * (- i)) = j.
rewrite the current goal using minus_mul_HSNo_distrR k i HSNo_Quaternion_k HSNo_Complex_i (from left to right).
rewrite the current goal using Quaternion_k_i (from left to right).
rewrite the current goal using minus_HSNo_invol j HSNo_Quaternion_j (from left to right).
An exact proof term for the current goal is add_HSNo_0L j HSNo_Quaternion_j.