We prove the intermediate
claim L1:
∀x y z, SNo x → SNo y → SNo z → (x + y) + z = x + (y + z).
Let x, y and z be given.
Assume Hx Hy Hz.
Use symmetry.
An exact proof term for the current goal is add_SNo_assoc x y z Hx Hy Hz.
An
exact proof term for the current goal is
CD_add_mul_distrR {2} SNo complex_tag_fresh minus_SNo conj add_SNo mul_SNo SNo_minus_SNo (λx H ⇒ H) SNo_add_SNo SNo_mul_SNo minus_add_SNo_distr L1 add_SNo_com mul_SNo_distrL mul_SNo_distrR.
∎