Set F0 to be the term λX ⇒ pack_u (int X) (λu ⇒ (u 0 + 1,u 1)) of type setset.
Set F1 to be the term λX Y h ⇒ λuint X(u 0,h (u 1)) of type setsetsetset.
Set eta to be the term λX ⇒ λxX(0,x) of type setset.
Set epsPhi to be the term λX h ⇒ λuint Xif u 0 < 0 then omega_iterate (- (u 0)) (inv X h) (u 1) else omega_iterate (u 0) h (u 1) of type set(setset)set.
Set eps to be the term λA ⇒ unpack_u_i A epsPhi of type setset.
We use F0 to witness the existential quantifier.
We use F1 to witness the existential quantifier.
We use eta to witness the existential quantifier.
We use eps to witness the existential quantifier.
An exact proof term for the current goal is MetaCat_struct_u_bij_forgetfree.