Let alpha be given.
Assume Ha: ordinal alpha.
We will prove alpha SNoElts_ alpha ∀betaalpha, exactly1of2 (beta ' alpha) (beta alpha).
Apply andI to the current goal.
We will prove alpha SNoElts_ alpha.
Let beta be given.
Assume Hb: beta alpha.
We will prove beta alpha {beta '|betaalpha}.
Apply binunionI1 to the current goal.
An exact proof term for the current goal is Hb.
We will prove ∀betaalpha, exactly1of2 (beta ' alpha) (beta alpha).
Let beta be given.
Assume Hb: beta alpha.
Apply exactly1of2_I2 to the current goal.
We will prove beta ' alpha.
Assume H1: beta ' alpha.
We will prove False.
Apply tagged_not_ordinal beta to the current goal.
We will prove ordinal (beta ').
An exact proof term for the current goal is ordinal_Hered alpha Ha (beta ') H1.
We will prove beta alpha.
An exact proof term for the current goal is Hb.