Primitive. The name wsbc is a term of type ((setprop)((setprop)prop)).
Primitive. The name wceq is a term of type ((setprop)((setprop)prop)).
Axiom. (ax_mp) We take the following as an axiom:
(∀ph : prop, (∀ps : prop, ph(wi ph ps)ps))
Axiom. (ax_frege52c) We take the following as an axiom:
(∀ph : (setprop), (∀A2 : (set(setprop)), (∀B2 : (set(setprop)), (∀x3 : set, (wi (wceq (A2 x3) (B2 x3)) (wi (wsbc (λx3 : set(ph x3)) (A2 x3)) (wsbc (λx3 : set(ph x3)) (B2 x3))))))))
Axiom. (ax_frege8) We take the following as an axiom:
(∀ph : prop, (∀ps : prop, (∀ch : prop, (wi (wi ph (wi ps ch)) (wi ps (wi ph ch))))))
Theorem. (frege53c)
(∀ph : (setprop), (∀A2 : (set(setprop)), (∀B2 : (set(setprop)), (∀x3 : set, (wi (wsbc (λx3 : set(ph x3)) (A2 x3)) (wi (wceq (A2 x3) (B2 x3)) (wsbc (λx3 : set(ph x3)) (B2 x3))))))))
Proof:
Let ph of type (setprop) be given.
Let A2 of type (set(setprop)) be given.
Let B2 of type (set(setprop)) be given.
Let x3 of type set be given.
An exact proof term for the current goal is (ax_mp (wi (wceq (A2 x3) (B2 x3)) (wi (wsbc (λx3 : set(ph x3)) (A2 x3)) (wsbc (λx3 : set(ph x3)) (B2 x3)))) (wi (wsbc (λx3 : set(ph x3)) (A2 x3)) (wi (wceq (A2 x3) (B2 x3)) (wsbc (λx3 : set(ph x3)) (B2 x3)))) (ax_frege52c (λx3 : set(ph x3)) (λx3 : set(A2 x3)) (λx3 : set(B2 x3)) x3) (ax_frege8 (wceq (A2 x3) (B2 x3)) (wsbc (λx3 : set(ph x3)) (A2 x3)) (wsbc (λx3 : set(ph x3)) (B2 x3)))).