Beginning of Section Conj_mul_SNo_assoc_lem2__104__20
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo vSNo x2SNo (g v x2))
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H3 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoL (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoL x2(y2 + g z2 w2)g z2 x2 + g v w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoR x2(y2 + g z2 w2)g z2 x2 + g v w2P))P)))
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoR (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoR x2(g z2 x2 + g v w2)y2 + g z2 w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoL x2(g z2 x2 + g v w2)y2 + g z2 w2P))P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2 < vz2 < x2(g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2vz2x2(g y2 x2 + g v z2)g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v SNoS_ (SNoLev x)g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v SNoS_ (SNoLev y)g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v SNoS_ (SNoLev z)g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))P))
Hypothesis H18 : u w
Hypothesis H19 : SNo (g x y)
Hypothesis H21 : SNo (g (g x y) z)
Theorem. (Conj_mul_SNo_assoc_lem2__104__20)
(∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, SNo x2(∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)u = g v (g y z) + g x x2 + - (g v x2)(g x (g y2 z + g y z2) + g v (x2 + g y2 z2))g v (g y2 z + g y z2) + g x (x2 + g y2 z2)(g (g x y + g v y2) z + g (g v y + g x y2) z2) < g (g v y + g x y2) z + g (g x y + g v y2) z2g (g x y) z < u))))g (g x y) z < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem2__104__20
Beginning of Section Conj_mul_SNo_assoc_lem2__105__3
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo vSNo x2SNo (g v x2))
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoR (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoR x2(g z2 x2 + g v w2)y2 + g z2 w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoL x2(g z2 x2 + g v w2)y2 + g z2 w2P))P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2 < vz2 < x2(g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2vz2x2(g y2 x2 + g v z2)g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v SNoS_ (SNoLev x)g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v SNoS_ (SNoLev y)g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v SNoS_ (SNoLev z)g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))P))
Hypothesis H18 : u w
Hypothesis H19 : SNo (g x y)
Hypothesis H20 : SNo (g y z)
Theorem. (Conj_mul_SNo_assoc_lem2__105__3)
SNo (g (g x y) z)g (g x y) z < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem2__105__3
Beginning of Section Conj_mul_SNo_assoc_lem2__105__5
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo vSNo x2SNo (g v x2))
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H3 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoL (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoL x2(y2 + g z2 w2)g z2 x2 + g v w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoR x2(y2 + g z2 w2)g z2 x2 + g v w2P))P)))
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoR (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoR x2(g z2 x2 + g v w2)y2 + g z2 w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoL x2(g z2 x2 + g v w2)y2 + g z2 w2P))P)))
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2vz2x2(g y2 x2 + g v z2)g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v SNoS_ (SNoLev x)g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v SNoS_ (SNoLev y)g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v SNoS_ (SNoLev z)g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))P))
Hypothesis H18 : u w
Hypothesis H19 : SNo (g x y)
Hypothesis H20 : SNo (g y z)
Theorem. (Conj_mul_SNo_assoc_lem2__105__5)
SNo (g (g x y) z)g (g x y) z < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem2__105__5
Beginning of Section Conj_mul_SNo_assoc_lem2__105__8
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo vSNo x2SNo (g v x2))
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H3 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoL (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoL x2(y2 + g z2 w2)g z2 x2 + g v w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoR x2(y2 + g z2 w2)g z2 x2 + g v w2P))P)))
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoR (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoR x2(g z2 x2 + g v w2)y2 + g z2 w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoL x2(g z2 x2 + g v w2)y2 + g z2 w2P))P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2 < vz2 < x2(g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2vz2x2(g y2 x2 + g v z2)g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v SNoS_ (SNoLev x)g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v SNoS_ (SNoLev y)g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v SNoS_ (SNoLev z)g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))P))
Hypothesis H18 : u w
Hypothesis H19 : SNo (g x y)
Hypothesis H20 : SNo (g y z)
Theorem. (Conj_mul_SNo_assoc_lem2__105__8)
SNo (g (g x y) z)g (g x y) z < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem2__105__8
Beginning of Section Conj_mul_SNo_assoc_lem2__106__8
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo vSNo x2SNo (g v x2))
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H3 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoL (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoL x2(y2 + g z2 w2)g z2 x2 + g v w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoR x2(y2 + g z2 w2)g z2 x2 + g v w2P))P)))
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoR (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoR x2(g z2 x2 + g v w2)y2 + g z2 w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoL x2(g z2 x2 + g v w2)y2 + g z2 w2P))P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2 < vz2 < x2(g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2vz2x2(g y2 x2 + g v z2)g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v SNoS_ (SNoLev x)g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v SNoS_ (SNoLev y)g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v SNoS_ (SNoLev z)g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))P))
Hypothesis H18 : u w
Hypothesis H19 : SNo (g x y)
Theorem. (Conj_mul_SNo_assoc_lem2__106__8)
SNo (g y z)g (g x y) z < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem2__106__8
Beginning of Section Conj_mul_SNo_assoc_lem2__107__3
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo vSNo x2SNo (g v x2))
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo vSNo x2SNo y2g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo vSNo x2(∀y2 : set, y2 SNoR (g v x2)(∀P : prop, (∀z2 : set, z2 SNoL v(∀w2 : set, w2 SNoR x2(g z2 x2 + g v w2)y2 + g z2 w2P))(∀z2 : set, z2 SNoR v(∀w2 : set, w2 SNoL x2(g z2 x2 + g v w2)y2 + g z2 w2P))P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2 < vz2 < x2(g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo vSNo x2SNo y2SNo z2y2vz2x2(g y2 x2 + g v z2)g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v SNoS_ (SNoLev x)g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v SNoS_ (SNoLev y)g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v SNoS_ (SNoLev z)g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL (g y z)v = g x2 (g y z) + g x y2 + - (g x2 y2)P))P))
Hypothesis H18 : u w
Theorem. (Conj_mul_SNo_assoc_lem2__107__3)
SNo (g x y)g (g x y) z < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem2__107__3
Beginning of Section Conj_mul_SNo_assoc__1__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Hypothesis H20 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))
Hypothesis H21 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)
Hypothesis H22 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2y2u2z2(z2 * w2 + u2 * y2)z2 * y2 + u2 * w2)
Hypothesis H23 : (∀y2 : set, y2 SNoS_ (SNoLev x)(y2 * y) * z = y2 * y * z)
Hypothesis H24 : (∀y2 : set, y2 SNoS_ (SNoLev y)(x * y2) * z = x * y2 * z)
Hypothesis H25 : (∀y2 : set, y2 SNoS_ (SNoLev z)(x * y) * y2 = x * y * y2)
Hypothesis H26 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev x)(z2 * y2) * z = z2 * y2 * z))
Hypothesis H27 : (∀y2 : set, y2 SNoS_ (SNoLev z)(∀z2 : set, z2 SNoS_ (SNoLev x)(z2 * y) * y2 = z2 * y * y2))
Hypothesis H28 : (∀y2 : set, y2 SNoS_ (SNoLev z)(∀z2 : set, z2 SNoS_ (SNoLev y)(x * z2) * y2 = x * z2 * y2))
Theorem. (Conj_mul_SNo_assoc__1__15)
(∀y2 : set, y2 SNoS_ (SNoLev z)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev x)(w2 * z2) * y2 = w2 * z2 * y2)))SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__1__15
Beginning of Section Conj_mul_SNo_assoc__1__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Hypothesis H20 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))
Hypothesis H21 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)
Hypothesis H22 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2y2u2z2(z2 * w2 + u2 * y2)z2 * y2 + u2 * w2)
Hypothesis H23 : (∀y2 : set, y2 SNoS_ (SNoLev x)(y2 * y) * z = y2 * y * z)
Hypothesis H24 : (∀y2 : set, y2 SNoS_ (SNoLev y)(x * y2) * z = x * y2 * z)
Hypothesis H26 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev x)(z2 * y2) * z = z2 * y2 * z))
Hypothesis H27 : (∀y2 : set, y2 SNoS_ (SNoLev z)(∀z2 : set, z2 SNoS_ (SNoLev x)(z2 * y) * y2 = z2 * y * y2))
Hypothesis H28 : (∀y2 : set, y2 SNoS_ (SNoLev z)(∀z2 : set, z2 SNoS_ (SNoLev y)(x * z2) * y2 = x * z2 * y2))
Theorem. (Conj_mul_SNo_assoc__1__25)
(∀y2 : set, y2 SNoS_ (SNoLev z)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev x)(w2 * z2) * y2 = w2 * z2 * y2)))SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__1__25
Beginning of Section Conj_mul_SNo_assoc__3__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Hypothesis H20 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))
Hypothesis H21 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)
Hypothesis H22 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2y2u2z2(z2 * w2 + u2 * y2)z2 * y2 + u2 * w2)
Hypothesis H23 : (∀y2 : set, y2 SNoS_ (SNoLev x)(y2 * y) * z = y2 * y * z)
Hypothesis H24 : (∀y2 : set, y2 SNoS_ (SNoLev y)(x * y2) * z = x * y2 * z)
Hypothesis H25 : (∀y2 : set, y2 SNoS_ (SNoLev z)(x * y) * y2 = x * y * y2)
Hypothesis H26 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev x)(z2 * y2) * z = z2 * y2 * z))
Theorem. (Conj_mul_SNo_assoc__3__5)
(∀y2 : set, y2 SNoS_ (SNoLev z)(∀z2 : set, z2 SNoS_ (SNoLev x)(z2 * y) * y2 = z2 * y * y2))SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__3__5
Beginning of Section Conj_mul_SNo_assoc__5__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Hypothesis H20 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))
Hypothesis H21 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)
Hypothesis H22 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2y2u2z2(z2 * w2 + u2 * y2)z2 * y2 + u2 * w2)
Hypothesis H23 : (∀y2 : set, y2 SNoS_ (SNoLev x)(y2 * y) * z = y2 * y * z)
Hypothesis H24 : (∀y2 : set, y2 SNoS_ (SNoLev y)(x * y2) * z = x * y2 * z)
Theorem. (Conj_mul_SNo_assoc__5__18)
(∀y2 : set, y2 SNoS_ (SNoLev z)(x * y) * y2 = x * y * y2)SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__5__18
Beginning of Section Conj_mul_SNo_assoc__5__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H20 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))
Hypothesis H21 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)
Hypothesis H22 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2y2u2z2(z2 * w2 + u2 * y2)z2 * y2 + u2 * w2)
Hypothesis H23 : (∀y2 : set, y2 SNoS_ (SNoLev x)(y2 * y) * z = y2 * y * z)
Hypothesis H24 : (∀y2 : set, y2 SNoS_ (SNoLev y)(x * y2) * z = x * y2 * z)
Theorem. (Conj_mul_SNo_assoc__5__19)
(∀y2 : set, y2 SNoS_ (SNoLev z)(x * y) * y2 = x * y * y2)SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__5__19
Beginning of Section Conj_mul_SNo_assoc__5__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Hypothesis H20 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))
Hypothesis H21 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)
Hypothesis H22 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2y2u2z2(z2 * w2 + u2 * y2)z2 * y2 + u2 * w2)
Hypothesis H24 : (∀y2 : set, y2 SNoS_ (SNoLev y)(x * y2) * z = x * y2 * z)
Theorem. (Conj_mul_SNo_assoc__5__23)
(∀y2 : set, y2 SNoS_ (SNoLev z)(x * y) * y2 = x * y * y2)SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__5__23
Beginning of Section Conj_mul_SNo_assoc__6__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Hypothesis H21 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)
Hypothesis H22 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2y2u2z2(z2 * w2 + u2 * y2)z2 * y2 + u2 * w2)
Hypothesis H23 : (∀y2 : set, y2 SNoS_ (SNoLev x)(y2 * y) * z = y2 * y * z)
Theorem. (Conj_mul_SNo_assoc__6__20)
(∀y2 : set, y2 SNoS_ (SNoLev y)(x * y2) * z = x * y2 * z)SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__6__20
Beginning of Section Conj_mul_SNo_assoc__7__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Hypothesis H20 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))
Hypothesis H21 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)
Hypothesis H22 : (∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2y2u2z2(z2 * w2 + u2 * y2)z2 * y2 + u2 * w2)
Theorem. (Conj_mul_SNo_assoc__7__6)
(∀y2 : set, y2 SNoS_ (SNoLev x)(y2 * y) * z = y2 * y * z)SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__7__6
Beginning of Section Conj_mul_SNo_assoc__9__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Hypothesis H20 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))
Theorem. (Conj_mul_SNo_assoc__9__0)
(∀y2 : set, ∀z2 : set, ∀w2 : set, ∀u2 : set, SNo y2SNo z2SNo w2SNo u2w2 < y2u2 < z2(z2 * w2 + u2 * y2) < z2 * y2 + u2 * w2)SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__9__0
Beginning of Section Conj_mul_SNo_assoc__10__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))
Theorem. (Conj_mul_SNo_assoc__10__13)
(∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoR (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoR z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoL z2(z2 * u2 + v2 * y2)w2 + v2 * u2P))P)))SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__10__13
Beginning of Section Conj_mul_SNo_assoc__11__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set, y2 SNoS_ (SNoLev x)y2 * y * z = (y2 * y) * z)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ (SNoLev y)x * y2 * z = (x * y2) * z)
Hypothesis H5 : (∀y2 : set, y2 SNoS_ (SNoLev z)x * y * y2 = (x * y) * y2)
Hypothesis H6 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)y2 * z2 * z = (y2 * z2) * z))
Hypothesis H7 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev z)y2 * y * z2 = (y2 * y) * z2))
Hypothesis H8 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀z2 : set, z2 SNoS_ (SNoLev z)x * y2 * z2 = (x * y2) * z2))
Hypothesis H9 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)y2 * z2 * w2 = (y2 * z2) * w2)))
Hypothesis H10 : SNo (x * y)
Hypothesis H12 : (∀y2 : set, y2 w(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H13 : (∀y2 : set, y2 u(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL (y * z)y2 = z2 * y * z + x * w2 + - (z2 * w2)P))P))
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set, y2 v(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H17 : (∀y2 : set, y2 x2(∀P : prop, (∀z2 : set, z2 SNoL (x * y)(∀w2 : set, w2 SNoR zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR (x * y)(∀w2 : set, w2 SNoL zy2 = z2 * z + (x * y) * w2 + - (z2 * w2)P))P))
Hypothesis H18 : (x * y) * z = SNoCut v x2
Theorem. (Conj_mul_SNo_assoc__11__11)
(∀y2 : set, ∀z2 : set, SNo y2SNo z2(∀w2 : set, w2 SNoL (z2 * y2)(∀P : prop, (∀u2 : set, u2 SNoL y2(∀v2 : set, v2 SNoL z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))(∀u2 : set, u2 SNoR y2(∀v2 : set, v2 SNoR z2(w2 + v2 * u2)z2 * u2 + v2 * y2P))P)))SNoCut w u = SNoCut v x2
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc__11__11
Beginning of Section Conj_nonneg_mul_SNo_Le__1__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : Emptyx
Hypothesis H3 : SNo z
Hypothesis H4 : yz
Hypothesis H5 : Empty * z + x * y = x * y
Theorem. (Conj_nonneg_mul_SNo_Le__1__2)
x * z + Empty * y = x * zx * yx * z
Proof:
The rest of the proof is missing.

End of Section Conj_nonneg_mul_SNo_Le__1__2
Beginning of Section Conj_neg_mul_SNo_Lt__1__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : x < Empty
Hypothesis H2 : SNo y
Hypothesis H4 : z < y
Hypothesis H5 : x * y + Empty * z = x * y
Theorem. (Conj_neg_mul_SNo_Lt__1__3)
Empty * y + x * z = x * zx * y < x * z
Proof:
The rest of the proof is missing.

End of Section Conj_neg_mul_SNo_Lt__1__3
Beginning of Section Conj_neg_mul_SNo_Lt__2__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : x < Empty
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < y
Theorem. (Conj_neg_mul_SNo_Lt__2__0)
x * y + Empty * z = x * yx * y < x * z
Proof:
The rest of the proof is missing.

End of Section Conj_neg_mul_SNo_Lt__2__0
Beginning of Section Conj_SNo_foil_mm__1__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo (- y)
Theorem. (Conj_SNo_foil_mm__1__1)
SNo (- w)(x + - y) * (z + - w) = x * z + - (x * w) + - (y * z) + y * w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_foil_mm__1__1
Beginning of Section Conj_SNo_foil_mm__2__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Theorem. (Conj_SNo_foil_mm__2__0)
SNo (- y)(x + - y) * (z + - w) = x * z + - (x * w) + - (y * z) + y * w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_foil_mm__2__0
Beginning of Section Conj_eps_ordsucc_half_add__7__0
Variable x : set
Variable y : set
Hypothesis H1 : x ω
Hypothesis H2 : SNo (eps_ (ordsucc x))
Hypothesis H3 : SNo y
Hypothesis H4 : SNoLev y ordsucc (ordsucc x)
Hypothesis H5 : y < eps_ (ordsucc x)
Theorem. (Conj_eps_ordsucc_half_add__7__0)
yEmpty(y + eps_ (ordsucc x)) < eps_ x(eps_ (ordsucc x) + y) < eps_ x
Proof:
The rest of the proof is missing.

End of Section Conj_eps_ordsucc_half_add__7__0
Beginning of Section Conj_eps_ordsucc_half_add__7__1
Variable x : set
Variable y : set
Hypothesis H0 : nat_p x
Hypothesis H2 : SNo (eps_ (ordsucc x))
Hypothesis H3 : SNo y
Hypothesis H4 : SNoLev y ordsucc (ordsucc x)
Hypothesis H5 : y < eps_ (ordsucc x)
Theorem. (Conj_eps_ordsucc_half_add__7__1)
yEmpty(y + eps_ (ordsucc x)) < eps_ x(eps_ (ordsucc x) + y) < eps_ x
Proof:
The rest of the proof is missing.

End of Section Conj_eps_ordsucc_half_add__7__1
Beginning of Section Conj_eps_ordsucc_half_add__11__1
Variable x : set
Hypothesis H0 : nat_p x
Theorem. (Conj_eps_ordsucc_half_add__11__1)
x ωeps_ (ordsucc x) + eps_ (ordsucc x) = eps_ x
Proof:
The rest of the proof is missing.

End of Section Conj_eps_ordsucc_half_add__11__1
Beginning of Section Conj_double_eps_1__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : x + x = y + z
Theorem. (Conj_double_eps_1__1__1)
SNo (y + z)x = eps_ (ordsucc Empty) * (y + z)
Proof:
The rest of the proof is missing.

End of Section Conj_double_eps_1__1__1
Beginning of Section Conj_exp_SNo_1_bd__1__1
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H2 : nat_p y
Hypothesis H3 : ordsucc Emptyexp_SNo_nat x y
Theorem. (Conj_exp_SNo_1_bd__1__1)
SNo (exp_SNo_nat x y)ordsucc Emptyexp_SNo_nat x (ordsucc y)
Proof:
The rest of the proof is missing.

End of Section Conj_exp_SNo_1_bd__1__1
Beginning of Section Conj_mul_SNo_eps_eps_add_SNo__5__0
Variable x : set
Variable y : set
Hypothesis H1 : y ω
Hypothesis H2 : x + y ω
Hypothesis H3 : nat_p (x + y)
Hypothesis H4 : SNo (eps_ x)
Theorem. (Conj_mul_SNo_eps_eps_add_SNo__5__0)
SNo (eps_ y)eps_ x * eps_ y = eps_ (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eps_eps_add_SNo__5__0
Beginning of Section Conj_mul_SNo_eps_eps_add_SNo__8__0
Variable x : set
Variable y : set
Hypothesis H1 : y ω
Theorem. (Conj_mul_SNo_eps_eps_add_SNo__8__0)
x + y ωeps_ x * eps_ y = eps_ (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eps_eps_add_SNo__8__0
Beginning of Section Conj_SNoS_omega_Lev_equip__9__0
Variable x : set
Variable f : (setset)
Variable f2 : (setset)
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set, x wf2 w = f (binintersect w (SNoElts_ x)))
Hypothesis H2 : f z = y
Hypothesis H3 : SNoLev z = x
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev (SNo_extend1 z) = ordsucc x
Theorem. (Conj_SNoS_omega_Lev_equip__9__0)
x SNo_extend1 z(∃w : set, w Sep (SNoS_ ω) (λu : setSNoLev u = ordsucc x)f2 w = y)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__9__0
Beginning of Section Conj_SNoS_omega_Lev_equip__9__1
Variable x : set
Variable f : (setset)
Variable f2 : (setset)
Variable y : set
Variable z : set
Hypothesis H0 : nat_p x
Hypothesis H2 : f z = y
Hypothesis H3 : SNoLev z = x
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev (SNo_extend1 z) = ordsucc x
Theorem. (Conj_SNoS_omega_Lev_equip__9__1)
x SNo_extend1 z(∃w : set, w Sep (SNoS_ ω) (λu : setSNoLev u = ordsucc x)f2 w = y)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__9__1
Beginning of Section Conj_SNoS_omega_Lev_equip__13__7
Variable x : set
Variable f : (setset)
Variable f2 : (setset)
Variable y : set
Hypothesis H0 : nat_p x
Hypothesis H1 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H2 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H3 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H4 : (∀z : set, z exp_SNo_nat (ordsucc (ordsucc Empty)) x(∃w : set, w Sep (SNoS_ ω) (λu : setSNoLev u = x)f w = z))
Hypothesis H5 : (∀z : set, x zf2 z = f (binintersect z (SNoElts_ x)))
Hypothesis H6 : (∀z : set, nIn x zf2 z = exp_SNo_nat (ordsucc (ordsucc Empty)) x + f (binintersect z (SNoElts_ x)))
Theorem. (Conj_SNoS_omega_Lev_equip__13__7)
nat_p y(∃z : set, z Sep (SNoS_ ω) (λw : setSNoLev w = ordsucc x)f2 z = y)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__13__7
Beginning of Section Conj_SNoS_omega_Lev_equip__16__1
Variable x : set
Variable f : (setset)
Variable f2 : (setset)
Variable y : set
Variable z : set
Hypothesis H0 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H2 : (∀w : set, x wf2 w = f (binintersect w (SNoElts_ x)))
Hypothesis H3 : (∀w : set, nIn x wf2 w = exp_SNo_nat (ordsucc (ordsucc Empty)) x + f (binintersect w (SNoElts_ x)))
Hypothesis H4 : SNo y
Hypothesis H5 : SNoLev y = ordsucc x
Hypothesis H6 : binintersect y (SNoElts_ x) Sep (SNoS_ ω) (λw : setSNoLev w = x)
Hypothesis H7 : nat_p (f (binintersect y (SNoElts_ x)))
Hypothesis H8 : SNo (f (binintersect y (SNoElts_ x)))
Hypothesis H9 : f (binintersect y (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H10 : SNo z
Hypothesis H11 : SNoLev z = ordsucc x
Hypothesis H12 : binintersect z (SNoElts_ x) Sep (SNoS_ ω) (λw : setSNoLev w = x)
Hypothesis H13 : nat_p (f (binintersect z (SNoElts_ x)))
Hypothesis H14 : SNo (f (binintersect z (SNoElts_ x)))
Hypothesis H15 : f (binintersect z (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H16 : x SNoLev y
Theorem. (Conj_SNoS_omega_Lev_equip__16__1)
x SNoLev zf2 y = f2 zy = z
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__16__1
Beginning of Section Conj_SNoS_omega_Lev_equip__16__4
Variable x : set
Variable f : (setset)
Variable f2 : (setset)
Variable y : set
Variable z : set
Hypothesis H0 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H1 : (∀w : set, w Sep (SNoS_ ω) (λu : setSNoLev u = x)(∀u : set, u Sep (SNoS_ ω) (λv : setSNoLev v = x)f w = f uw = u))
Hypothesis H2 : (∀w : set, x wf2 w = f (binintersect w (SNoElts_ x)))
Hypothesis H3 : (∀w : set, nIn x wf2 w = exp_SNo_nat (ordsucc (ordsucc Empty)) x + f (binintersect w (SNoElts_ x)))
Hypothesis H5 : SNoLev y = ordsucc x
Hypothesis H6 : binintersect y (SNoElts_ x) Sep (SNoS_ ω) (λw : setSNoLev w = x)
Hypothesis H7 : nat_p (f (binintersect y (SNoElts_ x)))
Hypothesis H8 : SNo (f (binintersect y (SNoElts_ x)))
Hypothesis H9 : f (binintersect y (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H10 : SNo z
Hypothesis H11 : SNoLev z = ordsucc x
Hypothesis H12 : binintersect z (SNoElts_ x) Sep (SNoS_ ω) (λw : setSNoLev w = x)
Hypothesis H13 : nat_p (f (binintersect z (SNoElts_ x)))
Hypothesis H14 : SNo (f (binintersect z (SNoElts_ x)))
Hypothesis H15 : f (binintersect z (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H16 : x SNoLev y
Theorem. (Conj_SNoS_omega_Lev_equip__16__4)
x SNoLev zf2 y = f2 zy = z
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__16__4
Beginning of Section Conj_SNoS_omega_Lev_equip__16__6
Variable x : set
Variable f : (setset)
Variable f2 : (setset)
Variable y : set
Variable z : set
Hypothesis H0 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H1 : (∀w : set, w Sep (SNoS_ ω) (λu : setSNoLev u = x)(∀u : set, u Sep (SNoS_ ω) (λv : setSNoLev v = x)f w = f uw = u))
Hypothesis H2 : (∀w : set, x wf2 w = f (binintersect w (SNoElts_ x)))
Hypothesis H3 : (∀w : set, nIn x wf2 w = exp_SNo_nat (ordsucc (ordsucc Empty)) x + f (binintersect w (SNoElts_ x)))
Hypothesis H4 : SNo y
Hypothesis H5 : SNoLev y = ordsucc x
Hypothesis H7 : nat_p (f (binintersect y (SNoElts_ x)))
Hypothesis H8 : SNo (f (binintersect y (SNoElts_ x)))
Hypothesis H9 : f (binintersect y (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H10 : SNo z
Hypothesis H11 : SNoLev z = ordsucc x
Hypothesis H12 : binintersect z (SNoElts_ x) Sep (SNoS_ ω) (λw : setSNoLev w = x)
Hypothesis H13 : nat_p (f (binintersect z (SNoElts_ x)))
Hypothesis H14 : SNo (f (binintersect z (SNoElts_ x)))
Hypothesis H15 : f (binintersect z (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H16 : x SNoLev y
Theorem. (Conj_SNoS_omega_Lev_equip__16__6)
x SNoLev zf2 y = f2 zy = z
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__16__6
Beginning of Section Conj_SNoS_omega_Lev_equip__17__14
Variable x : set
Variable f : (setset)
Variable f2 : (setset)
Variable y : set
Variable z : set
Hypothesis H0 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H1 : (∀w : set, w Sep (SNoS_ ω) (λu : setSNoLev u = x)(∀u : set, u Sep (SNoS_ ω) (λv : setSNoLev v = x)f w = f uw = u))
Hypothesis H2 : (∀w : set, x wf2 w = f (binintersect w (SNoElts_ x)))
Hypothesis H3 : (∀w : set, nIn x wf2 w = exp_SNo_nat (ordsucc (ordsucc Empty)) x + f (binintersect w (SNoElts_ x)))
Hypothesis H4 : SNo y
Hypothesis H5 : SNoLev y = ordsucc x
Hypothesis H6 : binintersect y (SNoElts_ x) Sep (SNoS_ ω) (λw : setSNoLev w = x)
Hypothesis H7 : nat_p (f (binintersect y (SNoElts_ x)))
Hypothesis H8 : SNo (f (binintersect y (SNoElts_ x)))
Hypothesis H9 : f (binintersect y (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H10 : SNo z
Hypothesis H11 : SNoLev z = ordsucc x
Hypothesis H12 : binintersect z (SNoElts_ x) Sep (SNoS_ ω) (λw : setSNoLev w = x)
Hypothesis H13 : nat_p (f (binintersect z (SNoElts_ x)))
Hypothesis H15 : f (binintersect z (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) x
Theorem. (Conj_SNoS_omega_Lev_equip__17__14)
x SNoLev yf2 y = f2 zy = z
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__17__14
Beginning of Section Conj_SNoS_omega_Lev_equip__18__0
Variable x : set
Variable f : (setset)
Hypothesis H1 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H2 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H3 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H4 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H5 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H6 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H7 : (∀y : set, SNo yy < exp_SNo_nat (ordsucc (ordsucc Empty)) x(exp_SNo_nat (ordsucc (ordsucc Empty)) x + y) < exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H8 : exp_SNo_nat (ordsucc (ordsucc Empty)) x < exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H9 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = x)(∀z : set, z Sep (SNoS_ ω) (λw : setSNoLev w = x)f y = f zy = z))
Hypothesis H10 : (∀y : set, y exp_SNo_nat (ordsucc (ordsucc Empty)) x(∃z : set, z Sep (SNoS_ ω) (λw : setSNoLev w = x)f z = y))
Hypothesis H11 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = ordsucc x)(∀P : prop, (SNo ySNoLev y = ordsucc xbinintersect y (SNoElts_ x) Sep (SNoS_ ω) (λz : setSNoLev z = x)SNo (binintersect y (SNoElts_ x))SNoLev (binintersect y (SNoElts_ x)) = xP)P))
Hypothesis H12 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = ordsucc x)(∀P : prop, (nat_p (f (binintersect y (SNoElts_ x)))ordinal (f (binintersect y (SNoElts_ x)))SNo (f (binintersect y (SNoElts_ x)))f (binintersect y (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) xP)P))
Theorem. (Conj_SNoS_omega_Lev_equip__18__0)
(∃f2 : setset, (∀y : set, x yf2 y = f (binintersect y (SNoElts_ x)))(∀y : set, nIn x yf2 y = exp_SNo_nat (ordsucc (ordsucc Empty)) x + f (binintersect y (SNoElts_ x))))(∃f2 : setset, bij (Sep (SNoS_ ω) (λy : setSNoLev y = ordsucc x)) (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x) f2)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__18__0
Beginning of Section Conj_SNoS_omega_Lev_equip__18__3
Variable x : set
Variable f : (setset)
Hypothesis H0 : nat_p x
Hypothesis H1 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H2 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H4 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H5 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H6 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H7 : (∀y : set, SNo yy < exp_SNo_nat (ordsucc (ordsucc Empty)) x(exp_SNo_nat (ordsucc (ordsucc Empty)) x + y) < exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H8 : exp_SNo_nat (ordsucc (ordsucc Empty)) x < exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H9 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = x)(∀z : set, z Sep (SNoS_ ω) (λw : setSNoLev w = x)f y = f zy = z))
Hypothesis H10 : (∀y : set, y exp_SNo_nat (ordsucc (ordsucc Empty)) x(∃z : set, z Sep (SNoS_ ω) (λw : setSNoLev w = x)f z = y))
Hypothesis H11 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = ordsucc x)(∀P : prop, (SNo ySNoLev y = ordsucc xbinintersect y (SNoElts_ x) Sep (SNoS_ ω) (λz : setSNoLev z = x)SNo (binintersect y (SNoElts_ x))SNoLev (binintersect y (SNoElts_ x)) = xP)P))
Hypothesis H12 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = ordsucc x)(∀P : prop, (nat_p (f (binintersect y (SNoElts_ x)))ordinal (f (binintersect y (SNoElts_ x)))SNo (f (binintersect y (SNoElts_ x)))f (binintersect y (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) xP)P))
Theorem. (Conj_SNoS_omega_Lev_equip__18__3)
(∃f2 : setset, (∀y : set, x yf2 y = f (binintersect y (SNoElts_ x)))(∀y : set, nIn x yf2 y = exp_SNo_nat (ordsucc (ordsucc Empty)) x + f (binintersect y (SNoElts_ x))))(∃f2 : setset, bij (Sep (SNoS_ ω) (λy : setSNoLev y = ordsucc x)) (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x) f2)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__18__3
Beginning of Section Conj_SNoS_omega_Lev_equip__18__6
Variable x : set
Variable f : (setset)
Hypothesis H0 : nat_p x
Hypothesis H1 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H2 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H3 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H4 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H5 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H7 : (∀y : set, SNo yy < exp_SNo_nat (ordsucc (ordsucc Empty)) x(exp_SNo_nat (ordsucc (ordsucc Empty)) x + y) < exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H8 : exp_SNo_nat (ordsucc (ordsucc Empty)) x < exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x
Hypothesis H9 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = x)(∀z : set, z Sep (SNoS_ ω) (λw : setSNoLev w = x)f y = f zy = z))
Hypothesis H10 : (∀y : set, y exp_SNo_nat (ordsucc (ordsucc Empty)) x(∃z : set, z Sep (SNoS_ ω) (λw : setSNoLev w = x)f z = y))
Hypothesis H11 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = ordsucc x)(∀P : prop, (SNo ySNoLev y = ordsucc xbinintersect y (SNoElts_ x) Sep (SNoS_ ω) (λz : setSNoLev z = x)SNo (binintersect y (SNoElts_ x))SNoLev (binintersect y (SNoElts_ x)) = xP)P))
Hypothesis H12 : (∀y : set, y Sep (SNoS_ ω) (λz : setSNoLev z = ordsucc x)(∀P : prop, (nat_p (f (binintersect y (SNoElts_ x)))ordinal (f (binintersect y (SNoElts_ x)))SNo (f (binintersect y (SNoElts_ x)))f (binintersect y (SNoElts_ x)) < exp_SNo_nat (ordsucc (ordsucc Empty)) xP)P))
Theorem. (Conj_SNoS_omega_Lev_equip__18__6)
(∃f2 : setset, (∀y : set, x yf2 y = f (binintersect y (SNoElts_ x)))(∀y : set, nIn x yf2 y = exp_SNo_nat (ordsucc (ordsucc Empty)) x + f (binintersect y (SNoElts_ x))))(∃f2 : setset, bij (Sep (SNoS_ ω) (λy : setSNoLev y = ordsucc x)) (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x) f2)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__18__6
Beginning of Section Conj_SNoS_omega_Lev_equip__22__1
Variable x : set
Hypothesis H0 : nat_p x
Hypothesis H2 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H3 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H4 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H5 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H6 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H7 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Theorem. (Conj_SNoS_omega_Lev_equip__22__1)
(∀y : set, SNo yy < exp_SNo_nat (ordsucc (ordsucc Empty)) x(exp_SNo_nat (ordsucc (ordsucc Empty)) x + y) < exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)equip (Sep (SNoS_ ω) (λy : setSNoLev y = ordsucc x)) (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__22__1
Beginning of Section Conj_SNoS_omega_Lev_equip__22__4
Variable x : set
Hypothesis H0 : nat_p x
Hypothesis H1 : equip (Sep (SNoS_ ω) (λy : setSNoLev y = x)) (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H2 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H3 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H5 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H6 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H7 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Theorem. (Conj_SNoS_omega_Lev_equip__22__4)
(∀y : set, SNo yy < exp_SNo_nat (ordsucc (ordsucc Empty)) x(exp_SNo_nat (ordsucc (ordsucc Empty)) x + y) < exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)equip (Sep (SNoS_ ω) (λy : setSNoLev y = ordsucc x)) (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__22__4
Beginning of Section Conj_SNoS_omega_Lev_equip__24__5
Variable x : set
Hypothesis H0 : nat_p x
Hypothesis H1 : equip (Sep (SNoS_ ω) (λy : setSNoLev y = x)) (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H2 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H3 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Hypothesis H4 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Theorem. (Conj_SNoS_omega_Lev_equip__24__5)
ordinal (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)equip (Sep (SNoS_ ω) (λy : setSNoLev y = ordsucc x)) (exp_SNo_nat (ordsucc (ordsucc Empty)) x + exp_SNo_nat (ordsucc (ordsucc Empty)) x)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_Lev_equip__24__5
Beginning of Section Conj_int_add_SNo__1__1
Variable x : set
Variable y : set
Hypothesis H0 : x ω
Hypothesis H2 : SNo x
Theorem. (Conj_int_add_SNo__1__1)
SNo y- x + - y int
Proof:
The rest of the proof is missing.

End of Section Conj_int_add_SNo__1__1
Beginning of Section Conj_int_mul_SNo__3__2
Variable x : set
Variable y : set
Hypothesis H0 : x ω
Hypothesis H1 : SNo x
Theorem. (Conj_int_mul_SNo__3__2)
nat_p y(- x) * (- y) int
Proof:
The rest of the proof is missing.

End of Section Conj_int_mul_SNo__3__2
Beginning of Section Conj_int_mul_SNo__10__2
Variable x : set
Variable y : set
Hypothesis H0 : x ω
Hypothesis H1 : SNo x
Hypothesis H3 : ordinal y
Theorem. (Conj_int_mul_SNo__10__2)
SNo yx * (- y) int
Proof:
The rest of the proof is missing.

End of Section Conj_int_mul_SNo__10__2
Beginning of Section Conj_SNo_triangle2__2__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo (- y)
Theorem. (Conj_SNo_triangle2__2__0)
SNo (- z)abs_SNo (x + - z)abs_SNo (x + - y) + abs_SNo (y + - z)
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_triangle2__2__0
Beginning of Section Conj_double_SNo_max_1__1__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀w : set, w SNoL xSNo wwy)
Hypothesis H3 : SNoLev y SNoLev x
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z SNoLev y
Hypothesis H7 : z < x
Proof:
The rest of the proof is missing.

End of Section Conj_double_SNo_max_1__1__6
Beginning of Section Conj_double_SNo_max_1__2__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H3 : x < z
Hypothesis H4 : w SNoR z
Hypothesis H5 : (y + w) < x + x
Hypothesis H6 : SNo w
Hypothesis H7 : SNoLev w SNoLev z
Hypothesis H8 : z < w
Theorem. (Conj_double_SNo_max_1__2__2)
(∃u : set, u SNoR wy + u = x + x)(∃u : set, u SNoR zy + u = x + x)
Proof:
The rest of the proof is missing.

End of Section Conj_double_SNo_max_1__2__2
Beginning of Section Conj_double_SNo_min_1__5__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H5 : (x + x) < y + z
Hypothesis H6 : SNo (- x)
Hypothesis H7 : SNo (- y)
Hypothesis H8 : SNo (- z)
Hypothesis H9 : SNo (x + x)
Theorem. (Conj_double_SNo_min_1__5__1)
SNo (y + z)(∃w : set, w SNoL zy + w = x + x)
Proof:
The rest of the proof is missing.

End of Section Conj_double_SNo_min_1__5__1
Beginning of Section Conj_double_SNo_min_1__5__5
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo_min_of (SNoR x) y
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H6 : SNo (- x)
Hypothesis H7 : SNo (- y)
Hypothesis H8 : SNo (- z)
Hypothesis H9 : SNo (x + x)
Theorem. (Conj_double_SNo_min_1__5__5)
SNo (y + z)(∃w : set, w SNoL zy + w = x + x)
Proof:
The rest of the proof is missing.

End of Section Conj_double_SNo_min_1__5__5
Beginning of Section Conj_double_SNo_min_1__5__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo_min_of (SNoR x) y
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H5 : (x + x) < y + z
Hypothesis H7 : SNo (- y)
Hypothesis H8 : SNo (- z)
Hypothesis H9 : SNo (x + x)
Theorem. (Conj_double_SNo_min_1__5__6)
SNo (y + z)(∃w : set, w SNoL zy + w = x + x)
Proof:
The rest of the proof is missing.

End of Section Conj_double_SNo_min_1__5__6
Beginning of Section Conj_double_SNo_min_1__5__9
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo_min_of (SNoR x) y
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H5 : (x + x) < y + z
Hypothesis H6 : SNo (- x)
Hypothesis H7 : SNo (- y)
Hypothesis H8 : SNo (- z)
Theorem. (Conj_double_SNo_min_1__5__9)
SNo (y + z)(∃w : set, w SNoL zy + w = x + x)
Proof:
The rest of the proof is missing.

End of Section Conj_double_SNo_min_1__5__9
Beginning of Section Conj_double_SNo_min_1__7__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H5 : (x + x) < y + z
Hypothesis H6 : SNo (- x)
Hypothesis H7 : SNo (- y)
Theorem. (Conj_double_SNo_min_1__7__1)
SNo (- z)(∃w : set, w SNoL zy + w = x + x)
Proof:
The rest of the proof is missing.

End of Section Conj_double_SNo_min_1__7__1
Beginning of Section Conj_finite_max_exists__3__1
Variable x : set
Variable y : set
Variable f : (setset)
Hypothesis H0 : (∀z : set, (∀w : set, w zSNo w)equip z (ordsucc x)(∃w : set, SNo_max_of z w))
Hypothesis H2 : (∀z : set, z ordsucc (ordsucc x)f z y)
Hypothesis H3 : (∀z : set, z ordsucc (ordsucc x)(∀w : set, w ordsucc (ordsucc x)f z = f wz = w))
Hypothesis H4 : (∀z : set, z y(∃w : set, w ordsucc (ordsucc x)f w = z))
Hypothesis H5 : Subq (Repl (ordsucc x) f) y
Theorem. (Conj_finite_max_exists__3__1)
equip (Repl (ordsucc x) f) (ordsucc x)(∃z : set, SNo_max_of y z)
Proof:
The rest of the proof is missing.

End of Section Conj_finite_max_exists__3__1
Beginning of Section Conj_SNoS_omega_SNoL_max_exists__1__0
Variable x : set
Hypothesis H1 : SNoL xEmpty
Theorem. (Conj_SNoS_omega_SNoL_max_exists__1__0)
(∀y : set, y SNoL xSNo y)(∃y : set, SNo_max_of (SNoL x) y)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_SNoL_max_exists__1__0
Beginning of Section Conj_SNoS_omega_SNoR_min_exists__1__0
Variable x : set
Hypothesis H1 : SNoR xEmpty
Theorem. (Conj_SNoS_omega_SNoR_min_exists__1__0)
(∀y : set, y SNoR xSNo y)(∃y : set, SNo_min_of (SNoR x) y)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_SNoR_min_exists__1__0
Beginning of Section Conj_minus_SNo_diadic_rational_p__3__0
Variable x : set
Variable y : set
Theorem. (Conj_minus_SNo_diadic_rational_p__3__0)
SNo (eps_ y)(∃z : set, z intx = eps_ y * z)diadic_rational_p (- x)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_diadic_rational_p__3__0
Beginning of Section Conj_mul_SNo_diadic_rational_p__1__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : z ω
Hypothesis H1 : SNo (eps_ z)
Hypothesis H2 : w int
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : SNo w
Hypothesis H5 : u ω
Hypothesis H6 : SNo (eps_ u)
Hypothesis H8 : SNo v
Theorem. (Conj_mul_SNo_diadic_rational_p__1__7)
SNo (eps_ u * v)y = eps_ u * v(∃x2 : set, x2 ω(∃y2 : set, y2 intx * y = eps_ x2 * y2))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_diadic_rational_p__1__7
Beginning of Section Conj_mul_SNo_diadic_rational_p__3__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : z ω
Hypothesis H1 : SNo (eps_ z)
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : SNo w
Hypothesis H5 : u ω
Theorem. (Conj_mul_SNo_diadic_rational_p__3__2)
SNo (eps_ u)(∃v : set, v inty = eps_ u * v)diadic_rational_p (x * y)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_diadic_rational_p__3__2
Beginning of Section Conj_add_SNo_diadic_rational_p__1__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : z ω
Hypothesis H1 : SNo (eps_ z)
Hypothesis H2 : w int
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : u ω
Hypothesis H5 : SNo (eps_ u)
Hypothesis H6 : v int
Hypothesis H7 : y = eps_ u * v
Hypothesis H9 : exp_SNo_nat (ordsucc (ordsucc Empty)) u int
Hypothesis H10 : exp_SNo_nat (ordsucc (ordsucc Empty)) u * w int
Hypothesis H11 : exp_SNo_nat (ordsucc (ordsucc Empty)) z int
Theorem. (Conj_add_SNo_diadic_rational_p__1__8)
exp_SNo_nat (ordsucc (ordsucc Empty)) z * v intexp_SNo_nat (ordsucc (ordsucc Empty)) u * w + exp_SNo_nat (ordsucc (ordsucc Empty)) z * v intx + y = eps_ (z + u) * (exp_SNo_nat (ordsucc (ordsucc Empty)) u * w + exp_SNo_nat (ordsucc (ordsucc Empty)) z * v)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_diadic_rational_p__1__8
Beginning of Section Conj_add_SNo_diadic_rational_p__1__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : z ω
Hypothesis H1 : SNo (eps_ z)
Hypothesis H2 : w int
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : u ω
Hypothesis H5 : SNo (eps_ u)
Hypothesis H6 : v int
Hypothesis H7 : y = eps_ u * v
Hypothesis H8 : SNo (eps_ u * v)
Hypothesis H9 : exp_SNo_nat (ordsucc (ordsucc Empty)) u int
Hypothesis H10 : exp_SNo_nat (ordsucc (ordsucc Empty)) u * w int
Theorem. (Conj_add_SNo_diadic_rational_p__1__11)
exp_SNo_nat (ordsucc (ordsucc Empty)) z * v intexp_SNo_nat (ordsucc (ordsucc Empty)) u * w + exp_SNo_nat (ordsucc (ordsucc Empty)) z * v intx + y = eps_ (z + u) * (exp_SNo_nat (ordsucc (ordsucc Empty)) u * w + exp_SNo_nat (ordsucc (ordsucc Empty)) z * v)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_diadic_rational_p__1__11
Beginning of Section Conj_add_SNo_diadic_rational_p__4__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (eps_ z)
Hypothesis H2 : w int
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : u ω
Hypothesis H5 : SNo (eps_ u)
Hypothesis H6 : v int
Hypothesis H7 : y = eps_ u * v
Hypothesis H8 : SNo (eps_ u * v)
Theorem. (Conj_add_SNo_diadic_rational_p__4__0)
exp_SNo_nat (ordsucc (ordsucc Empty)) u intexp_SNo_nat (ordsucc (ordsucc Empty)) u * w + exp_SNo_nat (ordsucc (ordsucc Empty)) z * v intx + y = eps_ (z + u) * (exp_SNo_nat (ordsucc (ordsucc Empty)) u * w + exp_SNo_nat (ordsucc (ordsucc Empty)) z * v)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_diadic_rational_p__4__0
Beginning of Section Conj_add_SNo_diadic_rational_p__4__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : z ω
Hypothesis H1 : SNo (eps_ z)
Hypothesis H2 : w int
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : u ω
Hypothesis H5 : SNo (eps_ u)
Hypothesis H6 : v int
Hypothesis H8 : SNo (eps_ u * v)
Theorem. (Conj_add_SNo_diadic_rational_p__4__7)
exp_SNo_nat (ordsucc (ordsucc Empty)) u intexp_SNo_nat (ordsucc (ordsucc Empty)) u * w + exp_SNo_nat (ordsucc (ordsucc Empty)) z * v intx + y = eps_ (z + u) * (exp_SNo_nat (ordsucc (ordsucc Empty)) u * w + exp_SNo_nat (ordsucc (ordsucc Empty)) z * v)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_diadic_rational_p__4__7
Beginning of Section Conj_add_SNo_diadic_rational_p__5__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : z ω
Hypothesis H1 : SNo (eps_ z)
Hypothesis H2 : w int
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : u ω
Hypothesis H5 : SNo (eps_ u)
Hypothesis H7 : y = eps_ u * v
Hypothesis H8 : SNo v
Theorem. (Conj_add_SNo_diadic_rational_p__5__6)
SNo (eps_ u * v)(∃x2 : set, x2 ω(∃y2 : set, y2 intx + y = eps_ x2 * y2))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_diadic_rational_p__5__6
Beginning of Section Conj_add_SNo_diadic_rational_p__5__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : z ω
Hypothesis H1 : SNo (eps_ z)
Hypothesis H2 : w int
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : u ω
Hypothesis H5 : SNo (eps_ u)
Hypothesis H6 : v int
Hypothesis H8 : SNo v
Theorem. (Conj_add_SNo_diadic_rational_p__5__7)
SNo (eps_ u * v)(∃x2 : set, x2 ω(∃y2 : set, y2 intx + y = eps_ x2 * y2))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_diadic_rational_p__5__7
Beginning of Section Conj_add_SNo_diadic_rational_p__7__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : z ω
Hypothesis H2 : w int
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : u ω
Theorem. (Conj_add_SNo_diadic_rational_p__7__1)
SNo (eps_ u)(∃v : set, v inty = eps_ u * v)diadic_rational_p (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_diadic_rational_p__7__1
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__3__1
Variable x : set
Variable y : set
Hypothesis H0 : nat_p x
Hypothesis H2 : ¬ diadic_rational_p y
Hypothesis H3 : ordinal y
Theorem. (Conj_SNoS_omega_diadic_rational_p_lem__3__1)
y = x(∃z : set, SNo_min_of (SNoR y) z)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_diadic_rational_p_lem__3__1
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__9__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀v : set, v x(∀x2 : set, SNo x2SNoLev x2 = vdiadic_rational_p x2))
Hypothesis H3 : SNoLev y = x
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H5 : SNoLev z SNoLev y
Hypothesis H6 : SNo w
Hypothesis H7 : diadic_rational_p w
Hypothesis H8 : w + u = y + y
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u SNoLev z
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_diadic_rational_p_lem__9__2
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__10__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀u : set, u x(∀v : set, SNo vSNoLev v = udiadic_rational_p v))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = x
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H5 : SNo_max_of (SNoL y) z
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z SNoLev y
Hypothesis H8 : z < y
Hypothesis H9 : SNo_min_of (SNoR y) w
Hypothesis H11 : SNoLev w SNoLev y
Hypothesis H12 : y < w
Hypothesis H13 : SNo (y + y)
Hypothesis H14 : SNo (z + w)
Hypothesis H15 : diadic_rational_p z
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_diadic_rational_p_lem__10__10
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__10__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀u : set, u x(∀v : set, SNo vSNoLev v = udiadic_rational_p v))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = x
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H5 : SNo_max_of (SNoL y) z
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z SNoLev y
Hypothesis H8 : z < y
Hypothesis H9 : SNo_min_of (SNoR y) w
Hypothesis H10 : SNo w
Hypothesis H11 : SNoLev w SNoLev y
Hypothesis H13 : SNo (y + y)
Hypothesis H14 : SNo (z + w)
Hypothesis H15 : diadic_rational_p z
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_diadic_rational_p_lem__10__12
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__11__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀u : set, u x(∀v : set, SNo vSNoLev v = udiadic_rational_p v))
Hypothesis H2 : SNo y
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H5 : SNo_max_of (SNoL y) z
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z SNoLev y
Hypothesis H8 : z < y
Hypothesis H9 : SNo_min_of (SNoR y) w
Hypothesis H10 : SNo w
Hypothesis H11 : SNoLev w SNoLev y
Hypothesis H12 : y < w
Hypothesis H13 : SNo (y + y)
Hypothesis H14 : SNo (z + w)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_diadic_rational_p_lem__11__3
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__11__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀u : set, u x(∀v : set, SNo vSNoLev v = udiadic_rational_p v))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = x
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z SNoLev y
Hypothesis H8 : z < y
Hypothesis H9 : SNo_min_of (SNoR y) w
Hypothesis H10 : SNo w
Hypothesis H11 : SNoLev w SNoLev y
Hypothesis H12 : y < w
Hypothesis H13 : SNo (y + y)
Hypothesis H14 : SNo (z + w)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_diadic_rational_p_lem__11__5
Beginning of Section Conj_SNoS_ordsucc_omega_bdd_above__4__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Hypothesis H2 : x < y
Hypothesis H3 : SNoLev y ω
Theorem. (Conj_SNoS_ordsucc_omega_bdd_above__4__0)
ordinal (SNoLev y)(∃z : set, z ωx < z)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_ordsucc_omega_bdd_above__4__0
Beginning of Section Conj_SNoS_ordsucc_omega_bdd_drat_intvl__3__0
Variable x : set
Variable y : set
Hypothesis H1 : nIn x (SNoS_ ω)
Hypothesis H2 : nat_p y
Hypothesis H3 : - y < xx < y(∃z : set, z SNoS_ ω(z < xx < z + ordsucc Empty))
Hypothesis H4 : - (ordsucc y) < x
Hypothesis H5 : x < ordsucc y
Theorem. (Conj_SNoS_ordsucc_omega_bdd_drat_intvl__3__0)
SNo y(∃z : set, z SNoS_ ω(z < xx < z + ordsucc Empty))
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_ordsucc_omega_bdd_drat_intvl__3__0
Beginning of Section Conj_SNoS_ordsucc_omega_bdd_drat_intvl__5__2
Variable x : set
Hypothesis H0 : x SNoS_ (ordsucc ω)
Hypothesis H1 : - ω < x
Hypothesis H3 : SNo x
Hypothesis H4 : ¬ (∀y : set, y ω(∃z : set, z SNoS_ ω(z < xx < z + eps_ y)))
Hypothesis H5 : nIn x (SNoS_ ω)
Theorem. (Conj_SNoS_ordsucc_omega_bdd_drat_intvl__5__2)
¬ (∀y : set, nat_p y(∃z : set, z SNoS_ ω(z < xx < z + eps_ y)))
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_ordsucc_omega_bdd_drat_intvl__5__2
Beginning of Section Conj_real_E__3__6
Variable x : set
Variable P : prop
Hypothesis H0 : SNo xSNoLev x ordsucc ωx SNoS_ (ordsucc ω)- ω < xx < ω(∀y : set, y SNoS_ ω(∀z : set, z ωabs_SNo (y + - x) < eps_ z)y = x)(∀y : set, y ω(∃z : set, z SNoS_ ω(z < xx < z + eps_ y)))P
Hypothesis H1 : x SNoS_ (ordsucc ω)
Hypothesis H2 : (∀y : set, y SNoS_ ω(∀z : set, z ωabs_SNo (y + - x) < eps_ z)y = x)
Hypothesis H3 : SNoLev x ordsucc ω
Hypothesis H4 : SNo x
Hypothesis H5 : x < ω
Theorem. (Conj_real_E__3__6)
(∀y : set, y ω(∃z : set, z SNoS_ ω(z < xx < z + eps_ y)))P
Proof:
The rest of the proof is missing.

End of Section Conj_real_E__3__6
Beginning of Section Conj_real_E__4__0
Variable x : set
Variable P : prop
Hypothesis H1 : x SNoS_ (ordsucc ω)
Hypothesis H2 : x- ω
Hypothesis H3 : (∀y : set, y SNoS_ ω(∀z : set, z ωabs_SNo (y + - x) < eps_ z)y = x)
Hypothesis H4 : SNoLev x ordsucc ω
Hypothesis H5 : SNo x
Hypothesis H6 : x < ω
Proof:
The rest of the proof is missing.

End of Section Conj_real_E__4__0
Beginning of Section Conj_real_E__4__6
Variable x : set
Variable P : prop
Hypothesis H0 : SNo xSNoLev x ordsucc ωx SNoS_ (ordsucc ω)- ω < xx < ω(∀y : set, y SNoS_ ω(∀z : set, z ωabs_SNo (y + - x) < eps_ z)y = x)(∀y : set, y ω(∃z : set, z SNoS_ ω(z < xx < z + eps_ y)))P
Hypothesis H1 : x SNoS_ (ordsucc ω)
Hypothesis H2 : x- ω
Hypothesis H3 : (∀y : set, y SNoS_ ω(∀z : set, z ωabs_SNo (y + - x) < eps_ z)y = x)
Hypothesis H4 : SNoLev x ordsucc ω
Hypothesis H5 : SNo x
Proof:
The rest of the proof is missing.

End of Section Conj_real_E__4__6
Beginning of Section Conj_SNoS_omega_real__2__0
Variable x : set
Variable y : set
Hypothesis H1 : y SNoS_ ω
Hypothesis H2 : (∀z : set, z ωabs_SNo (y + - x) < eps_ z)
Hypothesis H3 : Empty < y + - x
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_real__2__0
Beginning of Section Conj_SNoS_omega_real__5__1
Variable x : set
Variable y : set
Hypothesis H0 : x SNoS_ ω
Hypothesis H2 : y SNoS_ ω
Hypothesis H3 : (∀z : set, z ωabs_SNo (y + - x) < eps_ z)
Hypothesis H4 : SNo y
Hypothesis H5 : Empty < x + - y
Proof:
The rest of the proof is missing.

End of Section Conj_SNoS_omega_real__5__1
Beginning of Section Conj_SNo_prereal_incr_lower_pos__4__6
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ω
Hypothesis H2 : (∀u : set, u SNoS_ ωEmpty < uu < xx < u + eps_ yP)
Hypothesis H3 : x < z + eps_ y
Hypothesis H4 : SNo z
Hypothesis H5 : zEmpty
Hypothesis H7 : w ω
Hypothesis H8 : eps_ wx
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_prereal_incr_lower_pos__4__6
Beginning of Section Conj_SNoCutP_SNoCut_lim__4__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀w : set, w xordsucc w x)
Hypothesis H2 : Subq y (SNoS_ x)
Hypothesis H3 : Subq z (SNoS_ x)
Hypothesis H5 : (∀w : set, w ySNoLev w x)
Theorem. (Conj_SNoCutP_SNoCut_lim__4__4)
(∀w : set, w zSNoLev w x)SNoLev (SNoCut y z) ordsucc x
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut_lim__4__4
Beginning of Section Conj_SNo_approx_real__4__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ωSNo (ap y u))
Hypothesis H2 : z SNoS_ ω
Hypothesis H3 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (- z)
Hypothesis H6 : SNo (x + - z)
Hypothesis H7 : w ω
Hypothesis H8 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Hypothesis H9 : SNo (ap y (ordsucc w))
Hypothesis H10 : z < ap y (ordsucc w)
Hypothesis H11 : Empty < ap y (ordsucc w) + - z
Hypothesis H13 : ap y (ordsucc w) < x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__4__12
Beginning of Section Conj_SNo_approx_real__9__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : (∀u : set, u ωap y u < x)
Hypothesis H2 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H3 : (∀u : set, u ωSNo (ap y u))
Hypothesis H4 : z SNoS_ ω
Hypothesis H5 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (- z)
Hypothesis H8 : SNo (x + - z)
Hypothesis H9 : w ω
Hypothesis H10 : zap y w
Hypothesis H11 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Theorem. (Conj_SNo_approx_real__9__0)
SNo (ap y (ordsucc w))ap y w < z
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__9__0
Beginning of Section Conj_SNo_approx_real__9__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ωap y u < x)
Hypothesis H2 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H3 : (∀u : set, u ωSNo (ap y u))
Hypothesis H4 : z SNoS_ ω
Hypothesis H5 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (- z)
Hypothesis H8 : SNo (x + - z)
Hypothesis H10 : zap y w
Hypothesis H11 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Theorem. (Conj_SNo_approx_real__9__9)
SNo (ap y (ordsucc w))ap y w < z
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__9__9
Beginning of Section Conj_SNo_approx_real__10__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (- x)
Hypothesis H2 : z SNoS_ ω
Hypothesis H3 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (z + - x)
Hypothesis H6 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Hypothesis H7 : SNo (ap y (ordsucc w))
Hypothesis H8 : ap y (ordsucc w) < z
Hypothesis H9 : Empty < z + - (ap y (ordsucc w))
Hypothesis H11 : x < ap y (ordsucc w)
Hypothesis H12 : abs_SNo (z + - x) = z + - x
Theorem. (Conj_SNo_approx_real__10__10)
z = ap y (ordsucc w)z < ap y w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__10__10
Beginning of Section Conj_SNo_approx_real__12__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (- x)
Hypothesis H2 : z SNoS_ ω
Hypothesis H3 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (z + - x)
Hypothesis H6 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Hypothesis H8 : ap y (ordsucc w) < z
Hypothesis H9 : Empty < z + - (ap y (ordsucc w))
Hypothesis H10 : SNo (z + - (ap y (ordsucc w)))
Hypothesis H11 : x < ap y (ordsucc w)
Hypothesis H12 : x < z
Theorem. (Conj_SNo_approx_real__12__7)
Empty < z + - xz < ap y w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__12__7
Beginning of Section Conj_SNo_approx_real__12__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (- x)
Hypothesis H2 : z SNoS_ ω
Hypothesis H3 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (z + - x)
Hypothesis H6 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Hypothesis H7 : SNo (ap y (ordsucc w))
Hypothesis H8 : ap y (ordsucc w) < z
Hypothesis H10 : SNo (z + - (ap y (ordsucc w)))
Hypothesis H11 : x < ap y (ordsucc w)
Hypothesis H12 : x < z
Theorem. (Conj_SNo_approx_real__12__9)
Empty < z + - xz < ap y w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__12__9
Beginning of Section Conj_SNo_approx_real__14__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ωx < ap y u)
Hypothesis H2 : SNo (- x)
Hypothesis H3 : z SNoS_ ω
Hypothesis H4 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (z + - x)
Hypothesis H7 : w ω
Hypothesis H9 : SNo (ap y (ordsucc w))
Hypothesis H10 : ap y (ordsucc w) < z
Hypothesis H11 : Empty < z + - (ap y (ordsucc w))
Hypothesis H12 : SNo (z + - (ap y (ordsucc w)))
Theorem. (Conj_SNo_approx_real__14__8)
x < ap y (ordsucc w)z < ap y w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__14__8
Beginning of Section Conj_SNo_approx_real__14__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ωx < ap y u)
Hypothesis H2 : SNo (- x)
Hypothesis H3 : z SNoS_ ω
Hypothesis H4 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (z + - x)
Hypothesis H7 : w ω
Hypothesis H8 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Hypothesis H9 : SNo (ap y (ordsucc w))
Hypothesis H11 : Empty < z + - (ap y (ordsucc w))
Hypothesis H12 : SNo (z + - (ap y (ordsucc w)))
Theorem. (Conj_SNo_approx_real__14__10)
x < ap y (ordsucc w)z < ap y w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__14__10
Beginning of Section Conj_SNo_approx_real__18__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : (∀u : set, u ωx < ap y u)
Hypothesis H2 : (∀u : set, u ω(∀v : set, v uap y u < ap y v))
Hypothesis H3 : SNo (- x)
Hypothesis H4 : (∀u : set, u ωSNo (ap y u))
Hypothesis H5 : z SNoS_ ω
Hypothesis H6 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H7 : SNo z
Hypothesis H8 : SNo (z + - x)
Hypothesis H9 : w ω
Hypothesis H10 : ap y wz
Hypothesis H11 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Theorem. (Conj_SNo_approx_real__18__0)
SNo (ap y (ordsucc w))z < ap y w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__18__0
Beginning of Section Conj_SNo_approx_real__18__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ωx < ap y u)
Hypothesis H2 : (∀u : set, u ω(∀v : set, v uap y u < ap y v))
Hypothesis H3 : SNo (- x)
Hypothesis H4 : (∀u : set, u ωSNo (ap y u))
Hypothesis H5 : z SNoS_ ω
Hypothesis H6 : (∀u : set, u ωabs_SNo (z + - x) < eps_ u)
Hypothesis H7 : SNo z
Hypothesis H9 : w ω
Hypothesis H10 : ap y wz
Hypothesis H11 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (ap y (ordsucc w))) < eps_ v)u = ap y (ordsucc w))
Theorem. (Conj_SNo_approx_real__18__8)
SNo (ap y (ordsucc w))z < ap y w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__18__8
Beginning of Section Conj_SNo_approx_real__19__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : z setexp (SNoS_ ω) ω
Hypothesis H2 : (∀u : set, u ωx < ap z u)
Hypothesis H3 : (∀u : set, u ω(∀v : set, v uap z u < ap z v))
Hypothesis H4 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H5 : SNo (- x)
Hypothesis H6 : (∀u : set, u ωSNo (ap z u))
Hypothesis H7 : (∀u : set, SNo u(∀v : set, v Repl ω (ap y)v < u)(∀v : set, v Repl ω (ap z)u < v)Subq (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoLev u)SNoEq_ (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoCut (Repl ω (ap y)) (Repl ω (ap z))) u)
Hypothesis H8 : SNoLev x = ω
Hypothesis H9 : w SNoS_ ω
Hypothesis H10 : (∀u : set, u ωabs_SNo (w + - x) < eps_ u)
Hypothesis H11 : SNoLev w ω
Hypothesis H12 : SNo w
Hypothesis H14 : (∀u : set, u Repl ω (ap y)u < w)
Theorem. (Conj_SNo_approx_real__19__13)
(∀u : set, u Repl ω (ap z)w < u)w = x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__19__13
Beginning of Section Conj_SNo_approx_real__20__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y setexp (SNoS_ ω) ω
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : (∀u : set, u ωap y u < x)
Hypothesis H4 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H5 : (∀u : set, u ωx < ap z u)
Hypothesis H6 : (∀u : set, u ω(∀v : set, v uap z u < ap z v))
Hypothesis H7 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H8 : SNo (- x)
Hypothesis H9 : (∀u : set, u ωSNo (ap y u))
Hypothesis H10 : (∀u : set, u ωSNo (ap z u))
Hypothesis H11 : (∀u : set, SNo u(∀v : set, v Repl ω (ap y)v < u)(∀v : set, v Repl ω (ap z)u < v)Subq (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoLev u)SNoEq_ (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoCut (Repl ω (ap y)) (Repl ω (ap z))) u)
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w SNoS_ ω
Hypothesis H14 : (∀u : set, u ωabs_SNo (w + - x) < eps_ u)
Hypothesis H15 : SNoLev w ω
Hypothesis H17 : SNo (- w)
Hypothesis H18 : SNo (x + - w)
Hypothesis H19 : SNo (w + - x)
Theorem. (Conj_SNo_approx_real__20__16)
(∀u : set, u Repl ω (ap y)u < w)w = x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__20__16
Beginning of Section Conj_SNo_approx_real__21__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : (∀u : set, u ωap y u < x)
Hypothesis H4 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H5 : (∀u : set, u ωx < ap z u)
Hypothesis H6 : (∀u : set, u ω(∀v : set, v uap z u < ap z v))
Hypothesis H7 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H8 : SNo (- x)
Hypothesis H9 : (∀u : set, u ωSNo (ap y u))
Hypothesis H10 : (∀u : set, u ωSNo (ap z u))
Hypothesis H11 : (∀u : set, SNo u(∀v : set, v Repl ω (ap y)v < u)(∀v : set, v Repl ω (ap z)u < v)Subq (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoLev u)SNoEq_ (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoCut (Repl ω (ap y)) (Repl ω (ap z))) u)
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w SNoS_ ω
Hypothesis H14 : (∀u : set, u ωabs_SNo (w + - x) < eps_ u)
Hypothesis H15 : SNoLev w ω
Hypothesis H16 : SNo w
Hypothesis H17 : SNo (- w)
Hypothesis H18 : SNo (x + - w)
Theorem. (Conj_SNo_approx_real__21__1)
SNo (w + - x)w = x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__21__1
Beginning of Section Conj_SNo_approx_real__21__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y setexp (SNoS_ ω) ω
Hypothesis H3 : (∀u : set, u ωap y u < x)
Hypothesis H4 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H5 : (∀u : set, u ωx < ap z u)
Hypothesis H6 : (∀u : set, u ω(∀v : set, v uap z u < ap z v))
Hypothesis H7 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H8 : SNo (- x)
Hypothesis H9 : (∀u : set, u ωSNo (ap y u))
Hypothesis H10 : (∀u : set, u ωSNo (ap z u))
Hypothesis H11 : (∀u : set, SNo u(∀v : set, v Repl ω (ap y)v < u)(∀v : set, v Repl ω (ap z)u < v)Subq (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoLev u)SNoEq_ (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoCut (Repl ω (ap y)) (Repl ω (ap z))) u)
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w SNoS_ ω
Hypothesis H14 : (∀u : set, u ωabs_SNo (w + - x) < eps_ u)
Hypothesis H15 : SNoLev w ω
Hypothesis H16 : SNo w
Hypothesis H17 : SNo (- w)
Hypothesis H18 : SNo (x + - w)
Theorem. (Conj_SNo_approx_real__21__2)
SNo (w + - x)w = x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__21__2
Beginning of Section Conj_SNo_approx_real__22__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y setexp (SNoS_ ω) ω
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H4 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H5 : (∀u : set, u ωx < ap z u)
Hypothesis H6 : (∀u : set, u ω(∀v : set, v uap z u < ap z v))
Hypothesis H7 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H8 : SNo (- x)
Hypothesis H9 : (∀u : set, u ωSNo (ap y u))
Hypothesis H10 : (∀u : set, u ωSNo (ap z u))
Hypothesis H11 : (∀u : set, SNo u(∀v : set, v Repl ω (ap y)v < u)(∀v : set, v Repl ω (ap z)u < v)Subq (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoLev u)SNoEq_ (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoCut (Repl ω (ap y)) (Repl ω (ap z))) u)
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w SNoS_ ω
Hypothesis H14 : (∀u : set, u ωabs_SNo (w + - x) < eps_ u)
Hypothesis H15 : SNoLev w ω
Hypothesis H16 : SNo w
Hypothesis H17 : SNo (- w)
Theorem. (Conj_SNo_approx_real__22__3)
SNo (x + - w)w = x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__22__3
Beginning of Section Conj_SNo_approx_real__22__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y setexp (SNoS_ ω) ω
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : (∀u : set, u ωap y u < x)
Hypothesis H4 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H5 : (∀u : set, u ωx < ap z u)
Hypothesis H6 : (∀u : set, u ω(∀v : set, v uap z u < ap z v))
Hypothesis H7 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H8 : SNo (- x)
Hypothesis H10 : (∀u : set, u ωSNo (ap z u))
Hypothesis H11 : (∀u : set, SNo u(∀v : set, v Repl ω (ap y)v < u)(∀v : set, v Repl ω (ap z)u < v)Subq (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoLev u)SNoEq_ (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoCut (Repl ω (ap y)) (Repl ω (ap z))) u)
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w SNoS_ ω
Hypothesis H14 : (∀u : set, u ωabs_SNo (w + - x) < eps_ u)
Hypothesis H15 : SNoLev w ω
Hypothesis H16 : SNo w
Hypothesis H17 : SNo (- w)
Theorem. (Conj_SNo_approx_real__22__9)
SNo (x + - w)w = x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__22__9
Beginning of Section Conj_SNo_approx_real__23__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y setexp (SNoS_ ω) ω
Hypothesis H3 : (∀u : set, u ωap y u < x)
Hypothesis H4 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H5 : (∀u : set, u ωx < ap z u)
Hypothesis H6 : (∀u : set, u ω(∀v : set, v uap z u < ap z v))
Hypothesis H7 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H8 : SNo (- x)
Hypothesis H9 : (∀u : set, u ωSNo (ap y u))
Hypothesis H10 : (∀u : set, u ωSNo (ap z u))
Hypothesis H11 : (∀u : set, SNo u(∀v : set, v Repl ω (ap y)v < u)(∀v : set, v Repl ω (ap z)u < v)Subq (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoLev u)SNoEq_ (SNoLev (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))) (SNoCut (Repl ω (ap y)) (Repl ω (ap z))) u)
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w SNoS_ ω
Hypothesis H14 : (∀u : set, u ωabs_SNo (w + - x) < eps_ u)
Hypothesis H15 : SNoLev w ω
Hypothesis H16 : SNo w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__23__2
Beginning of Section Conj_SNo_approx_real__26__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : (∀w : set, w ωap y w < x)
Hypothesis H4 : (∀w : set, w ω(∀u : set, u wap y u < ap y w))
Hypothesis H5 : (∀w : set, w ωx < ap z w)
Hypothesis H6 : (∀w : set, w ω(∀u : set, u wap z w < ap z u))
Hypothesis H7 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H8 : SNo (- x)
Hypothesis H9 : (∀w : set, w ωSNo (ap y w))
Hypothesis H10 : (∀w : set, w ωSNo (ap z w))
Theorem. (Conj_SNo_approx_real__26__1)
(∀w : set, w ω(∀u : set, u ωap y w < ap z u))x real
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__26__1
Beginning of Section Conj_SNo_approx_real__28__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : y setexp (SNoS_ ω) ω
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : (∀w : set, w ωap y w < x)
Hypothesis H4 : (∀w : set, w ω(∀u : set, u wap y u < ap y w))
Hypothesis H5 : (∀w : set, w ωx < ap z w)
Hypothesis H7 : x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H8 : SNo (- x)
Theorem. (Conj_SNo_approx_real__28__6)
(∀w : set, w ωSNo (ap y w))x real
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real__28__6
Beginning of Section Conj_SNo_approx_real_rep__1__0
Variable x : set
Variable y : set
Hypothesis H1 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H2 : SNo y
Hypothesis H3 : x < y
Hypothesis H4 : y SNoS_ ω
Hypothesis H5 : Empty < y + - x
Hypothesis H6 : ¬ (∃z : set, z ω(x + eps_ z)y)
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__1__0
Beginning of Section Conj_SNo_approx_real_rep__1__1
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : x < y
Hypothesis H4 : y SNoS_ ω
Hypothesis H5 : Empty < y + - x
Hypothesis H6 : ¬ (∃z : set, z ω(x + eps_ z)y)
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__1__1
Beginning of Section Conj_SNo_approx_real_rep__3__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - x) < eps_ v)u = x)
Hypothesis H2 : (∀u : set, u ωSNo (ap z u))
Hypothesis H3 : (∀u : set, u ω(ap z u + - (eps_ u)) < x)
Hypothesis H4 : SNo (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H5 : (∀u : set, u ωSNoCut (Repl ω (ap y)) (Repl ω (ap z)) < ap z u)
Hypothesis H6 : SNo w
Hypothesis H7 : x < w
Hypothesis H8 : w SNoS_ ω
Theorem. (Conj_SNo_approx_real_rep__3__0)
Empty < w + - xSNoCut (Repl ω (ap y)) (Repl ω (ap z)) < w
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__3__0
Beginning of Section Conj_SNo_approx_real_rep__6__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - x) < eps_ v)u = x)
Hypothesis H3 : (∀u : set, u ωSNo (ap y u))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H5 : (∀u : set, u ωap y u < SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H6 : SNo w
Hypothesis H7 : w < x
Hypothesis H8 : w SNoS_ ω
Hypothesis H9 : Empty < x + - w
Theorem. (Conj_SNo_approx_real_rep__6__2)
(∃u : set, u ω(w + eps_ u)x)w < SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__6__2
Beginning of Section Conj_SNo_approx_real_rep__6__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - x) < eps_ v)u = x)
Hypothesis H2 : (∀u : set, u ωap y u < xx < ap y u + eps_ u(∀v : set, v uap y v < ap y u))
Hypothesis H3 : (∀u : set, u ωSNo (ap y u))
Hypothesis H5 : (∀u : set, u ωap y u < SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H6 : SNo w
Hypothesis H7 : w < x
Hypothesis H8 : w SNoS_ ω
Hypothesis H9 : Empty < x + - w
Theorem. (Conj_SNo_approx_real_rep__6__4)
(∃u : set, u ω(w + eps_ u)x)w < SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__6__4
Beginning of Section Conj_SNo_approx_real_rep__7__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - x) < eps_ v)u = x)
Hypothesis H3 : (∀u : set, u ωSNo (ap y u))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H5 : (∀u : set, u ωap y u < SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H6 : SNo w
Hypothesis H7 : w < x
Hypothesis H8 : w SNoS_ ω
Theorem. (Conj_SNo_approx_real_rep__7__2)
Empty < x + - ww < SNoCut (Repl ω (ap y)) (Repl ω (ap z))
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__7__2
Beginning of Section Conj_SNo_approx_real_rep__9__9
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H0 : x real
Hypothesis H1 : (∀w : set, w setexp (SNoS_ ω) ω(∀u : set, u setexp (SNoS_ ω) ω(∀v : set, v ωap w v < x)(∀v : set, v ωx < ap w v + eps_ v)(∀v : set, v ω(∀x2 : set, x2 vap w x2 < ap w v))(∀v : set, v ω(ap u v + - (eps_ v)) < x)(∀v : set, v ωx < ap u v)(∀v : set, v ω(∀x2 : set, x2 vap u v < ap u x2))SNoCutP (Repl ω (ap w)) (Repl ω (ap u))x = SNoCut (Repl ω (ap w)) (Repl ω (ap u))P))
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w SNoS_ ω(∀u : set, u ωabs_SNo (w + - x) < eps_ u)w = x)
Hypothesis H4 : y setexp (SNoS_ ω) ω
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ωSNo (ap y w))
Hypothesis H8 : (∀w : set, w ωSNo (ap z w))
Hypothesis H10 : (∀w : set, w ωx < ap y w + eps_ w)
Hypothesis H11 : (∀w : set, w ω(∀u : set, u wap y u < ap y w))
Hypothesis H12 : (∀w : set, w ω(ap z w + - (eps_ w)) < x)
Hypothesis H13 : (∀w : set, w ωx < ap z w)
Hypothesis H14 : (∀w : set, w ω(∀u : set, u wap z w < ap z u))
Hypothesis H15 : SNoCutP (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H16 : SNo (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H17 : (∀w : set, w ωap y w < SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H18 : (∀w : set, w ωSNoCut (Repl ω (ap y)) (Repl ω (ap z)) < ap z w)
Theorem. (Conj_SNo_approx_real_rep__9__9)
x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__9__9
Beginning of Section Conj_SNo_approx_real_rep__9__10
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H0 : x real
Hypothesis H1 : (∀w : set, w setexp (SNoS_ ω) ω(∀u : set, u setexp (SNoS_ ω) ω(∀v : set, v ωap w v < x)(∀v : set, v ωx < ap w v + eps_ v)(∀v : set, v ω(∀x2 : set, x2 vap w x2 < ap w v))(∀v : set, v ω(ap u v + - (eps_ v)) < x)(∀v : set, v ωx < ap u v)(∀v : set, v ω(∀x2 : set, x2 vap u v < ap u x2))SNoCutP (Repl ω (ap w)) (Repl ω (ap u))x = SNoCut (Repl ω (ap w)) (Repl ω (ap u))P))
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w SNoS_ ω(∀u : set, u ωabs_SNo (w + - x) < eps_ u)w = x)
Hypothesis H4 : y setexp (SNoS_ ω) ω
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ωSNo (ap y w))
Hypothesis H8 : (∀w : set, w ωSNo (ap z w))
Hypothesis H9 : (∀w : set, w ωap y w < x)
Hypothesis H11 : (∀w : set, w ω(∀u : set, u wap y u < ap y w))
Hypothesis H12 : (∀w : set, w ω(ap z w + - (eps_ w)) < x)
Hypothesis H13 : (∀w : set, w ωx < ap z w)
Hypothesis H14 : (∀w : set, w ω(∀u : set, u wap z w < ap z u))
Hypothesis H15 : SNoCutP (Repl ω (ap y)) (Repl ω (ap z))
Hypothesis H16 : SNo (SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H17 : (∀w : set, w ωap y w < SNoCut (Repl ω (ap y)) (Repl ω (ap z)))
Hypothesis H18 : (∀w : set, w ωSNoCut (Repl ω (ap y)) (Repl ω (ap z)) < ap z w)
Theorem. (Conj_SNo_approx_real_rep__9__10)
x = SNoCut (Repl ω (ap y)) (Repl ω (ap z))P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__9__10
Beginning of Section Conj_SNo_approx_real_rep__11__2
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H0 : x real
Hypothesis H1 : (∀w : set, w setexp (SNoS_ ω) ω(∀u : set, u setexp (SNoS_ ω) ω(∀v : set, v ωap w v < x)(∀v : set, v ωx < ap w v + eps_ v)(∀v : set, v ω(∀x2 : set, x2 vap w x2 < ap w v))(∀v : set, v ω(ap u v + - (eps_ v)) < x)(∀v : set, v ωx < ap u v)(∀v : set, v ω(∀x2 : set, x2 vap u v < ap u x2))SNoCutP (Repl ω (ap w)) (Repl ω (ap u))x = SNoCut (Repl ω (ap w)) (Repl ω (ap u))P))
Hypothesis H3 : (∀w : set, w SNoS_ ω(∀u : set, u ωabs_SNo (w + - x) < eps_ u)w = x)
Hypothesis H4 : y setexp (SNoS_ ω) ω
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ω(ap z w + - (eps_ w)) < xx < ap z w(∀u : set, u wap z w < ap z u))
Hypothesis H8 : (∀w : set, w ωSNo (ap y w))
Hypothesis H9 : (∀w : set, w ωSNo (ap z w))
Hypothesis H10 : (∀w : set, w ωap y w < x)
Hypothesis H11 : (∀w : set, w ωx < ap y w + eps_ w)
Hypothesis H12 : (∀w : set, w ω(∀u : set, u wap y u < ap y w))
Hypothesis H13 : (∀w : set, w ω(ap z w + - (eps_ w)) < x)
Hypothesis H14 : (∀w : set, w ωx < ap z w)
Theorem. (Conj_SNo_approx_real_rep__11__2)
(∀w : set, w ω(∀u : set, u wap z w < ap z u))P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__11__2
Beginning of Section Conj_SNo_approx_real_rep__11__3
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H0 : x real
Hypothesis H1 : (∀w : set, w setexp (SNoS_ ω) ω(∀u : set, u setexp (SNoS_ ω) ω(∀v : set, v ωap w v < x)(∀v : set, v ωx < ap w v + eps_ v)(∀v : set, v ω(∀x2 : set, x2 vap w x2 < ap w v))(∀v : set, v ω(ap u v + - (eps_ v)) < x)(∀v : set, v ωx < ap u v)(∀v : set, v ω(∀x2 : set, x2 vap u v < ap u x2))SNoCutP (Repl ω (ap w)) (Repl ω (ap u))x = SNoCut (Repl ω (ap w)) (Repl ω (ap u))P))
Hypothesis H2 : SNo x
Hypothesis H4 : y setexp (SNoS_ ω) ω
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ω(ap z w + - (eps_ w)) < xx < ap z w(∀u : set, u wap z w < ap z u))
Hypothesis H8 : (∀w : set, w ωSNo (ap y w))
Hypothesis H9 : (∀w : set, w ωSNo (ap z w))
Hypothesis H10 : (∀w : set, w ωap y w < x)
Hypothesis H11 : (∀w : set, w ωx < ap y w + eps_ w)
Hypothesis H12 : (∀w : set, w ω(∀u : set, u wap y u < ap y w))
Hypothesis H13 : (∀w : set, w ω(ap z w + - (eps_ w)) < x)
Hypothesis H14 : (∀w : set, w ωx < ap z w)
Theorem. (Conj_SNo_approx_real_rep__11__3)
(∀w : set, w ω(∀u : set, u wap z w < ap z u))P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__11__3
Beginning of Section Conj_SNo_approx_real_rep__14__0
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set, w setexp (SNoS_ ω) ω(∀u : set, u setexp (SNoS_ ω) ω(∀v : set, v ωap w v < x)(∀v : set, v ωx < ap w v + eps_ v)(∀v : set, v ω(∀x2 : set, x2 vap w x2 < ap w v))(∀v : set, v ω(ap u v + - (eps_ v)) < x)(∀v : set, v ωx < ap u v)(∀v : set, v ω(∀x2 : set, x2 vap u v < ap u x2))SNoCutP (Repl ω (ap w)) (Repl ω (ap u))x = SNoCut (Repl ω (ap w)) (Repl ω (ap u))P))
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w SNoS_ ω(∀u : set, u ωabs_SNo (w + - x) < eps_ u)w = x)
Hypothesis H4 : y setexp (SNoS_ ω) ω
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ω(ap z w + - (eps_ w)) < xx < ap z w(∀u : set, u wap z w < ap z u))
Hypothesis H8 : (∀w : set, w ωSNo (ap y w))
Hypothesis H9 : (∀w : set, w ωSNo (ap z w))
Hypothesis H10 : (∀w : set, w ωap y w < x)
Hypothesis H11 : (∀w : set, w ωx < ap y w + eps_ w)
Theorem. (Conj_SNo_approx_real_rep__14__0)
(∀w : set, w ω(∀u : set, u wap y u < ap y w))P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__14__0
Beginning of Section Conj_SNo_approx_real_rep__14__4
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H0 : x real
Hypothesis H1 : (∀w : set, w setexp (SNoS_ ω) ω(∀u : set, u setexp (SNoS_ ω) ω(∀v : set, v ωap w v < x)(∀v : set, v ωx < ap w v + eps_ v)(∀v : set, v ω(∀x2 : set, x2 vap w x2 < ap w v))(∀v : set, v ω(ap u v + - (eps_ v)) < x)(∀v : set, v ωx < ap u v)(∀v : set, v ω(∀x2 : set, x2 vap u v < ap u x2))SNoCutP (Repl ω (ap w)) (Repl ω (ap u))x = SNoCut (Repl ω (ap w)) (Repl ω (ap u))P))
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w SNoS_ ω(∀u : set, u ωabs_SNo (w + - x) < eps_ u)w = x)
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ω(ap z w + - (eps_ w)) < xx < ap z w(∀u : set, u wap z w < ap z u))
Hypothesis H8 : (∀w : set, w ωSNo (ap y w))
Hypothesis H9 : (∀w : set, w ωSNo (ap z w))
Hypothesis H10 : (∀w : set, w ωap y w < x)
Hypothesis H11 : (∀w : set, w ωx < ap y w + eps_ w)
Theorem. (Conj_SNo_approx_real_rep__14__4)
(∀w : set, w ω(∀u : set, u wap y u < ap y w))P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__14__4
Beginning of Section Conj_SNo_approx_real_rep__14__10
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H0 : x real
Hypothesis H1 : (∀w : set, w setexp (SNoS_ ω) ω(∀u : set, u setexp (SNoS_ ω) ω(∀v : set, v ωap w v < x)(∀v : set, v ωx < ap w v + eps_ v)(∀v : set, v ω(∀x2 : set, x2 vap w x2 < ap w v))(∀v : set, v ω(ap u v + - (eps_ v)) < x)(∀v : set, v ωx < ap u v)(∀v : set, v ω(∀x2 : set, x2 vap u v < ap u x2))SNoCutP (Repl ω (ap w)) (Repl ω (ap u))x = SNoCut (Repl ω (ap w)) (Repl ω (ap u))P))
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w SNoS_ ω(∀u : set, u ωabs_SNo (w + - x) < eps_ u)w = x)
Hypothesis H4 : y setexp (SNoS_ ω) ω
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ω(ap z w + - (eps_ w)) < xx < ap z w(∀u : set, u wap z w < ap z u))
Hypothesis H8 : (∀w : set, w ωSNo (ap y w))
Hypothesis H9 : (∀w : set, w ωSNo (ap z w))
Hypothesis H11 : (∀w : set, w ωx < ap y w + eps_ w)
Theorem. (Conj_SNo_approx_real_rep__14__10)
(∀w : set, w ω(∀u : set, u wap y u < ap y w))P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__14__10
Beginning of Section Conj_SNo_approx_real_rep__16__2
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H0 : x real
Hypothesis H1 : (∀w : set, w setexp (SNoS_ ω) ω(∀u : set, u setexp (SNoS_ ω) ω(∀v : set, v ωap w v < x)(∀v : set, v ωx < ap w v + eps_ v)(∀v : set, v ω(∀x2 : set, x2 vap w x2 < ap w v))(∀v : set, v ω(ap u v + - (eps_ v)) < x)(∀v : set, v ωx < ap u v)(∀v : set, v ω(∀x2 : set, x2 vap u v < ap u x2))SNoCutP (Repl ω (ap w)) (Repl ω (ap u))x = SNoCut (Repl ω (ap w)) (Repl ω (ap u))P))
Hypothesis H3 : (∀w : set, w SNoS_ ω(∀u : set, u ωabs_SNo (w + - x) < eps_ u)w = x)
Hypothesis H4 : y setexp (SNoS_ ω) ω
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ω(ap z w + - (eps_ w)) < xx < ap z w(∀u : set, u wap z w < ap z u))
Hypothesis H8 : (∀w : set, w ωSNo (ap y w))
Hypothesis H9 : (∀w : set, w ωSNo (ap z w))
Theorem. (Conj_SNo_approx_real_rep__16__2)
(∀w : set, w ωap y w < x)P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__16__2
Beginning of Section Conj_SNo_approx_real_rep__17__1
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H0 : x real
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w SNoS_ ω(∀u : set, u ωabs_SNo (w + - x) < eps_ u)w = x)
Hypothesis H4 : y setexp (SNoS_ ω) ω
Hypothesis H5 : (∀w : set, w ωap y w < xx < ap y w + eps_ w(∀u : set, u wap y u < ap y w))
Hypothesis H6 : z setexp (SNoS_ ω) ω
Hypothesis H7 : (∀w : set, w ω(ap z w + - (eps_ w)) < xx < ap z w(∀u : set, u wap z w < ap z u))
Hypothesis H8 : (∀w : set, w ωSNo (ap y w))
Theorem. (Conj_SNo_approx_real_rep__17__1)
(∀w : set, w ωSNo (ap z w))P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_approx_real_rep__17__1
Beginning of Section Conj_real_add_SNo__1__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v ωx < ap z v + eps_ v)
Hypothesis H1 : (∀v : set, v ωy < ap w v + eps_ v)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : (∀v : set, v ωSNo (ap z (ordsucc v)))
Hypothesis H5 : (∀v : set, v ωSNo (ap w (ordsucc v)))
Theorem. (Conj_real_add_SNo__1__6)
SNo (eps_ (ordsucc u))(x + y) < (ap z (ordsucc u) + ap w (ordsucc u)) + eps_ (ordsucc u) + eps_ (ordsucc u)
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__1__6
Beginning of Section Conj_real_add_SNo__2__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ω(∀v : set, v uap x v < ap x u))
Hypothesis H1 : (∀u : set, u ω(∀v : set, v uap y v < ap y u))
Hypothesis H2 : (∀u : set, u ωSNo (ap x (ordsucc u)))
Hypothesis H4 : (∀u : set, u ωap (Sigma ω (λv : setap x (ordsucc v) + ap y (ordsucc v))) u = ap x (ordsucc u) + ap y (ordsucc u))
Hypothesis H5 : z ω
Hypothesis H6 : w z
Theorem. (Conj_real_add_SNo__2__3)
w ωap (Sigma ω (λu : setap x (ordsucc u) + ap y (ordsucc u))) w < ap x (ordsucc z) + ap y (ordsucc z)
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__2__3
Beginning of Section Conj_real_add_SNo__5__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ω(∀v : set, v uap x u < ap x v))
Hypothesis H1 : (∀u : set, u ω(∀v : set, v uap y u < ap y v))
Hypothesis H2 : (∀u : set, u ωSNo (ap x (ordsucc u)))
Hypothesis H3 : (∀u : set, u ωSNo (ap y (ordsucc u)))
Hypothesis H4 : (∀u : set, u ωap (Sigma ω (λv : setap x (ordsucc v) + ap y (ordsucc v))) u = ap x (ordsucc u) + ap y (ordsucc u))
Hypothesis H6 : w z
Theorem. (Conj_real_add_SNo__5__5)
w ω(ap x (ordsucc z) + ap y (ordsucc z)) < ap (Sigma ω (λu : setap x (ordsucc u) + ap y (ordsucc u))) w
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__5__5
Beginning of Section Conj_real_add_SNo__6__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : (∀v : set, v SNoS_ ω(∀x2 : set, x2 ωabs_SNo (v + - y) < eps_ x2)v = y)
Hypothesis H4 : (∀v : set, v ωSNo (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v))
Hypothesis H5 : (∀v : set, v ω(ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v + - (eps_ v)) < x + y)
Hypothesis H7 : y < u
Hypothesis H8 : u SNoS_ ω
Hypothesis H9 : ¬ (∃v : set, v ωap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) vx + u)
Hypothesis H10 : Empty < u + - y
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__6__6
Beginning of Section Conj_real_add_SNo__6__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : (∀v : set, v SNoS_ ω(∀x2 : set, x2 ωabs_SNo (v + - y) < eps_ x2)v = y)
Hypothesis H4 : (∀v : set, v ωSNo (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v))
Hypothesis H5 : (∀v : set, v ω(ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v + - (eps_ v)) < x + y)
Hypothesis H6 : SNo u
Hypothesis H7 : y < u
Hypothesis H8 : u SNoS_ ω
Hypothesis H9 : ¬ (∃v : set, v ωap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) vx + u)
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__6__10
Beginning of Section Conj_real_add_SNo__7__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : (∀v : set, v SNoS_ ω(∀x2 : set, x2 ωabs_SNo (v + - y) < eps_ x2)v = y)
Hypothesis H4 : (∀v : set, v ωSNo (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v))
Hypothesis H5 : (∀v : set, v ω(ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v + - (eps_ v)) < x + y)
Hypothesis H6 : SNo u
Hypothesis H7 : y < u
Hypothesis H8 : u SNoS_ ω
Hypothesis H9 : ¬ (∃v : set, v ωap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) vx + u)
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__7__0
Beginning of Section Conj_real_add_SNo__8__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : (∀y2 : set, y2 SNoS_ ω(∀z2 : set, z2 ωabs_SNo (y2 + - y) < eps_ z2)y2 = y)
Hypothesis H4 : (∀y2 : set, y2 ωSNo (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Hypothesis H5 : (∀y2 : set, y2 ω(ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2 + - (eps_ y2)) < x + y)
Hypothesis H6 : SNo (SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))))
Hypothesis H7 : (∀y2 : set, y2 Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))SNoCut (Repl ω (ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))))) (Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))) < y2)
Hypothesis H8 : SNo x2
Hypothesis H9 : y < x2
Hypothesis H10 : x2 SNoS_ ω
Theorem. (Conj_real_add_SNo__8__0)
(∃y2 : set, y2 ωap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2x + x2)SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))) < x + x2
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__8__0
Beginning of Section Conj_real_add_SNo__8__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : (∀y2 : set, y2 SNoS_ ω(∀z2 : set, z2 ωabs_SNo (y2 + - y) < eps_ z2)y2 = y)
Hypothesis H4 : (∀y2 : set, y2 ωSNo (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Hypothesis H5 : (∀y2 : set, y2 ω(ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2 + - (eps_ y2)) < x + y)
Hypothesis H7 : (∀y2 : set, y2 Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))SNoCut (Repl ω (ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))))) (Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))) < y2)
Hypothesis H8 : SNo x2
Hypothesis H9 : y < x2
Hypothesis H10 : x2 SNoS_ ω
Theorem. (Conj_real_add_SNo__8__6)
(∃y2 : set, y2 ωap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2x + x2)SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))) < x + x2
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__8__6
Beginning of Section Conj_real_add_SNo__9__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : y real
Hypothesis H1 : SNo x
Hypothesis H3 : SNo (x + y)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ ω(∀z2 : set, z2 ωabs_SNo (y2 + - y) < eps_ z2)y2 = y)
Hypothesis H5 : (∀y2 : set, y2 ωSNo (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Hypothesis H6 : (∀y2 : set, y2 ω(ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2 + - (eps_ y2)) < x + y)
Hypothesis H7 : SNo (SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))))
Hypothesis H8 : (∀y2 : set, y2 Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))SNoCut (Repl ω (ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))))) (Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))) < y2)
Hypothesis H9 : SNo x2
Hypothesis H10 : SNoLev x2 SNoLev y
Hypothesis H11 : y < x2
Theorem. (Conj_real_add_SNo__9__2)
x2 SNoS_ ωSNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))) < x + x2
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__9__2
Beginning of Section Conj_real_add_SNo__10__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : (∀v : set, v SNoS_ ω(∀x2 : set, x2 ωabs_SNo (v + - x) < eps_ x2)v = x)
Hypothesis H4 : (∀v : set, v ωSNo (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v))
Hypothesis H5 : (∀v : set, v ω(ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v + - (eps_ v)) < x + y)
Hypothesis H6 : SNo u
Hypothesis H8 : u SNoS_ ω
Hypothesis H9 : ¬ (∃v : set, v ωap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) vu + y)
Hypothesis H10 : Empty < u + - x
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__10__7
Beginning of Section Conj_real_add_SNo__13__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : x real
Hypothesis H1 : SNo x
Hypothesis H3 : SNo (x + y)
Hypothesis H4 : (∀y2 : set, y2 SNoS_ ω(∀z2 : set, z2 ωabs_SNo (y2 + - x) < eps_ z2)y2 = x)
Hypothesis H5 : (∀y2 : set, y2 ωSNo (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Hypothesis H6 : (∀y2 : set, y2 ω(ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2 + - (eps_ y2)) < x + y)
Hypothesis H7 : SNo (SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))))
Hypothesis H8 : (∀y2 : set, y2 Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))SNoCut (Repl ω (ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))))) (Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))) < y2)
Hypothesis H9 : SNo x2
Hypothesis H10 : SNoLev x2 SNoLev x
Hypothesis H11 : x < x2
Theorem. (Conj_real_add_SNo__13__2)
x2 SNoS_ ωSNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))) < x2 + y
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__13__2
Beginning of Section Conj_real_add_SNo__13__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : x real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H4 : (∀y2 : set, y2 SNoS_ ω(∀z2 : set, z2 ωabs_SNo (y2 + - x) < eps_ z2)y2 = x)
Hypothesis H5 : (∀y2 : set, y2 ωSNo (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Hypothesis H6 : (∀y2 : set, y2 ω(ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2 + - (eps_ y2)) < x + y)
Hypothesis H7 : SNo (SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))))
Hypothesis H8 : (∀y2 : set, y2 Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))SNoCut (Repl ω (ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))))) (Repl ω (ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))))) < y2)
Hypothesis H9 : SNo x2
Hypothesis H10 : SNoLev x2 SNoLev x
Hypothesis H11 : x < x2
Theorem. (Conj_real_add_SNo__13__3)
x2 SNoS_ ωSNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))) < x2 + y
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__13__3
Beginning of Section Conj_real_add_SNo__18__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀v : set, v SNoS_ ω(∀x2 : set, x2 ωabs_SNo (v + - x) < eps_ x2)v = x)
Hypothesis H4 : (∀v : set, v ωSNo (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v))
Hypothesis H5 : (∀v : set, v ω(x + y) < ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v + eps_ v)
Hypothesis H6 : SNo u
Hypothesis H7 : u < x
Hypothesis H8 : u SNoS_ ω
Hypothesis H9 : ¬ (∃v : set, v ω(u + y)ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v)
Hypothesis H10 : Empty < x + - u
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__18__2
Beginning of Section Conj_real_add_SNo__18__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : (∀v : set, v SNoS_ ω(∀x2 : set, x2 ωabs_SNo (v + - x) < eps_ x2)v = x)
Hypothesis H4 : (∀v : set, v ωSNo (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v))
Hypothesis H5 : (∀v : set, v ω(x + y) < ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v + eps_ v)
Hypothesis H7 : u < x
Hypothesis H8 : u SNoS_ ω
Hypothesis H9 : ¬ (∃v : set, v ω(u + y)ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap w (ordsucc x2))) v)
Hypothesis H10 : Empty < x + - u
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__18__6
Beginning of Section Conj_real_add_SNo__22__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo (x + y)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H7 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H8 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Hypothesis H9 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H10 : Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H11 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 < x + y)
Hypothesis H12 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 + eps_ x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) y2 < ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) x2))
Hypothesis H14 : (∀x2 : set, x2 ω(ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 + - (eps_ x2)) < x + y)
Hypothesis H15 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2)
Hypothesis H16 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) x2 < ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Hypothesis H17 : SNoCutP (Repl ω (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2))))) (Repl ω (ap (Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)))))
Hypothesis H18 : SNo (SNoCut (Repl ω (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2))))) (Repl ω (ap (Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2))))))
Hypothesis H19 : (∀x2 : set, x2 Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))x2 < SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))))
Hypothesis H20 : (∀x2 : set, x2 Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))) < x2)
Theorem. (Conj_real_add_SNo__22__6)
x + y = SNoCut (Repl ω (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2))))) (Repl ω (ap (Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)))))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__22__6
Beginning of Section Conj_real_add_SNo__22__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo (x + y)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H6 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H7 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H9 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H10 : Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H11 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 < x + y)
Hypothesis H12 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 + eps_ x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) y2 < ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) x2))
Hypothesis H14 : (∀x2 : set, x2 ω(ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 + - (eps_ x2)) < x + y)
Hypothesis H15 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2)
Hypothesis H16 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) x2 < ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Hypothesis H17 : SNoCutP (Repl ω (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2))))) (Repl ω (ap (Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)))))
Hypothesis H18 : SNo (SNoCut (Repl ω (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2))))) (Repl ω (ap (Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2))))))
Hypothesis H19 : (∀x2 : set, x2 Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))x2 < SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))))
Hypothesis H20 : (∀x2 : set, x2 Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))SNoCut (Repl ω (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))))) (Repl ω (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))))) < x2)
Theorem. (Conj_real_add_SNo__22__8)
x + y = SNoCut (Repl ω (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2))))) (Repl ω (ap (Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)))))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__22__8
Beginning of Section Conj_real_add_SNo__23__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : y real
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo (x + y)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H6 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H7 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H8 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Hypothesis H9 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H10 : Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H11 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 < x + y)
Hypothesis H12 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 + eps_ x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) y2 < ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) x2))
Hypothesis H14 : (∀x2 : set, x2 ω(ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 + - (eps_ x2)) < x + y)
Hypothesis H15 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2)
Hypothesis H16 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) x2 < ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Theorem. (Conj_real_add_SNo__23__0)
SNoCutP (Repl ω (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2))))) (Repl ω (ap (Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)))))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__23__0
Beginning of Section Conj_real_add_SNo__23__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo (x + y)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H6 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H7 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H8 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Hypothesis H9 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H10 : Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H11 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 < x + y)
Hypothesis H12 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 + eps_ x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) y2 < ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) x2))
Hypothesis H15 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2)
Hypothesis H16 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) x2 < ap (Sigma ω (λz2 : setap w (ordsucc z2) + ap v (ordsucc z2))) y2))
Theorem. (Conj_real_add_SNo__23__14)
SNoCutP (Repl ω (ap (Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2))))) (Repl ω (ap (Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)))))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__23__14
Beginning of Section Conj_real_add_SNo__25__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H3 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H4 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H5 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H6 : SNo x
Hypothesis H7 : SNo y
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H10 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H11 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H12 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H13 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Hypothesis H14 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H15 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Hypothesis H16 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H17 : Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H19 : (∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 + eps_ x2)
Hypothesis H20 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) y2 < ap (Sigma ω (λz2 : setap z (ordsucc z2) + ap u (ordsucc z2))) x2))
Hypothesis H21 : (∀x2 : set, x2 ω(ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 + - (eps_ x2)) < x + y)
Theorem. (Conj_real_add_SNo__25__18)
(∀x2 : set, x2 ω(x + y) < ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__25__18
Beginning of Section Conj_real_add_SNo__29__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H24 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Hypothesis H25 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Hypothesis H27 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H28 : Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ω
Theorem. (Conj_real_add_SNo__29__8)
(∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 < x + y)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__29__8
Beginning of Section Conj_real_add_SNo__29__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H24 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Hypothesis H25 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Hypothesis H27 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Hypothesis H28 : Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ω
Theorem. (Conj_real_add_SNo__29__22)
(∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 < x + y)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__29__22
Beginning of Section Conj_real_add_SNo__30__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H26 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Hypothesis H27 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H28 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Hypothesis H29 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Theorem. (Conj_real_add_SNo__30__3)
Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ωx + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__30__3
Beginning of Section Conj_real_add_SNo__30__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H26 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Hypothesis H27 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H28 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Hypothesis H29 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Theorem. (Conj_real_add_SNo__30__7)
Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ωx + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__30__7
Beginning of Section Conj_real_add_SNo__30__28
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H26 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Hypothesis H27 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H29 : Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ω
Theorem. (Conj_real_add_SNo__30__28)
Sigma ω (λx2 : setap w (ordsucc x2) + ap v (ordsucc x2)) setexp (SNoS_ ω) ωx + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__30__28
Beginning of Section Conj_real_add_SNo__31__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H27 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H28 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Hypothesis H29 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Hypothesis H30 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))
Theorem. (Conj_real_add_SNo__31__24)
Sigma ω (λx2 : setap z (ordsucc x2) + ap u (ordsucc x2)) setexp (SNoS_ ω) ωx + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__31__24
Beginning of Section Conj_real_add_SNo__32__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H27 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H28 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Hypothesis H29 : (∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))
Theorem. (Conj_real_add_SNo__32__17)
(∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__32__17
Beginning of Section Conj_real_add_SNo__33__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H27 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H28 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Theorem. (Conj_real_add_SNo__33__2)
(∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__33__2
Beginning of Section Conj_real_add_SNo__33__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H27 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Hypothesis H28 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))
Theorem. (Conj_real_add_SNo__33__11)
(∀x2 : set, x2 ωSNo (ap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__33__11
Beginning of Section Conj_real_add_SNo__34__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Hypothesis H27 : (∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))
Theorem. (Conj_real_add_SNo__34__4)
(∀x2 : set, x2 ωap (Sigma ω (λy2 : setap w (ordsucc y2) + ap v (ordsucc y2))) x2 = ap w (ordsucc x2) + ap v (ordsucc x2))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__34__4
Beginning of Section Conj_real_add_SNo__35__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Theorem. (Conj_real_add_SNo__35__11)
(∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__35__11
Beginning of Section Conj_real_add_SNo__35__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Hypothesis H26 : (∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))
Theorem. (Conj_real_add_SNo__35__13)
(∀x2 : set, x2 ωap (Sigma ω (λy2 : setap z (ordsucc y2) + ap u (ordsucc y2))) x2 = ap z (ordsucc x2) + ap u (ordsucc x2))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__35__13
Beginning of Section Conj_real_add_SNo__36__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Theorem. (Conj_real_add_SNo__36__12)
(∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__36__12
Beginning of Section Conj_real_add_SNo__36__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H9 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H10 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H11 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H14 : SNo x
Hypothesis H16 : SNo (x + y)
Hypothesis H17 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H19 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H20 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H21 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H24 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Hypothesis H25 : (∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)
Theorem. (Conj_real_add_SNo__36__15)
(∀x2 : set, x2 ωSNo (ap v (ordsucc x2)))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__36__15
Beginning of Section Conj_real_add_SNo__37__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H3 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H4 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H5 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H6 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H7 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H8 : v setexp (SNoS_ ω) ω
Hypothesis H10 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H11 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H12 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H13 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H14 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H15 : SNo x
Hypothesis H16 : SNo y
Hypothesis H17 : SNo (x + y)
Hypothesis H18 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H19 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H20 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H21 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H22 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Hypothesis H23 : (∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))
Hypothesis H24 : (∀x2 : set, x2 ωap w (ordsucc x2) SNoS_ ω)
Hypothesis H25 : (∀x2 : set, x2 ωSNo (ap w (ordsucc x2)))
Theorem. (Conj_real_add_SNo__37__9)
(∀x2 : set, x2 ωap v (ordsucc x2) SNoS_ ω)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__37__9
Beginning of Section Conj_real_add_SNo__40__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H3 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H4 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H5 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H6 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H7 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H8 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H9 : v setexp (SNoS_ ω) ω
Hypothesis H10 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H11 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H12 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H13 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H14 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H15 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H16 : SNo x
Hypothesis H17 : SNo y
Hypothesis H18 : SNo (x + y)
Hypothesis H19 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H20 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H21 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Theorem. (Conj_real_add_SNo__40__2)
(∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__40__2
Beginning of Section Conj_real_add_SNo__40__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : w setexp (SNoS_ ω) ω
Hypothesis H3 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H4 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H5 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H6 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H7 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H8 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H9 : v setexp (SNoS_ ω) ω
Hypothesis H10 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H11 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H12 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H13 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H14 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H15 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H16 : SNo x
Hypothesis H17 : SNo y
Hypothesis H18 : SNo (x + y)
Hypothesis H20 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H21 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H22 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Hypothesis H23 : (∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)
Theorem. (Conj_real_add_SNo__40__19)
(∀x2 : set, x2 ωSNo (ap u (ordsucc x2)))x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__40__19
Beginning of Section Conj_real_add_SNo__41__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : w setexp (SNoS_ ω) ω
Hypothesis H3 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H4 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H5 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H6 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H7 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H8 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H10 : v setexp (SNoS_ ω) ω
Hypothesis H11 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H12 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H13 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H14 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H15 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H16 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : SNo x
Hypothesis H18 : SNo y
Hypothesis H19 : SNo (x + y)
Hypothesis H20 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H21 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Hypothesis H22 : (∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)
Hypothesis H23 : (∀x2 : set, x2 ωSNo (ap z (ordsucc x2)))
Theorem. (Conj_real_add_SNo__41__9)
(∀x2 : set, x2 ωap u (ordsucc x2) SNoS_ ω)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__41__9
Beginning of Section Conj_real_add_SNo__43__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : w setexp (SNoS_ ω) ω
Hypothesis H4 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H5 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H6 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H7 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H8 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H9 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H11 : v setexp (SNoS_ ω) ω
Hypothesis H12 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H13 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H14 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H16 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H17 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Hypothesis H20 : SNo (x + y)
Hypothesis H21 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Hypothesis H22 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)
Theorem. (Conj_real_add_SNo__43__10)
(∀x2 : set, x2 ωap z (ordsucc x2) SNoS_ ω)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__43__10
Beginning of Section Conj_real_add_SNo__44__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : w setexp (SNoS_ ω) ω
Hypothesis H4 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H5 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H6 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H8 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H9 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H10 : u setexp (SNoS_ ω) ω
Hypothesis H11 : v setexp (SNoS_ ω) ω
Hypothesis H12 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H13 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H14 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H16 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H17 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Hypothesis H20 : SNo (x + y)
Hypothesis H21 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Theorem. (Conj_real_add_SNo__44__7)
(∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__44__7
Beginning of Section Conj_real_add_SNo__44__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : w setexp (SNoS_ ω) ω
Hypothesis H4 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H5 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H6 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H7 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H8 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H9 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H10 : u setexp (SNoS_ ω) ω
Hypothesis H11 : v setexp (SNoS_ ω) ω
Hypothesis H12 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H13 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H14 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H16 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Hypothesis H20 : SNo (x + y)
Hypothesis H21 : (∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)
Theorem. (Conj_real_add_SNo__44__17)
(∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - y) < eps_ y2)x2 = y)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__44__17
Beginning of Section Conj_real_add_SNo__45__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : w setexp (SNoS_ ω) ω
Hypothesis H4 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H5 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H6 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H7 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H8 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H9 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H10 : u setexp (SNoS_ ω) ω
Hypothesis H11 : v setexp (SNoS_ ω) ω
Hypothesis H12 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H13 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H14 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H17 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Hypothesis H20 : SNo (x + y)
Theorem. (Conj_real_add_SNo__45__16)
(∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__45__16
Beginning of Section Conj_real_add_SNo__45__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : x real
Hypothesis H1 : y real
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : w setexp (SNoS_ ω) ω
Hypothesis H4 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H5 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H6 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H7 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H8 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H9 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H10 : u setexp (SNoS_ ω) ω
Hypothesis H11 : v setexp (SNoS_ ω) ω
Hypothesis H12 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H13 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H14 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H16 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H17 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Theorem. (Conj_real_add_SNo__45__20)
(∀x2 : set, x2 SNoS_ ω(∀y2 : set, y2 ωabs_SNo (x2 + - x) < eps_ y2)x2 = x)x + y real
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__45__20
Beginning of Section Conj_real_add_SNo__47__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : y real
Hypothesis H2 : z setexp (SNoS_ ω) ω
Hypothesis H3 : w setexp (SNoS_ ω) ω
Hypothesis H4 : (∀x2 : set, x2 ωap z x2 < x)
Hypothesis H5 : (∀x2 : set, x2 ωx < ap z x2 + eps_ x2)
Hypothesis H6 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap z y2 < ap z x2))
Hypothesis H7 : (∀x2 : set, x2 ω(ap w x2 + - (eps_ x2)) < x)
Hypothesis H8 : (∀x2 : set, x2 ωx < ap w x2)
Hypothesis H9 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap w x2 < ap w y2))
Hypothesis H10 : u setexp (SNoS_ ω) ω
Hypothesis H11 : v setexp (SNoS_ ω) ω
Hypothesis H12 : (∀x2 : set, x2 ωap u x2 < y)
Hypothesis H13 : (∀x2 : set, x2 ωy < ap u x2 + eps_ x2)
Hypothesis H14 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < y)
Hypothesis H16 : (∀x2 : set, x2 ωy < ap v x2)
Hypothesis H17 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H18 : SNo x
Proof:
The rest of the proof is missing.

End of Section Conj_real_add_SNo__47__0
Beginning of Section Conj_real_mul_SNo_pos__2__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : SNo (eps_ (v + x2))
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__2__2)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__2__2
Beginning of Section Conj_real_mul_SNo_pos__2__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : SNo (eps_ (v + x2))
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__2__11)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__2__11
Beginning of Section Conj_real_mul_SNo_pos__2__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Hypothesis H22 : SNo (eps_ (v + x2))
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__2__21)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__2__21
Beginning of Section Conj_real_mul_SNo_pos__2__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__2__22)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__2__22
Beginning of Section Conj_real_mul_SNo_pos__4__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : v + x2 ω
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__4__10
Beginning of Section Conj_real_mul_SNo_pos__5__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__5__1
Beginning of Section Conj_real_mul_SNo_pos__5__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__5__5
Beginning of Section Conj_real_mul_SNo_pos__5__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__5__21
Beginning of Section Conj_real_mul_SNo_pos__6__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Hypothesis H20 : SNo (eps_ v)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__6__13
Beginning of Section Conj_real_mul_SNo_pos__7__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__7__0
Beginning of Section Conj_real_mul_SNo_pos__7__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (y + - u)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2y + - u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__7__5
Beginning of Section Conj_real_mul_SNo_pos__8__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoR x(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - xP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w SNoR x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u)z + w * u
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (w * u)
Hypothesis H17 : SNo (- (w * u))
Hypothesis H18 : SNo (w + - x)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__8__14
Beginning of Section Conj_real_mul_SNo_pos__10__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H4 : (∀v : set, v SNoR x(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - xP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w SNoR x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u)z + w * u
Hypothesis H14 : SNo (w * y)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__10__3
Beginning of Section Conj_real_mul_SNo_pos__10__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoR x(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - xP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w SNoR x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H13 : (w * y + x * u)z + w * u
Hypothesis H14 : SNo (w * y)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__10__12
Beginning of Section Conj_real_mul_SNo_pos__14__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : SNo z
Hypothesis H5 : x * y < z
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (x * u)
Hypothesis H11 : SNo (w * u)
Hypothesis H12 : SNo (- (w * u))
Hypothesis H13 : SNo (x + - w)
Hypothesis H14 : SNo (u + - y)
Hypothesis H15 : v ω
Hypothesis H16 : eps_ vx + - w
Hypothesis H17 : x2 ω
Hypothesis H18 : eps_ x2u + - y
Hypothesis H19 : SNo (eps_ v)
Hypothesis H20 : SNo (eps_ x2)
Hypothesis H21 : SNo (eps_ (v + x2))
Hypothesis H22 : SNo (eps_ v * eps_ x2)
Hypothesis H23 : abs_SNo (z + - (x * y)) < eps_ (v + x2)
Theorem. (Conj_real_mul_SNo_pos__14__9)
¬ eps_ (v + x2)abs_SNo (z + - (x * y))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__14__9
Beginning of Section Conj_real_mul_SNo_pos__15__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (x + - w)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vx + - w
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : SNo (eps_ (v + x2))
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__15__5)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__15__5
Beginning of Section Conj_real_mul_SNo_pos__15__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (x + - w)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vx + - w
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : SNo (eps_ (v + x2))
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__15__11)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__15__11
Beginning of Section Conj_real_mul_SNo_pos__15__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (x + - w)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vx + - w
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : SNo (eps_ (v + x2))
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__15__12)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__15__12
Beginning of Section Conj_real_mul_SNo_pos__17__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (x + - w)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vx + - w
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : v + x2 ω
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__17__10
Beginning of Section Conj_real_mul_SNo_pos__18__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (x + - w)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vx + - w
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__18__5
Beginning of Section Conj_real_mul_SNo_pos__18__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u)z + w * u
Hypothesis H10 : SNo (w * y)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (w * u)
Hypothesis H13 : SNo (- (w * u))
Hypothesis H14 : SNo (x + - w)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vx + - w
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__18__21
Beginning of Section Conj_real_mul_SNo_pos__21__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoR y(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - yP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoR y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u)z + w * u
Hypothesis H14 : SNo (w * y)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (w * u)
Hypothesis H17 : SNo (- (w * u))
Hypothesis H18 : SNo (x + - w)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__21__1
Beginning of Section Conj_real_mul_SNo_pos__21__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoR y(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - yP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoR y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u)z + w * u
Hypothesis H14 : SNo (w * y)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (w * u)
Hypothesis H17 : SNo (- (w * u))
Hypothesis H18 : SNo (x + - w)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__21__2
Beginning of Section Conj_real_mul_SNo_pos__25__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoR y(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - yP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoR y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u)z + w * u
Hypothesis H14 : SNo (w * y)
Hypothesis H15 : SNo (x * u)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__25__1
Beginning of Section Conj_real_mul_SNo_pos__29__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo z
Hypothesis H4 : z < x * y
Hypothesis H5 : SNo w
Hypothesis H6 : SNo u
Hypothesis H7 : (z + w * u)w * y + x * u
Hypothesis H8 : SNo (w * u)
Hypothesis H10 : SNo (- (x * u))
Hypothesis H11 : SNo (w * y)
Hypothesis H12 : SNo (- (w * y))
Hypothesis H13 : SNo (w + - x)
Hypothesis H14 : SNo (u + - y)
Hypothesis H15 : v ω
Hypothesis H16 : eps_ vw + - x
Hypothesis H17 : x2 ω
Hypothesis H18 : eps_ x2u + - y
Hypothesis H19 : SNo (eps_ v)
Hypothesis H20 : SNo (eps_ x2)
Hypothesis H21 : SNo (eps_ (v + x2))
Hypothesis H22 : SNo (eps_ v * eps_ x2)
Hypothesis H23 : abs_SNo (z + - (x * y)) < eps_ (v + x2)
Theorem. (Conj_real_mul_SNo_pos__29__9)
¬ eps_ (v + x2)abs_SNo (z + - (x * y))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__29__9
Beginning of Section Conj_real_mul_SNo_pos__30__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u)w * y + x * u
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : SNo (x * u)
Hypothesis H11 : SNo (- (x * u))
Hypothesis H13 : SNo (- (w * y))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : SNo (eps_ (v + x2))
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__30__12)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__30__12
Beginning of Section Conj_real_mul_SNo_pos__30__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u)w * y + x * u
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : SNo (x * u)
Hypothesis H11 : SNo (- (x * u))
Hypothesis H12 : SNo (w * y)
Hypothesis H13 : SNo (- (w * y))
Hypothesis H14 : SNo (w + - x)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Hypothesis H22 : SNo (eps_ (v + x2))
Hypothesis H23 : SNo (eps_ v * eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__30__15)
¬ abs_SNo (z + - (x * y)) < eps_ (v + x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__30__15
Beginning of Section Conj_real_mul_SNo_pos__33__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u)w * y + x * u
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : SNo (x * u)
Hypothesis H11 : SNo (- (x * u))
Hypothesis H12 : SNo (w * y)
Hypothesis H13 : SNo (- (w * y))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__33__1
Beginning of Section Conj_real_mul_SNo_pos__33__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u)w * y + x * u
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : SNo (x * u)
Hypothesis H11 : SNo (- (x * u))
Hypothesis H12 : SNo (w * y)
Hypothesis H13 : SNo (- (w * y))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H19 : eps_ x2u + - y
Hypothesis H20 : SNo (eps_ v)
Hypothesis H21 : SNo (eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__33__18
Beginning of Section Conj_real_mul_SNo_pos__35__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u)w * y + x * u
Hypothesis H10 : SNo (x * u)
Hypothesis H11 : SNo (- (x * u))
Hypothesis H12 : SNo (w * y)
Hypothesis H13 : SNo (- (w * y))
Hypothesis H14 : SNo (w + - x)
Hypothesis H15 : SNo (u + - y)
Hypothesis H16 : v ω
Hypothesis H17 : eps_ vw + - x
Hypothesis H18 : x2 ω
Hypothesis H19 : eps_ x2u + - y
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__35__9
Beginning of Section Conj_real_mul_SNo_pos__36__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀v : set, v SNoR x(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - xP)P))
Hypothesis H4 : (∀v : set, v SNoR y(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - yP)P))
Hypothesis H5 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w SNoR x
Hypothesis H9 : u SNoR y
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H12 : (z + w * u)w * y + x * u
Hypothesis H13 : SNo (w * u)
Hypothesis H14 : SNo (x * u)
Hypothesis H15 : SNo (- (x * u))
Hypothesis H16 : SNo (w * y)
Hypothesis H17 : SNo (- (w * y))
Hypothesis H18 : SNo (w + - x)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__36__0
Beginning of Section Conj_real_mul_SNo_pos__39__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀v : set, v SNoR x(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - xP)P))
Hypothesis H4 : (∀v : set, v SNoR y(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - yP)P))
Hypothesis H5 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w SNoR x
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H12 : (z + w * u)w * y + x * u
Hypothesis H13 : SNo (w * u)
Hypothesis H14 : SNo (x * u)
Hypothesis H15 : SNo (- (x * u))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__39__9
Beginning of Section Conj_real_mul_SNo_pos__39__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀v : set, v SNoR x(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - xP)P))
Hypothesis H4 : (∀v : set, v SNoR y(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - yP)P))
Hypothesis H5 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w SNoR x
Hypothesis H9 : u SNoR y
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H13 : SNo (w * u)
Hypothesis H14 : SNo (x * u)
Hypothesis H15 : SNo (- (x * u))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__39__12
Beginning of Section Conj_real_mul_SNo_pos__41__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀v : set, v SNoR x(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - xP)P))
Hypothesis H4 : (∀v : set, v SNoR y(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - yP)P))
Hypothesis H5 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w SNoR x
Hypothesis H9 : u SNoR y
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H12 : (z + w * u)w * y + x * u
Hypothesis H13 : SNo (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__41__1
Beginning of Section Conj_real_mul_SNo_pos__42__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H4 : (∀v : set, v SNoR y(∀P : prop, (∀x2 : set, x2 ωeps_ x2v + - yP)P))
Hypothesis H5 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w SNoR x
Hypothesis H9 : u SNoR y
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H12 : (z + w * u)w * y + x * u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__42__3
Beginning of Section Conj_real_mul_SNo_pos__45__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u)w * y + x * u
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (- (x * u))
Hypothesis H13 : SNo (w * y)
Hypothesis H14 : SNo (- (w * y))
Hypothesis H15 : SNo (x + - w)
Hypothesis H16 : SNo (y + - u)
Hypothesis H17 : v ω
Hypothesis H18 : eps_ vx + - w
Hypothesis H19 : x2 ω
Hypothesis H20 : eps_ x2y + - u
Hypothesis H21 : SNo (eps_ v)
Hypothesis H22 : SNo (eps_ x2)
Hypothesis H23 : SNo (eps_ (v + x2))
Theorem. (Conj_real_mul_SNo_pos__45__5)
¬ SNo (eps_ v * eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__45__5
Beginning of Section Conj_real_mul_SNo_pos__45__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u)w * y + x * u
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (- (x * u))
Hypothesis H13 : SNo (w * y)
Hypothesis H15 : SNo (x + - w)
Hypothesis H16 : SNo (y + - u)
Hypothesis H17 : v ω
Hypothesis H18 : eps_ vx + - w
Hypothesis H19 : x2 ω
Hypothesis H20 : eps_ x2y + - u
Hypothesis H21 : SNo (eps_ v)
Hypothesis H22 : SNo (eps_ x2)
Hypothesis H23 : SNo (eps_ (v + x2))
Theorem. (Conj_real_mul_SNo_pos__45__14)
¬ SNo (eps_ v * eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__45__14
Beginning of Section Conj_real_mul_SNo_pos__46__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u)w * y + x * u
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : SNo (x * u)
Hypothesis H13 : SNo (w * y)
Hypothesis H14 : SNo (- (w * y))
Hypothesis H15 : SNo (x + - w)
Hypothesis H16 : SNo (y + - u)
Hypothesis H17 : v ω
Hypothesis H18 : eps_ vx + - w
Hypothesis H19 : x2 ω
Hypothesis H20 : eps_ x2y + - u
Hypothesis H21 : SNo (eps_ v)
Hypothesis H22 : SNo (eps_ x2)
Hypothesis H23 : v + x2 ω
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__46__12
Beginning of Section Conj_real_mul_SNo_pos__46__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u)w * y + x * u
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (- (x * u))
Hypothesis H13 : SNo (w * y)
Hypothesis H14 : SNo (- (w * y))
Hypothesis H15 : SNo (x + - w)
Hypothesis H16 : SNo (y + - u)
Hypothesis H17 : v ω
Hypothesis H19 : x2 ω
Hypothesis H20 : eps_ x2y + - u
Hypothesis H21 : SNo (eps_ v)
Hypothesis H22 : SNo (eps_ x2)
Hypothesis H23 : v + x2 ω
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__46__18
Beginning of Section Conj_real_mul_SNo_pos__47__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u)w * y + x * u
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (- (x * u))
Hypothesis H13 : SNo (w * y)
Hypothesis H14 : SNo (- (w * y))
Hypothesis H15 : SNo (x + - w)
Hypothesis H16 : SNo (y + - u)
Hypothesis H17 : v ω
Hypothesis H18 : eps_ vx + - w
Hypothesis H19 : x2 ω
Hypothesis H20 : eps_ x2y + - u
Hypothesis H22 : SNo (eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__47__21
Beginning of Section Conj_real_mul_SNo_pos__48__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀y2 : set, y2 ωabs_SNo (z + - (x * y)) < eps_ y2)
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u)w * y + x * u
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (- (x * u))
Hypothesis H13 : SNo (w * y)
Hypothesis H14 : SNo (- (w * y))
Hypothesis H15 : SNo (x + - w)
Hypothesis H16 : SNo (y + - u)
Hypothesis H17 : v ω
Hypothesis H18 : eps_ vx + - w
Hypothesis H20 : eps_ x2y + - u
Hypothesis H21 : SNo (eps_ v)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__48__19
Beginning of Section Conj_real_mul_SNo_pos__49__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u)w * y + x * u
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (- (x * u))
Hypothesis H13 : SNo (w * y)
Hypothesis H14 : SNo (- (w * y))
Hypothesis H15 : SNo (x + - w)
Hypothesis H16 : SNo (y + - u)
Hypothesis H17 : v ω
Hypothesis H18 : eps_ vx + - w
Hypothesis H19 : x2 ω
Hypothesis H20 : eps_ x2y + - u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__49__4
Beginning of Section Conj_real_mul_SNo_pos__51__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u)w * y + x * u
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (- (x * u))
Hypothesis H17 : SNo (w * y)
Hypothesis H18 : SNo (- (w * y))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__51__2
Beginning of Section Conj_real_mul_SNo_pos__53__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u)w * y + x * u
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (- (x * u))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__53__0
Beginning of Section Conj_real_mul_SNo_pos__53__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u)w * y + x * u
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (- (x * u))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__53__1
Beginning of Section Conj_real_mul_SNo_pos__53__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u)w * y + x * u
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (- (x * u))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__53__6
Beginning of Section Conj_real_mul_SNo_pos__53__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w SNoL x
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u)w * y + x * u
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (- (x * u))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__53__10
Beginning of Section Conj_real_mul_SNo_pos__53__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u)w * y + x * u
Hypothesis H15 : SNo (x * u)
Hypothesis H16 : SNo (- (x * u))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__53__14
Beginning of Section Conj_real_mul_SNo_pos__55__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀v : set, v SNoL x(∀P : prop, (∀x2 : set, x2 ωeps_ x2x + - vP)P))
Hypothesis H5 : (∀v : set, v SNoL y(∀P : prop, (∀x2 : set, x2 ωeps_ x2y + - vP)P))
Hypothesis H6 : (∀v : set, v ωabs_SNo (z + - (x * y)) < eps_ v)
Hypothesis H7 : SNo z
Hypothesis H9 : w SNoL x
Hypothesis H10 : u SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u)w * y + x * u
Hypothesis H14 : SNo (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__55__8
Beginning of Section Conj_real_mul_SNo_pos__59__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : z ω
Hypothesis H3 : eps_ z * x < ordsucc Empty
Hypothesis H4 : eps_ z * y < ordsucc Empty
Hypothesis H6 : w + ordsucc Empty ω
Hypothesis H7 : w + ordsucc (ordsucc Empty) ω
Hypothesis H8 : u < x
Hypothesis H9 : SNo u
Hypothesis H10 : v < y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo (eps_ z)
Hypothesis H13 : SNo (eps_ (w + ordsucc Empty))
Hypothesis H14 : SNo (eps_ (w + ordsucc (ordsucc Empty)))
Theorem. (Conj_real_mul_SNo_pos__59__5)
SNo (eps_ z * eps_ (w + ordsucc (ordsucc Empty)))(u * eps_ z * eps_ (w + ordsucc (ordsucc Empty)) + (eps_ z * eps_ (w + ordsucc (ordsucc Empty))) * v + (eps_ z * eps_ (w + ordsucc (ordsucc Empty))) * eps_ z * eps_ (w + ordsucc (ordsucc Empty))) < (eps_ (w + ordsucc (ordsucc Empty)) + eps_ (w + ordsucc (ordsucc Empty))) + eps_ (w + ordsucc Empty)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__59__5
Beginning of Section Conj_real_mul_SNo_pos__69__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H6 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2v + - x
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H16 : y2 + z2 ω
Hypothesis H17 : SNo (eps_ (y2 + z2))
Hypothesis H18 : SNo (- (eps_ (y2 + z2)))
Hypothesis H19 : SNo (ap w (y2 + z2))
Hypothesis H20 : SNo (v * y)
Hypothesis H22 : SNo (- (v * x2))
Theorem. (Conj_real_mul_SNo_pos__69__21)
SNo (v * y + x * x2 + - (v * x2))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__69__21
Beginning of Section Conj_real_mul_SNo_pos__70__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H6 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2v + - x
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H16 : y2 + z2 ω
Hypothesis H17 : SNo (eps_ (y2 + z2))
Hypothesis H18 : SNo (- (eps_ (y2 + z2)))
Hypothesis H19 : SNo (ap w (y2 + z2))
Hypothesis H20 : SNo (v * y)
Hypothesis H21 : SNo (x * x2)
Hypothesis H22 : SNo (v * x2)
Theorem. (Conj_real_mul_SNo_pos__70__1)
SNo (- (v * x2))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__70__1
Beginning of Section Conj_real_mul_SNo_pos__71__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H6 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2v + - x
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H16 : y2 + z2 ω
Hypothesis H17 : SNo (eps_ (y2 + z2))
Hypothesis H18 : SNo (- (eps_ (y2 + z2)))
Hypothesis H19 : SNo (ap w (y2 + z2))
Hypothesis H20 : SNo (v * y)
Hypothesis H21 : SNo (x * x2)
Theorem. (Conj_real_mul_SNo_pos__71__3)
SNo (v * x2)SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__71__3
Beginning of Section Conj_real_mul_SNo_pos__71__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H6 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2v + - x
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H16 : y2 + z2 ω
Hypothesis H17 : SNo (eps_ (y2 + z2))
Hypothesis H19 : SNo (ap w (y2 + z2))
Hypothesis H20 : SNo (v * y)
Hypothesis H21 : SNo (x * x2)
Theorem. (Conj_real_mul_SNo_pos__71__18)
SNo (v * x2)SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__71__18
Beginning of Section Conj_real_mul_SNo_pos__72__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H6 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H16 : y2 + z2 ω
Hypothesis H17 : SNo (eps_ (y2 + z2))
Hypothesis H18 : SNo (- (eps_ (y2 + z2)))
Hypothesis H19 : SNo (ap w (y2 + z2))
Hypothesis H20 : SNo (v * y)
Theorem. (Conj_real_mul_SNo_pos__72__9)
SNo (x * x2)SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__72__9
Beginning of Section Conj_real_mul_SNo_pos__72__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H6 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2v + - x
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H16 : y2 + z2 ω
Hypothesis H17 : SNo (eps_ (y2 + z2))
Hypothesis H18 : SNo (- (eps_ (y2 + z2)))
Hypothesis H19 : SNo (ap w (y2 + z2))
Hypothesis H20 : SNo (v * y)
Theorem. (Conj_real_mul_SNo_pos__72__13)
SNo (x * x2)SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__72__13
Beginning of Section Conj_real_mul_SNo_pos__73__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H6 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2v + - x
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H17 : SNo (eps_ (y2 + z2))
Hypothesis H18 : SNo (- (eps_ (y2 + z2)))
Hypothesis H19 : SNo (ap w (y2 + z2))
Theorem. (Conj_real_mul_SNo_pos__73__16)
SNo (v * y)SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__73__16
Beginning of Section Conj_real_mul_SNo_pos__76__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H10 : eps_ y2v + - x
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2y + - x2
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H17 : y2 + z2 ω
Theorem. (Conj_real_mul_SNo_pos__76__16)
SNo (eps_ (y2 + z2))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__76__16
Beginning of Section Conj_real_mul_SNo_pos__77__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2y + - x2
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H16 : SNo (eps_ z2)
Theorem. (Conj_real_mul_SNo_pos__77__10)
y2 + z2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__77__10
Beginning of Section Conj_real_mul_SNo_pos__84__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H6 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2x + - v
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2x2 + - y
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H16 : y2 + z2 ω
Hypothesis H17 : SNo (eps_ (y2 + z2))
Hypothesis H18 : SNo (- (eps_ (y2 + z2)))
Hypothesis H19 : SNo (ap w (y2 + z2))
Theorem. (Conj_real_mul_SNo_pos__84__2)
SNo (v * y)SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__84__2
Beginning of Section Conj_real_mul_SNo_pos__85__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H10 : eps_ y2x + - v
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H16 : SNo (eps_ z2)
Hypothesis H17 : y2 + z2 ω
Hypothesis H18 : SNo (eps_ (y2 + z2))
Hypothesis H19 : SNo (- (eps_ (y2 + z2)))
Theorem. (Conj_real_mul_SNo_pos__85__6)
SNo (ap w (y2 + z2))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__85__6
Beginning of Section Conj_real_mul_SNo_pos__85__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H10 : eps_ y2x + - v
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2x2 + - y
Hypothesis H13 : SNo v
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H16 : SNo (eps_ z2)
Hypothesis H17 : y2 + z2 ω
Hypothesis H18 : SNo (eps_ (y2 + z2))
Hypothesis H19 : SNo (- (eps_ (y2 + z2)))
Theorem. (Conj_real_mul_SNo_pos__85__14)
SNo (ap w (y2 + z2))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__85__14
Beginning of Section Conj_real_mul_SNo_pos__85__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H10 : eps_ y2x + - v
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H16 : SNo (eps_ z2)
Hypothesis H17 : y2 + z2 ω
Hypothesis H18 : SNo (eps_ (y2 + z2))
Theorem. (Conj_real_mul_SNo_pos__85__19)
SNo (ap w (y2 + z2))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__85__19
Beginning of Section Conj_real_mul_SNo_pos__86__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H10 : eps_ y2x + - v
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H16 : SNo (eps_ z2)
Hypothesis H17 : y2 + z2 ω
Hypothesis H18 : SNo (eps_ (y2 + z2))
Theorem. (Conj_real_mul_SNo_pos__86__4)
SNo (- (eps_ (y2 + z2)))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__86__4
Beginning of Section Conj_real_mul_SNo_pos__86__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H10 : eps_ y2x + - v
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H16 : SNo (eps_ z2)
Hypothesis H17 : y2 + z2 ω
Theorem. (Conj_real_mul_SNo_pos__86__18)
SNo (- (eps_ (y2 + z2)))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__86__18
Beginning of Section Conj_real_mul_SNo_pos__87__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H10 : eps_ y2x + - v
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2x2 + - y
Hypothesis H13 : SNo v
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H16 : SNo (eps_ z2)
Hypothesis H17 : y2 + z2 ω
Theorem. (Conj_real_mul_SNo_pos__87__14)
SNo (eps_ (y2 + z2))SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__87__14
Beginning of Section Conj_real_mul_SNo_pos__88__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2)
Hypothesis H16 : SNo (eps_ z2)
Theorem. (Conj_real_mul_SNo_pos__88__10)
y2 + z2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__88__10
Beginning of Section Conj_real_mul_SNo_pos__90__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (- (x * y))
Hypothesis H4 : (∀w2 : set, w2 ωSNo (ap w w2))
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωSNoCut (Repl ω (ap z)) (Repl ω (ap w)) < ap w w2)
Hypothesis H7 : (∀w2 : set, w2 ω(ap w w2 + - (eps_ w2)) < x * y)
Hypothesis H8 : u = v * y + x * x2 + - (v * x2)
Hypothesis H9 : y2 ω
Hypothesis H10 : eps_ y2x + - v
Hypothesis H11 : z2 ω
Hypothesis H12 : eps_ z2x2 + - y
Hypothesis H13 : SNo v
Theorem. (Conj_real_mul_SNo_pos__90__14)
SNo (eps_ y2)SNoCut (Repl ω (ap z)) (Repl ω (ap w)) < u
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__90__14
Beginning of Section Conj_real_mul_SNo_pos__93__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H4 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H6 : u = v * y + x * x2 + - (v * x2)
Hypothesis H7 : y2 ω
Hypothesis H8 : eps_ y2v + - x
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H14 : SNo (eps_ z2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H16 : SNo (eps_ (y2 + z2))
Hypothesis H17 : SNo (ap z (y2 + z2))
Hypothesis H18 : SNo (v * y)
Hypothesis H19 : SNo (x * x2)
Theorem. (Conj_real_mul_SNo_pos__93__1)
SNo (v * x2)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__93__1
Beginning of Section Conj_real_mul_SNo_pos__93__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H4 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H6 : u = v * y + x * x2 + - (v * x2)
Hypothesis H7 : y2 ω
Hypothesis H8 : eps_ y2v + - x
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H14 : SNo (eps_ z2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H17 : SNo (ap z (y2 + z2))
Hypothesis H18 : SNo (v * y)
Hypothesis H19 : SNo (x * x2)
Theorem. (Conj_real_mul_SNo_pos__93__16)
SNo (v * x2)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__93__16
Beginning of Section Conj_real_mul_SNo_pos__94__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H4 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H7 : y2 ω
Hypothesis H8 : eps_ y2v + - x
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H14 : SNo (eps_ z2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H16 : SNo (eps_ (y2 + z2))
Hypothesis H17 : SNo (ap z (y2 + z2))
Hypothesis H18 : SNo (v * y)
Theorem. (Conj_real_mul_SNo_pos__94__6)
SNo (x * x2)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__94__6
Beginning of Section Conj_real_mul_SNo_pos__94__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H4 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H6 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : eps_ y2v + - x
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H14 : SNo (eps_ z2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H16 : SNo (eps_ (y2 + z2))
Hypothesis H17 : SNo (ap z (y2 + z2))
Hypothesis H18 : SNo (v * y)
Theorem. (Conj_real_mul_SNo_pos__94__7)
SNo (x * x2)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__94__7
Beginning of Section Conj_real_mul_SNo_pos__95__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H4 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H6 : u = v * y + x * x2 + - (v * x2)
Hypothesis H7 : y2 ω
Hypothesis H8 : eps_ y2v + - x
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H16 : SNo (eps_ (y2 + z2))
Hypothesis H17 : SNo (ap z (y2 + z2))
Theorem. (Conj_real_mul_SNo_pos__95__14)
SNo (v * y)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__95__14
Beginning of Section Conj_real_mul_SNo_pos__100__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀w2 : set, w2 ωSNo (ap z w2))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2x2 + - y
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Theorem. (Conj_real_mul_SNo_pos__100__9)
SNo (eps_ y2)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__100__9
Beginning of Section Conj_real_mul_SNo_pos__100__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀w2 : set, w2 ωSNo (ap z w2))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2v + - x
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2x2 + - y
Hypothesis H12 : SNo v
Theorem. (Conj_real_mul_SNo_pos__100__13)
SNo (eps_ y2)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__100__13
Beginning of Section Conj_real_mul_SNo_pos__101__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H4 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H6 : u = v * y + x * x2 + - (v * x2)
Hypothesis H7 : y2 ω
Hypothesis H8 : eps_ y2x + - v
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2y + - x2
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H14 : SNo (eps_ z2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H16 : SNo (eps_ (y2 + z2))
Hypothesis H17 : SNo (ap z (y2 + z2))
Hypothesis H18 : SNo (v * y)
Hypothesis H19 : SNo (x * x2)
Hypothesis H20 : SNo (- (v * x2))
Theorem. (Conj_real_mul_SNo_pos__101__1)
SNo (v * y + x * x2 + - (v * x2))u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__101__1
Beginning of Section Conj_real_mul_SNo_pos__101__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H4 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H6 : u = v * y + x * x2 + - (v * x2)
Hypothesis H7 : y2 ω
Hypothesis H8 : eps_ y2x + - v
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2y + - x2
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H14 : SNo (eps_ z2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H16 : SNo (eps_ (y2 + z2))
Hypothesis H17 : SNo (ap z (y2 + z2))
Hypothesis H18 : SNo (v * y)
Hypothesis H19 : SNo (x * x2)
Theorem. (Conj_real_mul_SNo_pos__101__20)
SNo (v * y + x * x2 + - (v * x2))u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__101__20
Beginning of Section Conj_real_mul_SNo_pos__104__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H6 : u = v * y + x * x2 + - (v * x2)
Hypothesis H7 : y2 ω
Hypothesis H8 : eps_ y2x + - v
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2y + - x2
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H14 : SNo (eps_ z2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H16 : SNo (eps_ (y2 + z2))
Hypothesis H17 : SNo (ap z (y2 + z2))
Hypothesis H18 : SNo (v * y)
Theorem. (Conj_real_mul_SNo_pos__104__4)
SNo (x * x2)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__104__4
Beginning of Section Conj_real_mul_SNo_pos__105__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H4 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H7 : y2 ω
Hypothesis H8 : eps_ y2x + - v
Hypothesis H9 : z2 ω
Hypothesis H10 : eps_ z2y + - x2
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2)
Hypothesis H14 : SNo (eps_ z2)
Hypothesis H15 : y2 + z2 ω
Hypothesis H16 : SNo (eps_ (y2 + z2))
Hypothesis H17 : SNo (ap z (y2 + z2))
Theorem. (Conj_real_mul_SNo_pos__105__6)
SNo (v * y)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__105__6
Beginning of Section Conj_real_mul_SNo_pos__106__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀w2 : set, w2 ωSNo (ap z w2))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2x + - v
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Hypothesis H16 : y2 + z2 ω
Theorem. (Conj_real_mul_SNo_pos__106__17)
SNo (ap z (y2 + z2))u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__106__17
Beginning of Section Conj_real_mul_SNo_pos__107__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀w2 : set, w2 ωSNo (ap z w2))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2x + - v
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Theorem. (Conj_real_mul_SNo_pos__107__16)
SNo (eps_ (y2 + z2))u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__107__16
Beginning of Section Conj_real_mul_SNo_pos__108__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀w2 : set, w2 ωSNo (ap z w2))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2x + - v
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Theorem. (Conj_real_mul_SNo_pos__108__6)
y2 + z2 ωu < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__108__6
Beginning of Section Conj_real_mul_SNo_pos__108__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀w2 : set, w2 ωSNo (ap z w2))
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2x + - v
Hypothesis H10 : z2 ω
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Hypothesis H15 : SNo (eps_ z2)
Theorem. (Conj_real_mul_SNo_pos__108__11)
y2 + z2 ωu < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__108__11
Beginning of Section Conj_real_mul_SNo_pos__109__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H5 : (∀w2 : set, w2 ωap z w2 < SNoCut (Repl ω (ap z)) (Repl ω (ap w)))
Hypothesis H6 : (∀w2 : set, w2 ωx * y < ap z w2 + eps_ w2)
Hypothesis H7 : u = v * y + x * x2 + - (v * x2)
Hypothesis H8 : y2 ω
Hypothesis H9 : eps_ y2x + - v
Hypothesis H10 : z2 ω
Hypothesis H11 : eps_ z2y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2)
Theorem. (Conj_real_mul_SNo_pos__109__3)
SNo (eps_ z2)u < SNoCut (Repl ω (ap z)) (Repl ω (ap w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__109__3
Beginning of Section Conj_real_mul_SNo_pos__111__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : v setexp (SNoS_ ω) ω
Hypothesis H15 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H16 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H17 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H18 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H19 : SNoCutP (Repl ω (ap u)) (Repl ω (ap v))
Hypothesis H20 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H21 : (∀x2 : set, x2 ωap u x2 < SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H22 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Hypothesis H24 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H25 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * y)
Hypothesis H26 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Theorem. (Conj_real_mul_SNo_pos__111__23)
x * ySNoCut (Repl ω (ap u)) (Repl ω (ap v))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__111__23
Beginning of Section Conj_real_mul_SNo_pos__112__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : v setexp (SNoS_ ω) ω
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H16 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H18 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H19 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H20 : SNoCutP (Repl ω (ap u)) (Repl ω (ap v))
Hypothesis H21 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H22 : (∀x2 : set, x2 ωap u x2 < SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H23 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Hypothesis H24 : (∀x2 : set, x2 ωx * y < ap u x2 + eps_ x2)
Hypothesis H25 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H26 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * y)
Theorem. (Conj_real_mul_SNo_pos__112__11)
¬ (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__112__11
Beginning of Section Conj_real_mul_SNo_pos__112__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : v setexp (SNoS_ ω) ω
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H16 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H18 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H19 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H20 : SNoCutP (Repl ω (ap u)) (Repl ω (ap v))
Hypothesis H21 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H23 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Hypothesis H24 : (∀x2 : set, x2 ωx * y < ap u x2 + eps_ x2)
Hypothesis H25 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H26 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * y)
Theorem. (Conj_real_mul_SNo_pos__112__22)
¬ (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap v x2 < ap v y2))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__112__22
Beginning of Section Conj_real_mul_SNo_pos__113__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : v setexp (SNoS_ ω) ω
Hypothesis H15 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H16 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H18 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H19 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H20 : SNoCutP (Repl ω (ap u)) (Repl ω (ap v))
Hypothesis H21 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H22 : (∀x2 : set, x2 ωap u x2 < SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H23 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Hypothesis H24 : (∀x2 : set, x2 ωx * y < ap u x2 + eps_ x2)
Hypothesis H25 : (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Theorem. (Conj_real_mul_SNo_pos__113__6)
¬ (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * y)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__113__6
Beginning of Section Conj_real_mul_SNo_pos__114__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H20 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H21 : SNoCutP (Repl ω (ap u)) (Repl ω (ap v))
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H23 : (∀x2 : set, x2 ωap u x2 < SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H24 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Hypothesis H25 : (∀x2 : set, x2 ωx * y < ap u x2 + eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__114__6)
¬ (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__114__6
Beginning of Section Conj_real_mul_SNo_pos__114__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H20 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H23 : (∀x2 : set, x2 ωap u x2 < SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H24 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Hypothesis H25 : (∀x2 : set, x2 ωx * y < ap u x2 + eps_ x2)
Theorem. (Conj_real_mul_SNo_pos__114__21)
¬ (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__114__21
Beginning of Section Conj_real_mul_SNo_pos__114__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H20 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H21 : SNoCutP (Repl ω (ap u)) (Repl ω (ap v))
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H23 : (∀x2 : set, x2 ωap u x2 < SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H24 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Theorem. (Conj_real_mul_SNo_pos__114__25)
¬ (∀x2 : set, x2 ω(∀y2 : set, y2 x2ap u y2 < ap u x2))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__114__25
Beginning of Section Conj_real_mul_SNo_pos__115__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H20 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H21 : SNoCutP (Repl ω (ap u)) (Repl ω (ap v))
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H23 : (∀x2 : set, x2 ωap u x2 < SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H24 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Theorem. (Conj_real_mul_SNo_pos__115__11)
¬ (∀x2 : set, x2 ωx * y < ap u x2 + eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__115__11
Beginning of Section Conj_real_mul_SNo_pos__115__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H20 : (∀x2 : set, x2 ωx * y < ap v x2)
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H23 : (∀x2 : set, x2 ωap u x2 < SNoCut (Repl ω (ap u)) (Repl ω (ap v)))
Hypothesis H24 : (∀x2 : set, x2 ωSNoCut (Repl ω (ap u)) (Repl ω (ap v)) < ap v x2)
Theorem. (Conj_real_mul_SNo_pos__115__21)
¬ (∀x2 : set, x2 ωx * y < ap u x2 + eps_ x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__115__21
Beginning of Section Conj_real_mul_SNo_pos__116__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H20 : (∀x2 : set, x2 ωx * y < ap v x2)
Theorem. (Conj_real_mul_SNo_pos__116__0)
¬ (∀x2 : set, x2 ω(∀y2 : set, y2 ωap u x2 < ap v y2))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__116__0
Beginning of Section Conj_real_mul_SNo_pos__116__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Hypothesis H20 : (∀x2 : set, x2 ωx * y < ap v x2)
Theorem. (Conj_real_mul_SNo_pos__116__5)
¬ (∀x2 : set, x2 ω(∀y2 : set, y2 ωap u x2 < ap v y2))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__116__5
Beginning of Section Conj_real_mul_SNo_pos__117__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Theorem. (Conj_real_mul_SNo_pos__117__0)
¬ (∀x2 : set, x2 ωx * y < ap v x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__117__0
Beginning of Section Conj_real_mul_SNo_pos__117__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Hypothesis H18 : (∀x2 : set, x2 ωSNo (ap v x2))
Hypothesis H19 : (∀x2 : set, x2 ωap u x2 < x * y)
Theorem. (Conj_real_mul_SNo_pos__117__15)
¬ (∀x2 : set, x2 ωx * y < ap v x2)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__117__15
Beginning of Section Conj_real_mul_SNo_pos__118__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (- (x * y))
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x + - x2P)P))
Hypothesis H6 : (∀x2 : set, x2 SNoR x(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - xP)P))
Hypothesis H7 : (∀x2 : set, x2 SNoL y(∀P : prop, (∀y2 : set, y2 ωeps_ y2y + - x2P)P))
Hypothesis H8 : (∀x2 : set, x2 SNoR y(∀P : prop, (∀y2 : set, y2 ωeps_ y2x2 + - yP)P))
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H11 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u setexp (SNoS_ ω) ω
Hypothesis H14 : (∀x2 : set, x2 ωap u x2 < x * yx * y < ap u x2 + eps_ x2(∀y2 : set, y2 x2ap u y2 < ap u x2))
Hypothesis H15 : v setexp (SNoS_ ω) ω
Hypothesis H16 : (∀x2 : set, x2 ω(ap v x2 + - (eps_ x2)) < x * yx * y < ap v x2(∀y2 : set, y2 x2ap v x2 < ap v y2))
Hypothesis H17 : (∀x2 : set, x2 ωSNo (ap u x2))
Theorem. (Conj_real_mul_SNo_pos__118__18)
¬ (∀x2 : set, x2 ωap u x2 < x * y)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__118__18
Beginning of Section Conj_real_mul_SNo_pos__123__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H3 : SNo x
Hypothesis H4 : x SNoS_ (ordsucc ω)
Hypothesis H5 : x < ω
Hypothesis H6 : SNo y
Hypothesis H7 : y SNoS_ (ordsucc ω)
Hypothesis H8 : y < ω
Hypothesis H9 : (∀u : set, u ω(∀P : prop, (∀v : set, v SNoS_ ωEmpty < vv < xx < v + eps_ uP)P))
Hypothesis H10 : (∀u : set, u ω(∀P : prop, (∀v : set, v SNoS_ ωEmpty < vv < yy < v + eps_ uP)P))
Hypothesis H11 : SNo (x * y)
Hypothesis H12 : SNo (- (x * y))
Hypothesis H13 : (∀u : set, SNo uSNoLev u ωSNoLev u SNoLev (x * y))
Hypothesis H14 : (∀u : set, u SNoL x(∀P : prop, (∀v : set, v ωeps_ vx + - uP)P))
Hypothesis H15 : (∀u : set, u SNoR x(∀P : prop, (∀v : set, v ωeps_ vu + - xP)P))
Hypothesis H16 : (∀u : set, u SNoL y(∀P : prop, (∀v : set, v ωeps_ vy + - uP)P))
Hypothesis H17 : (∀u : set, u SNoR y(∀P : prop, (∀v : set, v ωeps_ vu + - yP)P))
Hypothesis H18 : SNoCutP z w
Hypothesis H19 : (∀u : set, u z(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))P))
Hypothesis H20 : (∀u : set, u w(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))P))
Theorem. (Conj_real_mul_SNo_pos__123__21)
¬ (∀u : set, u SNoS_ ω(∀v : set, v ωabs_SNo (u + - (x * y)) < eps_ v)u = x * y)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__123__21
Beginning of Section Conj_real_mul_SNo_pos__127__3
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H4 : x SNoS_ (ordsucc ω)
Hypothesis H5 : x < ω
Hypothesis H6 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H7 : SNo y
Hypothesis H8 : y SNoS_ (ordsucc ω)
Hypothesis H9 : y < ω
Hypothesis H10 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - y) < eps_ w)z = y)
Hypothesis H11 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < xx < w + eps_ zP)P))
Hypothesis H12 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < yy < w + eps_ zP)P))
Hypothesis H13 : SNo (x * y)
Hypothesis H14 : SNo (- (x * y))
Hypothesis H15 : (∀z : set, SNo zSNoLev z ωSNoLev z SNoLev (x * y))
Hypothesis H16 : Subq (SNoL x) (SNoS_ ω)
Hypothesis H17 : Subq (SNoR x) (SNoS_ ω)
Hypothesis H18 : Subq (SNoL y) (SNoS_ ω)
Hypothesis H19 : Subq (SNoR y) (SNoS_ ω)
Theorem. (Conj_real_mul_SNo_pos__127__3)
¬ (∀z : set, z SNoL x(∀P : prop, (∀w : set, w ωeps_ wx + - zP)P))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__127__3
Beginning of Section Conj_real_mul_SNo_pos__129__4
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H3 : SNo x
Hypothesis H5 : x < ω
Hypothesis H6 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H7 : SNo y
Hypothesis H8 : SNoLev y ordsucc ω
Hypothesis H9 : y SNoS_ (ordsucc ω)
Hypothesis H10 : y < ω
Hypothesis H11 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - y) < eps_ w)z = y)
Hypothesis H12 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < xx < w + eps_ zP)P))
Hypothesis H13 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < yy < w + eps_ zP)P))
Hypothesis H14 : SNo (x * y)
Hypothesis H15 : SNo (- (x * y))
Hypothesis H16 : (∀z : set, SNo zSNoLev z ωSNoLev z SNoLev (x * y))
Hypothesis H17 : Subq (SNoL x) (SNoS_ ω)
Hypothesis H18 : Subq (SNoR x) (SNoS_ ω)
Theorem. (Conj_real_mul_SNo_pos__129__4)
¬ Subq (SNoL y) (SNoS_ ω)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__129__4
Beginning of Section Conj_real_mul_SNo_pos__130__0
Variable x : set
Variable y : set
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x ordsucc ω
Hypothesis H5 : x SNoS_ (ordsucc ω)
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ordsucc ω
Hypothesis H10 : y SNoS_ (ordsucc ω)
Hypothesis H11 : y < ω
Hypothesis H12 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - y) < eps_ w)z = y)
Hypothesis H13 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < xx < w + eps_ zP)P))
Hypothesis H14 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < yy < w + eps_ zP)P))
Hypothesis H15 : SNo (x * y)
Hypothesis H16 : SNo (- (x * y))
Hypothesis H17 : (∀z : set, SNo zSNoLev z ωSNoLev z SNoLev (x * y))
Hypothesis H18 : Subq (SNoL x) (SNoS_ ω)
Theorem. (Conj_real_mul_SNo_pos__130__0)
¬ Subq (SNoR x) (SNoS_ ω)
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__130__0
Beginning of Section Conj_real_mul_SNo_pos__132__4
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H3 : SNo x
Hypothesis H5 : x SNoS_ (ordsucc ω)
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ordsucc ω
Hypothesis H10 : y SNoS_ (ordsucc ω)
Hypothesis H11 : y < ω
Hypothesis H12 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - y) < eps_ w)z = y)
Hypothesis H13 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < xx < w + eps_ zP)P))
Hypothesis H14 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < yy < w + eps_ zP)P))
Hypothesis H15 : SNo (x * y)
Hypothesis H16 : SNo (- (x * y))
Hypothesis H17 : nIn (SNoLev (x * y)) ω
Theorem. (Conj_real_mul_SNo_pos__132__4)
¬ (∀z : set, SNo zSNoLev z ωSNoLev z SNoLev (x * y))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__132__4
Beginning of Section Conj_real_mul_SNo_pos__133__12
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x ordsucc ω
Hypothesis H5 : x SNoS_ (ordsucc ω)
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ordsucc ω
Hypothesis H10 : y SNoS_ (ordsucc ω)
Hypothesis H11 : y < ω
Hypothesis H13 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < xx < w + eps_ zP)P))
Hypothesis H14 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < yy < w + eps_ zP)P))
Hypothesis H15 : SNo (x * y)
Hypothesis H16 : SNo (- (x * y))
Theorem. (Conj_real_mul_SNo_pos__133__12)
¬ nIn (SNoLev (x * y)) ω
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__133__12
Beginning of Section Conj_real_mul_SNo_pos__135__10
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x ordsucc ω
Hypothesis H5 : x SNoS_ (ordsucc ω)
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ordsucc ω
Hypothesis H11 : y < ω
Hypothesis H12 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - y) < eps_ w)z = y)
Hypothesis H13 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < xx < w + eps_ zP)P))
Hypothesis H14 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < yy < w + eps_ zP)P))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__135__10
Beginning of Section Conj_real_mul_SNo_pos__136__12
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x ordsucc ω
Hypothesis H5 : x SNoS_ (ordsucc ω)
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ordsucc ω
Hypothesis H10 : y SNoS_ (ordsucc ω)
Hypothesis H11 : y < ω
Hypothesis H13 : (∀z : set, z ω(∃w : set, w SNoS_ ω(w < yy < w + eps_ z)))
Hypothesis H14 : (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < xx < w + eps_ zP)P))
Theorem. (Conj_real_mul_SNo_pos__136__12)
¬ (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < yy < w + eps_ zP)P))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__136__12
Beginning of Section Conj_real_mul_SNo_pos__137__4
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y real
Hypothesis H3 : SNo x
Hypothesis H5 : x SNoS_ (ordsucc ω)
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - x) < eps_ w)z = x)
Hypothesis H8 : (∀z : set, z ω(∃w : set, w SNoS_ ω(w < xx < w + eps_ z)))
Hypothesis H9 : SNo y
Hypothesis H10 : SNoLev y ordsucc ω
Hypothesis H11 : y SNoS_ (ordsucc ω)
Hypothesis H12 : y < ω
Hypothesis H13 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - y) < eps_ w)z = y)
Hypothesis H14 : (∀z : set, z ω(∃w : set, w SNoS_ ω(w < yy < w + eps_ z)))
Theorem. (Conj_real_mul_SNo_pos__137__4)
¬ (∀z : set, z ω(∀P : prop, (∀w : set, w SNoS_ ωEmpty < ww < xx < w + eps_ zP)P))
Proof:
The rest of the proof is missing.

End of Section Conj_real_mul_SNo_pos__137__4
Beginning of Section Conj_abs_SNo_intvl_bd__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : y < x + z
Hypothesis H4 : Emptyy + - x
Theorem. (Conj_abs_SNo_intvl_bd__1__1)
abs_SNo (y + - x) = y + - xabs_SNo (y + - x) < z
Proof:
The rest of the proof is missing.

End of Section Conj_abs_SNo_intvl_bd__1__1
Beginning of Section Conj_pos_small_real_recip_ex__6__9
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : x < ordsucc Empty
Hypothesis H1 : SNo x
Hypothesis H2 : SNo (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H3 : (∀w : set, w Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)) < w)
Hypothesis H4 : y SNoS_ ω
Hypothesis H5 : (∀w : set, w ωabs_SNo (y + - (SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)))) < eps_ w)
Hypothesis H6 : SNo y
Hypothesis H7 : SNo (x * y)
Hypothesis H8 : SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < y
Hypothesis H10 : ordsucc Emptyx * y + - (eps_ z)
Theorem. (Conj_pos_small_real_recip_ex__6__9)
¬ SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < y + - (eps_ z)
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__6__9
Beginning of Section Conj_pos_small_real_recip_ex__8__0
Variable x : set
Variable y : set
Hypothesis H1 : ¬ (∃z : set, z realx * z = ordsucc Empty)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo (SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H4 : (∀z : set, z Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H5 : (∀z : set, z Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z)
Hypothesis H6 : y SNoS_ ω
Hypothesis H7 : (∀z : set, z ωabs_SNo (y + - (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ z)
Hypothesis H8 : SNo y
Hypothesis H9 : y real
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - (x * y)) < eps_ w)z = x * y)
Hypothesis H12 : x * y < ordsucc Empty(∃z : set, z ω(x * y + eps_ z)ordsucc Empty)
Theorem. (Conj_pos_small_real_recip_ex__8__0)
(ordsucc Empty < x * y(∃z : set, z ωordsucc Emptyx * y + - (eps_ z)))y = SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__8__0
Beginning of Section Conj_pos_small_real_recip_ex__9__3
Variable x : set
Variable y : set
Hypothesis H0 : x < ordsucc Empty
Hypothesis H1 : ¬ (∃z : set, z realx * z = ordsucc Empty)
Hypothesis H2 : SNo x
Hypothesis H4 : (∀z : set, z Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H5 : (∀z : set, z Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z)
Hypothesis H6 : y SNoS_ ω
Hypothesis H7 : (∀z : set, z ωabs_SNo (y + - (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ z)
Hypothesis H8 : SNo y
Hypothesis H9 : y real
Hypothesis H10 : SNo (x * y)
Hypothesis H11 : (∀z : set, z SNoS_ ω(∀w : set, w ωabs_SNo (z + - (x * y)) < eps_ w)z = x * y)
Hypothesis H12 : SNo (- (x * y))
Theorem. (Conj_pos_small_real_recip_ex__9__3)
(x * y < ordsucc Empty(∃z : set, z ω(x * y + eps_ z)ordsucc Empty))y = SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__9__3
Beginning of Section Conj_pos_small_real_recip_ex__11__1
Variable x : set
Variable y : set
Hypothesis H0 : x real
Hypothesis H2 : ¬ (∃z : set, z realx * z = ordsucc Empty)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H5 : (∀z : set, z Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : (∀z : set, z Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z)
Hypothesis H7 : y SNoS_ ω
Hypothesis H8 : (∀z : set, z ωabs_SNo (y + - (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ z)
Hypothesis H9 : SNo y
Hypothesis H10 : y real
Theorem. (Conj_pos_small_real_recip_ex__11__1)
x * y realy = SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__11__1
Beginning of Section Conj_pos_small_real_recip_ex__11__2
Variable x : set
Variable y : set
Hypothesis H0 : x real
Hypothesis H1 : x < ordsucc Empty
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H5 : (∀z : set, z Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : (∀z : set, z Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z)
Hypothesis H7 : y SNoS_ ω
Hypothesis H8 : (∀z : set, z ωabs_SNo (y + - (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ z)
Hypothesis H9 : SNo y
Hypothesis H10 : y real
Theorem. (Conj_pos_small_real_recip_ex__11__2)
x * y realy = SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__11__2
Beginning of Section Conj_pos_small_real_recip_ex__11__7
Variable x : set
Variable y : set
Hypothesis H0 : x real
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃z : set, z realx * z = ordsucc Empty)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H5 : (∀z : set, z Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : (∀z : set, z Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z)
Hypothesis H8 : (∀z : set, z ωabs_SNo (y + - (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ z)
Hypothesis H9 : SNo y
Hypothesis H10 : y real
Theorem. (Conj_pos_small_real_recip_ex__11__7)
x * y realy = SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__11__7
Beginning of Section Conj_pos_small_real_recip_ex__12__0
Variable x : set
Variable y : set
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃z : set, z realx * z = ordsucc Empty)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H5 : (∀z : set, z Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : (∀z : set, z Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z)
Hypothesis H7 : y SNoS_ ω
Hypothesis H8 : (∀z : set, z ωabs_SNo (y + - (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ z)
Hypothesis H9 : SNo y
Theorem. (Conj_pos_small_real_recip_ex__12__0)
y realy = SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__12__0
Beginning of Section Conj_pos_small_real_recip_ex__12__9
Variable x : set
Variable y : set
Hypothesis H0 : x real
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃z : set, z realx * z = ordsucc Empty)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H5 : (∀z : set, z Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : (∀z : set, z Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z)
Hypothesis H7 : y SNoS_ ω
Hypothesis H8 : (∀z : set, z ωabs_SNo (y + - (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ z)
Theorem. (Conj_pos_small_real_recip_ex__12__9)
y realy = SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__12__9
Beginning of Section Conj_pos_small_real_recip_ex__13__3
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : SNo x
Hypothesis H2 : SNo (SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H4 : y ω
Hypothesis H5 : eps_ yx
Hypothesis H6 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) y)
Hypothesis H7 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) y)
Theorem. (Conj_pos_small_real_recip_ex__13__3)
exp_SNo_nat (ordsucc (ordsucc Empty)) y + ordsucc Empty ωSNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)) < ω
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__13__3
Beginning of Section Conj_pos_small_real_recip_ex__17__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)w < SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)))
Hypothesis H4 : (∀w : set, w Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)) < w)
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H8 : y ω
Hypothesis H9 : z SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))
Hypothesis H11 : SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z + eps_ (ordsucc y)
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z)
Hypothesis H14 : SNo (eps_ (ordsucc y))
Hypothesis H15 : SNo (x * eps_ (ordsucc y))
Hypothesis H16 : SNo (z + eps_ (ordsucc y))
Hypothesis H17 : SNo (ordsucc Empty + - (x * z))
Hypothesis H18 : SNo (x * z + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))))
Theorem. (Conj_pos_small_real_recip_ex__17__1)
x * (z + eps_ (ordsucc y)) < x * z + eps_ (ordsucc y)abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ y
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__17__1
Beginning of Section Conj_pos_small_real_recip_ex__17__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)w < SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)))
Hypothesis H4 : (∀w : set, w Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)) < w)
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H8 : y ω
Hypothesis H9 : z SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))
Hypothesis H11 : SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z + eps_ (ordsucc y)
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z)
Hypothesis H14 : SNo (eps_ (ordsucc y))
Hypothesis H15 : SNo (x * eps_ (ordsucc y))
Hypothesis H16 : SNo (z + eps_ (ordsucc y))
Hypothesis H17 : SNo (ordsucc Empty + - (x * z))
Hypothesis H18 : SNo (x * z + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))))
Theorem. (Conj_pos_small_real_recip_ex__17__6)
x * (z + eps_ (ordsucc y)) < x * z + eps_ (ordsucc y)abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ y
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__17__6
Beginning of Section Conj_pos_small_real_recip_ex__17__7
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)w < SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)))
Hypothesis H4 : (∀w : set, w Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)) < w)
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H8 : y ω
Hypothesis H9 : z SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))
Hypothesis H11 : SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z + eps_ (ordsucc y)
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z)
Hypothesis H14 : SNo (eps_ (ordsucc y))
Hypothesis H15 : SNo (x * eps_ (ordsucc y))
Hypothesis H16 : SNo (z + eps_ (ordsucc y))
Hypothesis H17 : SNo (ordsucc Empty + - (x * z))
Hypothesis H18 : SNo (x * z + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))))
Theorem. (Conj_pos_small_real_recip_ex__17__7)
x * (z + eps_ (ordsucc y)) < x * z + eps_ (ordsucc y)abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ y
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__17__7
Beginning of Section Conj_pos_small_real_recip_ex__18__8
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)w < SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)))
Hypothesis H4 : (∀w : set, w Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)) < w)
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H9 : z SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))
Hypothesis H11 : SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z + eps_ (ordsucc y)
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z)
Hypothesis H14 : SNo (eps_ (ordsucc y))
Hypothesis H15 : SNo (x * eps_ (ordsucc y))
Hypothesis H16 : SNo (z + eps_ (ordsucc y))
Hypothesis H17 : SNo (ordsucc Empty + - (x * z))
Theorem. (Conj_pos_small_real_recip_ex__18__8)
SNo (x * z + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))))abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ y
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__18__8
Beginning of Section Conj_pos_small_real_recip_ex__19__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H3 : (∀w : set, w Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)w < SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)))
Hypothesis H4 : (∀w : set, w Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)) < w)
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H8 : y ω
Hypothesis H9 : z SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))
Hypothesis H11 : SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z + eps_ (ordsucc y)
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z)
Hypothesis H14 : SNo (eps_ (ordsucc y))
Hypothesis H15 : SNo (x * eps_ (ordsucc y))
Hypothesis H16 : SNo (z + eps_ (ordsucc y))
Theorem. (Conj_pos_small_real_recip_ex__19__2)
SNo (ordsucc Empty + - (x * z))abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ y
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__19__2
Beginning of Section Conj_pos_small_real_recip_ex__23__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set, w Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)w < SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)))
Hypothesis H4 : (∀w : set, w Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)SNoCut (Sep (SNoS_ ω) (λu : setx * u < ordsucc Empty)) (Sep (SNoS_ ω) (λu : setordsucc Empty < x * u)) < w)
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))
Hypothesis H8 : y ω
Hypothesis H9 : z SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))
Hypothesis H11 : SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z + eps_ (ordsucc y)
Hypothesis H12 : SNo z
Theorem. (Conj_pos_small_real_recip_ex__23__0)
SNo (x * z)abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)))) < eps_ y
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__23__0
Beginning of Section Conj_pos_small_real_recip_ex__24__3
Variable x : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃y : set, y realx * y = ordsucc Empty)
Hypothesis H4 : (∀y : set, y Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)y < SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H5 : (∀y : set, y Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)) < y)
Hypothesis H6 : SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)) real
Hypothesis H7 : SNo (SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)))
Hypothesis H8 : (∀y : set, y ω(∃z : set, z SNoS_ ω(z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z + eps_ y)))
Hypothesis H9 : x * SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)) real
Theorem. (Conj_pos_small_real_recip_ex__24__3)
¬ SNo (x * SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__24__3
Beginning of Section Conj_pos_small_real_recip_ex__24__8
Variable x : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃y : set, y realx * y = ordsucc Empty)
Hypothesis H3 : SNo x
Hypothesis H4 : (∀y : set, y Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)y < SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H5 : (∀y : set, y Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)) < y)
Hypothesis H6 : SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)) real
Hypothesis H7 : SNo (SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)))
Hypothesis H9 : x * SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)) real
Theorem. (Conj_pos_small_real_recip_ex__24__8)
¬ SNo (x * SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__24__8
Beginning of Section Conj_pos_small_real_recip_ex__24__9
Variable x : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃y : set, y realx * y = ordsucc Empty)
Hypothesis H3 : SNo x
Hypothesis H4 : (∀y : set, y Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)y < SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H5 : (∀y : set, y Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)) < y)
Hypothesis H6 : SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)) real
Hypothesis H7 : SNo (SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)))
Hypothesis H8 : (∀y : set, y ω(∃z : set, z SNoS_ ω(z < SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w))SNoCut (Sep (SNoS_ ω) (λw : setx * w < ordsucc Empty)) (Sep (SNoS_ ω) (λw : setordsucc Empty < x * w)) < z + eps_ y)))
Theorem. (Conj_pos_small_real_recip_ex__24__9)
¬ SNo (x * SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__24__9
Beginning of Section Conj_pos_small_real_recip_ex__26__3
Variable x : set
Hypothesis H0 : x real
Hypothesis H1 : Empty < x
Hypothesis H2 : x < ordsucc Empty
Hypothesis H4 : SNo x
Hypothesis H5 : (∀y : set, y SNoS_ ω(∀z : set, z ωabs_SNo (y + - x) < eps_ z)y = x)
Hypothesis H6 : SNo (SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)))
Hypothesis H7 : (∀y : set, y Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)y < SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)))
Hypothesis H8 : (∀y : set, y Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)SNoCut (Sep (SNoS_ ω) (λz : setx * z < ordsucc Empty)) (Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)) < y)
Hypothesis H9 : SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)) SNoS_ (ordsucc ω)
Theorem. (Conj_pos_small_real_recip_ex__26__3)
¬ SNoCut (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y)) real
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__26__3
Beginning of Section Conj_pos_small_real_recip_ex__28__6
Variable x : set
Hypothesis H0 : x real
Hypothesis H1 : Empty < x
Hypothesis H2 : x < ordsucc Empty
Hypothesis H3 : ¬ (∃y : set, y realx * y = ordsucc Empty)
Hypothesis H4 : SNo x
Hypothesis H5 : (∀y : set, y SNoS_ ω(∀z : set, z ωabs_SNo (y + - x) < eps_ z)y = x)
Hypothesis H7 : (∀y : set, y Sep (SNoS_ ω) (λz : setordsucc Empty < x * z)(∀P : prop, (SNo ySNoLev y ωordsucc Empty < x * yP)P))
Theorem. (Conj_pos_small_real_recip_ex__28__6)
¬ SNoCutP (Sep (SNoS_ ω) (λy : setx * y < ordsucc Empty)) (Sep (SNoS_ ω) (λy : setordsucc Empty < x * y))
Proof:
The rest of the proof is missing.

End of Section Conj_pos_small_real_recip_ex__28__6
Beginning of Section Conj_pos_real_recip_ex__1__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ω
Hypothesis H2 : z real
Theorem. (Conj_pos_real_recip_ex__1__3)
SNo (eps_ y)(∃w : set, w realx * w = ordsucc Empty)
Proof:
The rest of the proof is missing.

End of Section Conj_pos_real_recip_ex__1__3
Beginning of Section Conj_pos_real_recip_ex__2__4
Variable x : set
Variable y : set
Hypothesis H0 : x real
Hypothesis H1 : Empty < x
Hypothesis H2 : SNo x
Hypothesis H3 : y ω
Hypothesis H5 : eps_ y real
Theorem. (Conj_pos_real_recip_ex__2__4)
Empty < eps_ y * x(∃z : set, z realx * z = ordsucc Empty)
Proof:
The rest of the proof is missing.

End of Section Conj_pos_real_recip_ex__2__4
Beginning of Section Conj_real_Archimedean__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty)) y)
Hypothesis H2 : ordsucc Emptyexp_SNo_nat (ordsucc (ordsucc Empty)) y * x
Hypothesis H4 : SNo z
Theorem. (Conj_real_Archimedean__2__3)
Emptyzz * ordsucc Emptyz * exp_SNo_nat (ordsucc (ordsucc Empty)) y * x
Proof:
The rest of the proof is missing.

End of Section Conj_real_Archimedean__2__3
Beginning of Section Conj_real_Archimedean__8__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : y real
Hypothesis H1 : SNo x
Hypothesis H3 : eps_ zx
Theorem. (Conj_real_Archimedean__8__2)
nat_p (exp_SNo_nat (ordsucc (ordsucc Empty)) z)(∃w : set, w ωyw * x)
Proof:
The rest of the proof is missing.

End of Section Conj_real_Archimedean__8__2
Beginning of Section Conj_real_complete1__3__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ωap x uap y uap x uap x (ordsucc u)ap y (ordsucc u)ap y u)
Hypothesis H2 : (∀u : set, u zap x uap x z)
Hypothesis H3 : w ordsucc z
Hypothesis H4 : z ω
Theorem. (Conj_real_complete1__3__1)
ordsucc z ωap x wap x (ordsucc z)
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__3__1
Beginning of Section Conj_real_complete1__3__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ωap x uap y uap x uap x (ordsucc u)ap y (ordsucc u)ap y u)
Hypothesis H1 : (∀u : set, u ωSNo (ap x u))
Hypothesis H2 : (∀u : set, u zap x uap x z)
Hypothesis H4 : z ω
Theorem. (Conj_real_complete1__3__3)
ordsucc z ωap x wap x (ordsucc z)
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__3__3
Beginning of Section Conj_real_complete1__4__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ωap x uap y uap x uap x (ordsucc u)ap y (ordsucc u)ap y u)
Hypothesis H1 : (∀u : set, u ωSNo (ap x u))
Hypothesis H2 : nat_p z
Hypothesis H4 : w ordsucc z
Theorem. (Conj_real_complete1__4__3)
z ωap x wap x (ordsucc z)
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__4__3
Beginning of Section Conj_real_complete1__9__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ωap x uap y uap x uap x (ordsucc u)ap y (ordsucc u)ap y u)
Hypothesis H2 : (∀u : set, u ωSNo (ap y u))
Hypothesis H3 : (∀u : set, nat_p u(∀v : set, v uap x vap x u))
Hypothesis H4 : (∀u : set, nat_p u(∀v : set, v uap y uap y v))
Hypothesis H5 : z ω
Hypothesis H6 : w ω
Hypothesis H7 : nat_p z
Hypothesis H8 : nat_p w
Theorem. (Conj_real_complete1__9__1)
ap x zap y zap x zap y w
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__9__1
Beginning of Section Conj_real_complete1__12__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set, w ωSNo (ap y w))
Hypothesis H2 : SNo (SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))
Hypothesis H3 : (∀w : set, SNo w(∀u : set, u Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)u < w)(∀u : set, u Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v)w < u)Subq (SNoLev (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)))) (SNoLev w)SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)))) (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))) w)
Hypothesis H4 : (∀w : set, w ωap x wSNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))ap y w)
Hypothesis H5 : z SNoS_ ω
Hypothesis H6 : ¬ (z Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)z Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w))
Hypothesis H7 : SNoLev z ω
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Hypothesis H10 : (∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)w < z)
Theorem. (Conj_real_complete1__12__0)
¬ (∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)z < w)
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__12__0
Beginning of Section Conj_real_complete1__12__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ¬ (∃w : set, w real(∀u : set, u ωap x uwwap y u))
Hypothesis H1 : (∀w : set, w ωSNo (ap y w))
Hypothesis H3 : (∀w : set, SNo w(∀u : set, u Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)u < w)(∀u : set, u Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v)w < u)Subq (SNoLev (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)))) (SNoLev w)SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)))) (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))) w)
Hypothesis H4 : (∀w : set, w ωap x wSNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))ap y w)
Hypothesis H5 : z SNoS_ ω
Hypothesis H6 : ¬ (z Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)z Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w))
Hypothesis H7 : SNoLev z ω
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Hypothesis H10 : (∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)w < z)
Theorem. (Conj_real_complete1__12__2)
¬ (∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)z < w)
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__12__2
Beginning of Section Conj_real_complete1__13__7
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ¬ (∃w : set, w real(∀u : set, u ωap x uwwap y u))
Hypothesis H1 : (∀w : set, w ωSNo (ap x w))
Hypothesis H2 : (∀w : set, w ωSNo (ap y w))
Hypothesis H3 : SNo (SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))
Hypothesis H4 : (∀w : set, SNo w(∀u : set, u Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)u < w)(∀u : set, u Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v)w < u)Subq (SNoLev (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)))) (SNoLev w)SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)))) (SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))) w)
Hypothesis H5 : (∀w : set, w ωap x wSNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))SNoCut (Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)) (Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u))ap y w)
Hypothesis H6 : z SNoS_ ω
Hypothesis H8 : SNoLev z ω
Hypothesis H9 : ordinal (SNoLev z)
Hypothesis H10 : SNo z
Theorem. (Conj_real_complete1__13__7)
¬ (∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)w < z)
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__13__7
Beginning of Section Conj_real_complete1__14__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v ωSNo (ap y v))
Hypothesis H1 : SNo (SNoCut (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)) (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v)))
Hypothesis H2 : (∀v : set, v ωabs_SNo (z + - (SNoCut (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωx2 < ap x y2)) (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωap y y2 < x2)))) < eps_ v)
Hypothesis H3 : SNo z
Hypothesis H4 : w ω
Hypothesis H6 : u ω
Hypothesis H7 : Empty < z + - (ap y w)
Hypothesis H8 : SNoCut (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)) (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v))ap y w
Theorem. (Conj_real_complete1__14__5)
Empty < z + - (SNoCut (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)) (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v)))abs_SNo (z + - (ap y w)) < eps_ u
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__14__5
Beginning of Section Conj_real_complete1__15__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v ωSNo (ap y v))
Hypothesis H1 : SNo (SNoCut (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)) (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v)))
Hypothesis H2 : (∀v : set, v ωSNoCut (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωx2 < ap x y2)) (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωap y y2 < x2))ap y v)
Hypothesis H3 : (∀v : set, v ωabs_SNo (z + - (SNoCut (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωx2 < ap x y2)) (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωap y y2 < x2)))) < eps_ v)
Hypothesis H4 : SNo z
Hypothesis H5 : w ω
Hypothesis H7 : u ω
Hypothesis H8 : Empty < z + - (ap y w)
Theorem. (Conj_real_complete1__15__6)
SNoCut (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)) (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v))ap y wabs_SNo (z + - (ap y w)) < eps_ u
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__15__6
Beginning of Section Conj_real_complete1__20__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v ωSNo (ap x v))
Hypothesis H1 : SNo (SNoCut (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωv < ap x x2)) (Sep (SNoS_ ω) (λv : set∃x2 : set, x2 ωap y x2 < v)))
Hypothesis H2 : (∀v : set, v ωap x vSNoCut (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωx2 < ap x y2)) (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωap y y2 < x2)))
Hypothesis H3 : (∀v : set, v ωabs_SNo (z + - (SNoCut (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωx2 < ap x y2)) (Sep (SNoS_ ω) (λx2 : set∃y2 : set, y2 ωap y y2 < x2)))) < eps_ v)
Hypothesis H4 : SNo z
Hypothesis H5 : w ω
Hypothesis H6 : z < ap x w
Theorem. (Conj_real_complete1__20__7)
Empty < ap x w + - zabs_SNo (z + - (ap x w)) < eps_ u
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__20__7
Beginning of Section Conj_real_complete1__25__7
Variable x : set
Variable y : set
Hypothesis H0 : x setexp real ω
Hypothesis H1 : y setexp real ω
Hypothesis H2 : ¬ (∃z : set, z real(∀w : set, w ωap x wzzap y w))
Hypothesis H3 : (∀z : set, z ωSNo (ap x z))
Hypothesis H4 : (∀z : set, z ωSNo (ap y z))
Hypothesis H5 : Subq (Sep (SNoS_ ω) (λz : set∃w : set, w ωz < ap x w)) (SNoS_ ω)
Hypothesis H6 : Subq (Sep (SNoS_ ω) (λz : set∃w : set, w ωap y w < z)) (SNoS_ ω)
Hypothesis H8 : SNo (SNoCut (Sep (SNoS_ ω) (λz : set∃w : set, w ωz < ap x w)) (Sep (SNoS_ ω) (λz : set∃w : set, w ωap y w < z)))
Hypothesis H9 : (∀z : set, SNo z(∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)w < z)(∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)z < w)Subq (SNoLev (SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))) (SNoLev z)SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))) (SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w))) z)
Hypothesis H10 : (∀z : set, z ωap x zSNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))
Hypothesis H11 : (∀z : set, z ωSNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w))ap y z)
Theorem. (Conj_real_complete1__25__7)
¬ (∀z : set, z ωap x zSNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w))SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w))ap y z)
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__25__7
Beginning of Section Conj_real_complete1__26__11
Variable x : set
Variable y : set
Hypothesis H0 : x setexp real ω
Hypothesis H1 : y setexp real ω
Hypothesis H2 : ¬ (∃z : set, z real(∀w : set, w ωap x wzzap y w))
Hypothesis H3 : (∀z : set, z ωSNo (ap x z))
Hypothesis H4 : (∀z : set, z ωSNo (ap y z))
Hypothesis H5 : (∀z : set, z ω(∀w : set, w ωap x zap y w))
Hypothesis H6 : Subq (Sep (SNoS_ ω) (λz : set∃w : set, w ωz < ap x w)) (SNoS_ ω)
Hypothesis H7 : Subq (Sep (SNoS_ ω) (λz : set∃w : set, w ωap y w < z)) (SNoS_ ω)
Hypothesis H8 : SNoCutP (Sep (SNoS_ ω) (λz : set∃w : set, w ωz < ap x w)) (Sep (SNoS_ ω) (λz : set∃w : set, w ωap y w < z))
Hypothesis H9 : SNo (SNoCut (Sep (SNoS_ ω) (λz : set∃w : set, w ωz < ap x w)) (Sep (SNoS_ ω) (λz : set∃w : set, w ωap y w < z)))
Hypothesis H10 : (∀z : set, z Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)) < z)
Hypothesis H12 : (∀z : set, z ωap x zSNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))
Theorem. (Conj_real_complete1__26__11)
¬ (∀z : set, z ωSNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w))ap y z)
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__26__11
Beginning of Section Conj_real_complete1__27__11
Variable x : set
Variable y : set
Hypothesis H0 : x setexp real ω
Hypothesis H1 : y setexp real ω
Hypothesis H2 : ¬ (∃z : set, z real(∀w : set, w ωap x wzzap y w))
Hypothesis H3 : (∀z : set, z ωSNo (ap x z))
Hypothesis H4 : (∀z : set, z ωSNo (ap y z))
Hypothesis H5 : (∀z : set, z ω(∀w : set, w ωap x zap y w))
Hypothesis H6 : Subq (Sep (SNoS_ ω) (λz : set∃w : set, w ωz < ap x w)) (SNoS_ ω)
Hypothesis H7 : Subq (Sep (SNoS_ ω) (λz : set∃w : set, w ωap y w < z)) (SNoS_ ω)
Hypothesis H8 : SNoCutP (Sep (SNoS_ ω) (λz : set∃w : set, w ωz < ap x w)) (Sep (SNoS_ ω) (λz : set∃w : set, w ωap y w < z))
Hypothesis H9 : SNo (SNoCut (Sep (SNoS_ ω) (λz : set∃w : set, w ωz < ap x w)) (Sep (SNoS_ ω) (λz : set∃w : set, w ωap y w < z)))
Hypothesis H10 : (∀z : set, z Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)z < SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))
Hypothesis H12 : (∀z : set, SNo z(∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωu < ap x v)w < z)(∀w : set, w Sep (SNoS_ ω) (λu : set∃v : set, v ωap y v < u)z < w)Subq (SNoLev (SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))) (SNoLev z)SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))) (SNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w))) z)
Theorem. (Conj_real_complete1__27__11)
¬ (∀z : set, z ωap x zSNoCut (Sep (SNoS_ ω) (λw : set∃u : set, u ωw < ap x u)) (Sep (SNoS_ ω) (λw : set∃u : set, u ωap y u < w)))
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__27__11
Beginning of Section Conj_real_complete1__31__1
Variable x : set
Variable y : set
Hypothesis H0 : x setexp real ω
Hypothesis H2 : (∀z : set, z ωap x zap y zap x zap x (ordsucc z)ap y (ordsucc z)ap y z)
Hypothesis H3 : ¬ (∃z : set, z real(∀w : set, w ωap x wzzap y w))
Hypothesis H4 : (∀z : set, z ωSNo (ap x z))
Hypothesis H5 : (∀z : set, z ωSNo (ap y z))
Hypothesis H6 : (∀z : set, nat_p z(∀w : set, w zap x wap x z))
Hypothesis H7 : (∀z : set, nat_p z(∀w : set, w zap y zap y w))
Theorem. (Conj_real_complete1__31__1)
¬ (∀z : set, z ω(∀w : set, w ωap x zap y w))
Proof:
The rest of the proof is missing.

End of Section Conj_real_complete1__31__1
Beginning of Section Conj_ctagged_notin_SNo__3__0
Variable x : set
Variable y : set
Hypothesis H1 : ordinal (SNoLev x)
Hypothesis H2 : Subq x (SNoElts_ (SNoLev x))
Theorem. (Conj_ctagged_notin_SNo__3__0)
¬ SetAdjoin y (Sing (ordsucc (ordsucc Empty))) binunion (SNoLev x) (Repl (SNoLev x) (λz : setSetAdjoin z (Sing (ordsucc Empty))))
Proof:
The rest of the proof is missing.

End of Section Conj_ctagged_notin_SNo__3__0
Beginning of Section Conj_ctagged_eqE_Subq__1__1
Variable x : set
Variable y : set
Hypothesis H0 : Sing (ordsucc (ordsucc Empty)) x
Hypothesis H2 : ordinal y
Theorem. (Conj_ctagged_eqE_Subq__1__1)
¬ Sing (ordsucc (ordsucc Empty)) SetAdjoin y (Sing (ordsucc Empty))
Proof:
The rest of the proof is missing.

End of Section Conj_ctagged_eqE_Subq__1__1
Beginning of Section Conj_ctagged_eqE_Subq__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Sing (ordsucc (ordsucc Empty)) y
Hypothesis H1 : ordinal (SNoLev x)
Hypothesis H2 : z SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_ctagged_eqE_Subq__2__3
Beginning of Section Conj_ctagged_eqE_Subq__5__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : y x
Hypothesis H3 : z Sing (Sing (ordsucc (ordsucc Empty)))
Theorem. (Conj_ctagged_eqE_Subq__5__2)
zSing (ordsucc (ordsucc Empty))
Proof:
The rest of the proof is missing.

End of Section Conj_ctagged_eqE_Subq__5__2
Beginning of Section Conj_SNo_pair_prop_1_Subq__1__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo_pair x y = SNo_pair z w
Hypothesis H2 : u x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_pair_prop_1_Subq__1__0
Beginning of Section Conj_add_CSNo_minus_CSNo_rinv__1__1
Variable x : set
Hypothesis H0 : CSNo x
Theorem. (Conj_add_CSNo_minus_CSNo_rinv__1__1)
SNo (- (CSNo_Im x))SNo_pair (CSNo_Re x + CSNo_Re (SNo_pair (- (CSNo_Re x)) (- (CSNo_Im x)))) (CSNo_Im x + CSNo_Im (SNo_pair (- (CSNo_Re x)) (- (CSNo_Im x)))) = Empty
Proof:
The rest of the proof is missing.

End of Section Conj_add_CSNo_minus_CSNo_rinv__1__1
Beginning of Section Conj_add_CSNo_com__1__2
Variable x : set
Variable y : set
Hypothesis H0 : CSNo x
Hypothesis H1 : CSNo y
Theorem. (Conj_add_CSNo_com__1__2)
CSNo (add_CSNo y x)add_CSNo x y = add_CSNo y x
Proof:
The rest of the proof is missing.

End of Section Conj_add_CSNo_com__1__2
Beginning of Section Conj_add_CSNo_assoc__2__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : CSNo x
Hypothesis H1 : CSNo y
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (add_CSNo y z)
Theorem. (Conj_add_CSNo_assoc__2__4)
CSNo (add_CSNo x (add_CSNo y z))add_CSNo x (add_CSNo y z) = add_CSNo (add_CSNo x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_add_CSNo_assoc__2__4
Beginning of Section Conj_mul_CSNo_assoc__2__8
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : CSNo x
Hypothesis H1 : CSNo y
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (mul_CSNo y z)
Hypothesis H4 : CSNo (mul_CSNo x y)
Hypothesis H5 : CSNo (mul_CSNo x (mul_CSNo y z))
Hypothesis H6 : CSNo (mul_CSNo (mul_CSNo x y) z)
Hypothesis H7 : SNo (CSNo_Re x)
Hypothesis H9 : SNo (CSNo_Re z)
Hypothesis H10 : SNo (CSNo_Im x)
Theorem. (Conj_mul_CSNo_assoc__2__8)
SNo (CSNo_Im y)mul_CSNo x (mul_CSNo y z) = mul_CSNo (mul_CSNo x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_CSNo_assoc__2__8
Beginning of Section Conj_mul_CSNo_assoc__3__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : CSNo x
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (mul_CSNo y z)
Hypothesis H4 : CSNo (mul_CSNo x y)
Hypothesis H5 : CSNo (mul_CSNo x (mul_CSNo y z))
Hypothesis H6 : CSNo (mul_CSNo (mul_CSNo x y) z)
Hypothesis H7 : SNo (CSNo_Re x)
Hypothesis H8 : SNo (CSNo_Re y)
Hypothesis H9 : SNo (CSNo_Re z)
Theorem. (Conj_mul_CSNo_assoc__3__1)
SNo (CSNo_Im x)mul_CSNo x (mul_CSNo y z) = mul_CSNo (mul_CSNo x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_CSNo_assoc__3__1
Beginning of Section Conj_mul_CSNo_assoc__4__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : CSNo x
Hypothesis H1 : CSNo y
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (mul_CSNo y z)
Hypothesis H4 : CSNo (mul_CSNo x y)
Hypothesis H5 : CSNo (mul_CSNo x (mul_CSNo y z))
Hypothesis H7 : SNo (CSNo_Re x)
Hypothesis H8 : SNo (CSNo_Re y)
Theorem. (Conj_mul_CSNo_assoc__4__6)
SNo (CSNo_Re z)mul_CSNo x (mul_CSNo y z) = mul_CSNo (mul_CSNo x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_CSNo_assoc__4__6
Beginning of Section Conj_mul_CSNo_distrL__2__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : CSNo y
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (add_CSNo y z)
Hypothesis H4 : CSNo (mul_CSNo x y)
Hypothesis H5 : CSNo (mul_CSNo x z)
Hypothesis H6 : CSNo (mul_CSNo x (add_CSNo y z))
Hypothesis H7 : CSNo (add_CSNo (mul_CSNo x y) (mul_CSNo x z))
Hypothesis H8 : SNo (CSNo_Re x)
Hypothesis H9 : SNo (CSNo_Re y)
Hypothesis H10 : SNo (CSNo_Re z)
Hypothesis H11 : SNo (CSNo_Im x)
Theorem. (Conj_mul_CSNo_distrL__2__0)
SNo (CSNo_Im y)mul_CSNo x (add_CSNo y z) = add_CSNo (mul_CSNo x y) (mul_CSNo x z)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_CSNo_distrL__2__0
Beginning of Section Conj_CSNo_relative_recip__5__2
Variable x : set
Variable y : set
Hypothesis H0 : CSNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (CSNo_Re x)
Hypothesis H4 : SNo (CSNo_Im x)
Hypothesis H5 : SNo (y * CSNo_Re x)
Hypothesis H6 : CSNo (y * CSNo_Re x)
Hypothesis H7 : SNo (y * CSNo_Im x)
Hypothesis H8 : CSNo (y * CSNo_Im x)
Theorem. (Conj_CSNo_relative_recip__5__2)
CSNo (mul_CSNo Complex_i (y * CSNo_Im x))mul_CSNo x (add_CSNo (y * CSNo_Re x) (minus_CSNo (mul_CSNo Complex_i (y * CSNo_Im x)))) = ordsucc Empty
Proof:
The rest of the proof is missing.

End of Section Conj_CSNo_relative_recip__5__2
Beginning of Section Conj_nonzero_complex_recip_ex__2__4
Variable x : set
Hypothesis H0 : x complex
Hypothesis H1 : xEmpty
Hypothesis H2 : CSNo_Re x real
Hypothesis H3 : CSNo_Im x real
Hypothesis H5 : SNo (CSNo_Im x * CSNo_Im x)
Hypothesis H6 : CSNo_Re x * CSNo_Re x + CSNo_Im x * CSNo_Im x real
Theorem. (Conj_nonzero_complex_recip_ex__2__4)
SNo (CSNo_Re x * CSNo_Re x + CSNo_Im x * CSNo_Im x)(∃y : set, y complexmul_CSNo x y = ordsucc Empty)
Proof:
The rest of the proof is missing.

End of Section Conj_nonzero_complex_recip_ex__2__4