Beginning of Section Conj_mul_SNo_assoc_lem2__104__20
Variable g : (set → (set → set ) )
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → SNo (g v x2 ) )
Hypothesis H1 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g v (x2 + y2 ) = g v x2 + g v y2 )
Hypothesis H2 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g (v + x2 ) y2 = g v y2 + g x2 y2 )
Hypothesis H3 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoL (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoL x2 → (y2 + g z2 w2 ) ≤ g z2 x2 + g v w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoR x2 → (y2 + g z2 w2 ) ≤ g z2 x2 + g v w2 → P ) ) → P ) ) )
Hypothesis H4 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoR (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoR x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoL x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → P ) ) )
Hypothesis H5 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2 ) < g v x2 + g y2 z2 )
Hypothesis H6 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2 ) ≤ g v x2 + g y2 z2 )
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → g v (g y z ) = g (g v y ) z )
Hypothesis H11 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → g x (g v z ) = g (g x v ) z )
Hypothesis H12 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → g x (g y v ) = g (g x y ) v )
Hypothesis H13 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → g v (g x2 z ) = g (g v x2 ) z ) )
Hypothesis H14 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g v (g y x2 ) = g (g v y ) x2 ) )
Hypothesis H15 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g x (g v x2 ) = g (g x v ) x2 ) )
Hypothesis H16 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → g v (g x2 y2 ) = g (g v x2 ) y2 ) ) )
Hypothesis H17 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → P ) )
Hypothesis H19 : SNo (g x y )
Hypothesis H21 : SNo (g (g x y ) z )
Theorem. (
Conj_mul_SNo_assoc_lem2__104__20 )
(∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , SNo x2 → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → u = g v (g y z ) + g x x2 + - (g v x2 ) → (g x (g y2 z + g y z2 ) + g v (x2 + g y2 z2 ) ) ≤ g v (g y2 z + g y z2 ) + g x (x2 + g y2 z2 ) → (g (g x y + g v y2 ) z + g (g v y + g x y2 ) z2 ) < g (g v y + g x y2 ) z + g (g x y + g v y2 ) z2 → g (g x y ) z < u ) ) ) ) → g (g x y ) z < u
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem2__104__20
Beginning of Section Conj_mul_SNo_assoc_lem2__105__3
Variable g : (set → (set → set ) )
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → SNo (g v x2 ) )
Hypothesis H1 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g v (x2 + y2 ) = g v x2 + g v y2 )
Hypothesis H2 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g (v + x2 ) y2 = g v y2 + g x2 y2 )
Hypothesis H4 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoR (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoR x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoL x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → P ) ) )
Hypothesis H5 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2 ) < g v x2 + g y2 z2 )
Hypothesis H6 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2 ) ≤ g v x2 + g y2 z2 )
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → g v (g y z ) = g (g v y ) z )
Hypothesis H11 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → g x (g v z ) = g (g x v ) z )
Hypothesis H12 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → g x (g y v ) = g (g x y ) v )
Hypothesis H13 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → g v (g x2 z ) = g (g v x2 ) z ) )
Hypothesis H14 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g v (g y x2 ) = g (g v y ) x2 ) )
Hypothesis H15 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g x (g v x2 ) = g (g x v ) x2 ) )
Hypothesis H16 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → g v (g x2 y2 ) = g (g v x2 ) y2 ) ) )
Hypothesis H17 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → P ) )
Hypothesis H19 : SNo (g x y )
Hypothesis H20 : SNo (g y z )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem2__105__3
Beginning of Section Conj_mul_SNo_assoc_lem2__105__5
Variable g : (set → (set → set ) )
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → SNo (g v x2 ) )
Hypothesis H1 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g v (x2 + y2 ) = g v x2 + g v y2 )
Hypothesis H2 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g (v + x2 ) y2 = g v y2 + g x2 y2 )
Hypothesis H3 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoL (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoL x2 → (y2 + g z2 w2 ) ≤ g z2 x2 + g v w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoR x2 → (y2 + g z2 w2 ) ≤ g z2 x2 + g v w2 → P ) ) → P ) ) )
Hypothesis H4 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoR (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoR x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoL x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → P ) ) )
Hypothesis H6 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2 ) ≤ g v x2 + g y2 z2 )
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → g v (g y z ) = g (g v y ) z )
Hypothesis H11 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → g x (g v z ) = g (g x v ) z )
Hypothesis H12 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → g x (g y v ) = g (g x y ) v )
Hypothesis H13 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → g v (g x2 z ) = g (g v x2 ) z ) )
Hypothesis H14 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g v (g y x2 ) = g (g v y ) x2 ) )
Hypothesis H15 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g x (g v x2 ) = g (g x v ) x2 ) )
Hypothesis H16 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → g v (g x2 y2 ) = g (g v x2 ) y2 ) ) )
Hypothesis H17 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → P ) )
Hypothesis H19 : SNo (g x y )
Hypothesis H20 : SNo (g y z )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem2__105__5
Beginning of Section Conj_mul_SNo_assoc_lem2__105__8
Variable g : (set → (set → set ) )
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → SNo (g v x2 ) )
Hypothesis H1 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g v (x2 + y2 ) = g v x2 + g v y2 )
Hypothesis H2 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g (v + x2 ) y2 = g v y2 + g x2 y2 )
Hypothesis H3 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoL (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoL x2 → (y2 + g z2 w2 ) ≤ g z2 x2 + g v w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoR x2 → (y2 + g z2 w2 ) ≤ g z2 x2 + g v w2 → P ) ) → P ) ) )
Hypothesis H4 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoR (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoR x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoL x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → P ) ) )
Hypothesis H5 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2 ) < g v x2 + g y2 z2 )
Hypothesis H6 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2 ) ≤ g v x2 + g y2 z2 )
Hypothesis H7 : SNo x
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → g v (g y z ) = g (g v y ) z )
Hypothesis H11 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → g x (g v z ) = g (g x v ) z )
Hypothesis H12 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → g x (g y v ) = g (g x y ) v )
Hypothesis H13 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → g v (g x2 z ) = g (g v x2 ) z ) )
Hypothesis H14 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g v (g y x2 ) = g (g v y ) x2 ) )
Hypothesis H15 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g x (g v x2 ) = g (g x v ) x2 ) )
Hypothesis H16 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → g v (g x2 y2 ) = g (g v x2 ) y2 ) ) )
Hypothesis H17 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → P ) )
Hypothesis H19 : SNo (g x y )
Hypothesis H20 : SNo (g y z )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem2__105__8
Beginning of Section Conj_mul_SNo_assoc_lem2__106__8
Variable g : (set → (set → set ) )
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → SNo (g v x2 ) )
Hypothesis H1 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g v (x2 + y2 ) = g v x2 + g v y2 )
Hypothesis H2 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g (v + x2 ) y2 = g v y2 + g x2 y2 )
Hypothesis H3 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoL (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoL x2 → (y2 + g z2 w2 ) ≤ g z2 x2 + g v w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoR x2 → (y2 + g z2 w2 ) ≤ g z2 x2 + g v w2 → P ) ) → P ) ) )
Hypothesis H4 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoR (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoR x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoL x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → P ) ) )
Hypothesis H5 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2 ) < g v x2 + g y2 z2 )
Hypothesis H6 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2 ) ≤ g v x2 + g y2 z2 )
Hypothesis H7 : SNo x
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → g v (g y z ) = g (g v y ) z )
Hypothesis H11 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → g x (g v z ) = g (g x v ) z )
Hypothesis H12 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → g x (g y v ) = g (g x y ) v )
Hypothesis H13 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → g v (g x2 z ) = g (g v x2 ) z ) )
Hypothesis H14 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g v (g y x2 ) = g (g v y ) x2 ) )
Hypothesis H15 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g x (g v x2 ) = g (g x v ) x2 ) )
Hypothesis H16 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → g v (g x2 y2 ) = g (g v x2 ) y2 ) ) )
Hypothesis H17 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → P ) )
Hypothesis H19 : SNo (g x y )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem2__106__8
Beginning of Section Conj_mul_SNo_assoc_lem2__107__3
Variable g : (set → (set → set ) )
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → SNo (g v x2 ) )
Hypothesis H1 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g v (x2 + y2 ) = g v x2 + g v y2 )
Hypothesis H2 : (∀v : set , ∀x2 : set , ∀y2 : set , SNo v → SNo x2 → SNo y2 → g (v + x2 ) y2 = g v y2 + g x2 y2 )
Hypothesis H4 : (∀v : set , ∀x2 : set , SNo v → SNo x2 → (∀y2 : set , y2 ∈ SNoR (g v x2 ) → (∀P : prop , (∀z2 : set , z2 ∈ SNoL v → (∀w2 : set , w2 ∈ SNoR x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → (∀z2 : set , z2 ∈ SNoR v → (∀w2 : set , w2 ∈ SNoL x2 → (g z2 x2 + g v w2 ) ≤ y2 + g z2 w2 → P ) ) → P ) ) )
Hypothesis H5 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2 ) < g v x2 + g y2 z2 )
Hypothesis H6 : (∀v : set , ∀x2 : set , ∀y2 : set , ∀z2 : set , SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2 ) ≤ g v x2 + g y2 z2 )
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → g v (g y z ) = g (g v y ) z )
Hypothesis H11 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → g x (g v z ) = g (g x v ) z )
Hypothesis H12 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → g x (g y v ) = g (g x y ) v )
Hypothesis H13 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → g v (g x2 z ) = g (g v x2 ) z ) )
Hypothesis H14 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g v (g y x2 ) = g (g v y ) x2 ) )
Hypothesis H15 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → g x (g v x2 ) = g (g x v ) x2 ) )
Hypothesis H16 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → g v (g x2 y2 ) = g (g v x2 ) y2 ) ) )
Hypothesis H17 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL (g y z ) → v = g x2 (g y z ) + g x y2 + - (g x2 y2 ) → P ) ) → P ) )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem2__107__3
Beginning of Section Conj_mul_SNo_assoc__1__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Hypothesis H20 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) )
Hypothesis H21 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 )
Hypothesis H22 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 ≤ y2 → u2 ≤ z2 → (z2 * w2 + u2 * y2 ) ≤ z2 * y2 + u2 * w2 )
Hypothesis H23 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (y2 * y ) * z = y2 * y * z )
Hypothesis H24 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (x * y2 ) * z = x * y2 * z )
Hypothesis H25 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x * y ) * y2 = x * y * y2 )
Hypothesis H26 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (z2 * y2 ) * z = z2 * y2 * z ) )
Hypothesis H27 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (z2 * y ) * y2 = z2 * y * y2 ) )
Hypothesis H28 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (x * z2 ) * y2 = x * z2 * y2 ) )
Theorem. (
Conj_mul_SNo_assoc__1__15 )
(∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev x ) → (w2 * z2 ) * y2 = w2 * z2 * y2 ) ) ) → SNoCut w u = SNoCut v x2
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__1__15
Beginning of Section Conj_mul_SNo_assoc__1__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Hypothesis H20 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) )
Hypothesis H21 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 )
Hypothesis H22 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 ≤ y2 → u2 ≤ z2 → (z2 * w2 + u2 * y2 ) ≤ z2 * y2 + u2 * w2 )
Hypothesis H23 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (y2 * y ) * z = y2 * y * z )
Hypothesis H24 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (x * y2 ) * z = x * y2 * z )
Hypothesis H26 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (z2 * y2 ) * z = z2 * y2 * z ) )
Hypothesis H27 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (z2 * y ) * y2 = z2 * y * y2 ) )
Hypothesis H28 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (x * z2 ) * y2 = x * z2 * y2 ) )
Theorem. (
Conj_mul_SNo_assoc__1__25 )
(∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev x ) → (w2 * z2 ) * y2 = w2 * z2 * y2 ) ) ) → SNoCut w u = SNoCut v x2
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__1__25
Beginning of Section Conj_mul_SNo_assoc__3__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Hypothesis H20 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) )
Hypothesis H21 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 )
Hypothesis H22 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 ≤ y2 → u2 ≤ z2 → (z2 * w2 + u2 * y2 ) ≤ z2 * y2 + u2 * w2 )
Hypothesis H23 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (y2 * y ) * z = y2 * y * z )
Hypothesis H24 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (x * y2 ) * z = x * y2 * z )
Hypothesis H25 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x * y ) * y2 = x * y * y2 )
Hypothesis H26 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (z2 * y2 ) * z = z2 * y2 * z ) )
Theorem. (
Conj_mul_SNo_assoc__3__5 )
(∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (z2 * y ) * y2 = z2 * y * y2 ) ) → SNoCut w u = SNoCut v x2
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__3__5
Beginning of Section Conj_mul_SNo_assoc__5__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Hypothesis H20 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) )
Hypothesis H21 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 )
Hypothesis H22 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 ≤ y2 → u2 ≤ z2 → (z2 * w2 + u2 * y2 ) ≤ z2 * y2 + u2 * w2 )
Hypothesis H23 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (y2 * y ) * z = y2 * y * z )
Hypothesis H24 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (x * y2 ) * z = x * y2 * z )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__5__18
Beginning of Section Conj_mul_SNo_assoc__5__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H20 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) )
Hypothesis H21 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 )
Hypothesis H22 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 ≤ y2 → u2 ≤ z2 → (z2 * w2 + u2 * y2 ) ≤ z2 * y2 + u2 * w2 )
Hypothesis H23 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (y2 * y ) * z = y2 * y * z )
Hypothesis H24 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (x * y2 ) * z = x * y2 * z )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__5__19
Beginning of Section Conj_mul_SNo_assoc__5__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Hypothesis H20 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) )
Hypothesis H21 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 )
Hypothesis H22 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 ≤ y2 → u2 ≤ z2 → (z2 * w2 + u2 * y2 ) ≤ z2 * y2 + u2 * w2 )
Hypothesis H24 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (x * y2 ) * z = x * y2 * z )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__5__23
Beginning of Section Conj_mul_SNo_assoc__6__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Hypothesis H21 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 )
Hypothesis H22 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 ≤ y2 → u2 ≤ z2 → (z2 * w2 + u2 * y2 ) ≤ z2 * y2 + u2 * w2 )
Hypothesis H23 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (y2 * y ) * z = y2 * y * z )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__6__20
Beginning of Section Conj_mul_SNo_assoc__7__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Hypothesis H20 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) )
Hypothesis H21 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 )
Hypothesis H22 : (∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 ≤ y2 → u2 ≤ z2 → (z2 * w2 + u2 * y2 ) ≤ z2 * y2 + u2 * w2 )
Theorem. (
Conj_mul_SNo_assoc__7__6 )
(∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (y2 * y ) * z = y2 * y * z ) → SNoCut w u = SNoCut v x2
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__7__6
Beginning of Section Conj_mul_SNo_assoc__9__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Hypothesis H20 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) )
Theorem. (
Conj_mul_SNo_assoc__9__0 )
(∀y2 : set , ∀z2 : set , ∀w2 : set , ∀u2 : set , SNo y2 → SNo z2 → SNo w2 → SNo u2 → w2 < y2 → u2 < z2 → (z2 * w2 + u2 * y2 ) < z2 * y2 + u2 * w2 ) → SNoCut w u = SNoCut v x2
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__9__0
Beginning of Section Conj_mul_SNo_assoc__10__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : SNoCutP w u
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Hypothesis H19 : (∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) )
Theorem. (
Conj_mul_SNo_assoc__10__13 )
(∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoR (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoR z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoL z2 → (z2 * u2 + v2 * y2 ) ≤ w2 + v2 * u2 → P ) ) → P ) ) ) → SNoCut w u = SNoCut v x2
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__10__13
Beginning of Section Conj_mul_SNo_assoc__11__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → y2 * y * z = (y2 * y ) * z )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x * y2 * z = (x * y2 ) * z )
Hypothesis H5 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → x * y * y2 = (x * y ) * y2 )
Hypothesis H6 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → y2 * z2 * z = (y2 * z2 ) * z ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → y2 * y * z2 = (y2 * y ) * z2 ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → x * y2 * z2 = (x * y2 ) * z2 ) )
Hypothesis H9 : (∀y2 : set , y2 ∈ SNoS_ (SNoLev x ) → (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → y2 * z2 * w2 = (y2 * z2 ) * w2 ) ) )
Hypothesis H10 : SNo (x * y )
Hypothesis H12 : (∀y2 : set , y2 ∈ w → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H13 : (∀y2 : set , y2 ∈ u → (∀P : prop , (∀z2 : set , z2 ∈ SNoL x → (∀w2 : set , w2 ∈ SNoR (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR x → (∀w2 : set , w2 ∈ SNoL (y * z ) → y2 = z2 * y * z + x * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H14 : x * y * z = SNoCut w u
Hypothesis H15 : SNoCutP v x2
Hypothesis H16 : (∀y2 : set , y2 ∈ v → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H17 : (∀y2 : set , y2 ∈ x2 → (∀P : prop , (∀z2 : set , z2 ∈ SNoL (x * y ) → (∀w2 : set , w2 ∈ SNoR z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → (∀z2 : set , z2 ∈ SNoR (x * y ) → (∀w2 : set , w2 ∈ SNoL z → y2 = z2 * z + (x * y ) * w2 + - (z2 * w2 ) → P ) ) → P ) )
Hypothesis H18 : (x * y ) * z = SNoCut v x2
Theorem. (
Conj_mul_SNo_assoc__11__11 )
(∀y2 : set , ∀z2 : set , SNo y2 → SNo z2 → (∀w2 : set , w2 ∈ SNoL (z2 * y2 ) → (∀P : prop , (∀u2 : set , u2 ∈ SNoL y2 → (∀v2 : set , v2 ∈ SNoL z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → (∀u2 : set , u2 ∈ SNoR y2 → (∀v2 : set , v2 ∈ SNoR z2 → (w2 + v2 * u2 ) ≤ z2 * u2 + v2 * y2 → P ) ) → P ) ) ) → SNoCut w u = SNoCut v x2
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc__11__11
Beginning of Section Conj_nonneg_mul_SNo_Le__1__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : Empty ≤ x
Hypothesis H3 : SNo z
Hypothesis H4 : y ≤ z
Hypothesis H5 : Empty * z + x * y = x * y
Proof: Load proof Proof not loaded.
End of Section Conj_nonneg_mul_SNo_Le__1__2
Beginning of Section Conj_neg_mul_SNo_Lt__1__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : x < Empty
Hypothesis H2 : SNo y
Hypothesis H4 : z < y
Hypothesis H5 : x * y + Empty * z = x * y
Proof: Load proof Proof not loaded.
End of Section Conj_neg_mul_SNo_Lt__1__3
Beginning of Section Conj_neg_mul_SNo_Lt__2__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : x < Empty
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < y
Proof: Load proof Proof not loaded.
End of Section Conj_neg_mul_SNo_Lt__2__0
Beginning of Section Conj_SNo_foil_mm__1__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo (- y )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_foil_mm__1__1
Beginning of Section Conj_SNo_foil_mm__2__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_foil_mm__2__0
Beginning of Section Conj_eps_ordsucc_half_add__7__0
Variable x : set
Variable y : set
Hypothesis H2 : SNo (eps_ (ordsucc x ) )
Hypothesis H3 : SNo y
Hypothesis H4 : SNoLev y ∈ ordsucc (ordsucc x )
Hypothesis H5 : y < eps_ (ordsucc x )
Proof: Load proof Proof not loaded.
End of Section Conj_eps_ordsucc_half_add__7__0
Beginning of Section Conj_eps_ordsucc_half_add__7__1
Variable x : set
Variable y : set
Hypothesis H0 : nat_p x
Hypothesis H2 : SNo (eps_ (ordsucc x ) )
Hypothesis H3 : SNo y
Hypothesis H4 : SNoLev y ∈ ordsucc (ordsucc x )
Hypothesis H5 : y < eps_ (ordsucc x )
Proof: Load proof Proof not loaded.
End of Section Conj_eps_ordsucc_half_add__7__1
Beginning of Section Conj_eps_ordsucc_half_add__11__1
Variable x : set
Hypothesis H0 : nat_p x
Proof: Load proof Proof not loaded.
End of Section Conj_eps_ordsucc_half_add__11__1
Beginning of Section Conj_double_eps_1__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : x + x = y + z
Proof: Load proof Proof not loaded.
End of Section Conj_double_eps_1__1__1
Beginning of Section Conj_exp_SNo_1_bd__1__1
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H2 : nat_p y
Hypothesis H3 : ordsucc Empty ≤ exp_SNo_nat x y
Proof: Load proof Proof not loaded.
End of Section Conj_exp_SNo_1_bd__1__1
Beginning of Section Conj_mul_SNo_eps_eps_add_SNo__5__0
Variable x : set
Variable y : set
Hypothesis H2 : x + y ∈ ω
Hypothesis H3 : nat_p (x + y )
Hypothesis H4 : SNo (eps_ x )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eps_eps_add_SNo__5__0
Beginning of Section Conj_mul_SNo_eps_eps_add_SNo__8__0
Variable x : set
Variable y : set
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eps_eps_add_SNo__8__0
Beginning of Section Conj_SNoS_omega_Lev_equip__9__0
Variable x : set
Variable f : (set → set )
Variable f2 : (set → set )
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , x ∈ w → f2 w = f (binintersect w (SNoElts_ x ) ) )
Hypothesis H2 : f z = y
Hypothesis H3 : SNoLev z = x
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev (SNo_extend1 z ) = ordsucc x
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__9__0
Beginning of Section Conj_SNoS_omega_Lev_equip__9__1
Variable x : set
Variable f : (set → set )
Variable f2 : (set → set )
Variable y : set
Variable z : set
Hypothesis H0 : nat_p x
Hypothesis H2 : f z = y
Hypothesis H3 : SNoLev z = x
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev (SNo_extend1 z ) = ordsucc x
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__9__1
Beginning of Section Conj_SNoS_omega_Lev_equip__13__7
Variable x : set
Variable f : (set → set )
Variable f2 : (set → set )
Variable y : set
Hypothesis H0 : nat_p x
Hypothesis H1 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H2 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H3 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H4 : (∀z : set , z ∈ exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (∃w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ SNoLev u = x ) ∧ f w = z ) )
Hypothesis H5 : (∀z : set , x ∈ z → f2 z = f (binintersect z (SNoElts_ x ) ) )
Hypothesis H6 : (∀z : set , nIn x z → f2 z = exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + f (binintersect z (SNoElts_ x ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__13__7
Beginning of Section Conj_SNoS_omega_Lev_equip__16__1
Variable x : set
Variable f : (set → set )
Variable f2 : (set → set )
Variable y : set
Variable z : set
Hypothesis H0 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H2 : (∀w : set , x ∈ w → f2 w = f (binintersect w (SNoElts_ x ) ) )
Hypothesis H3 : (∀w : set , nIn x w → f2 w = exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + f (binintersect w (SNoElts_ x ) ) )
Hypothesis H4 : SNo y
Hypothesis H5 : SNoLev y = ordsucc x
Hypothesis H6 : binintersect y (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x )
Hypothesis H7 : nat_p (f (binintersect y (SNoElts_ x ) ) )
Hypothesis H8 : SNo (f (binintersect y (SNoElts_ x ) ) )
Hypothesis H9 : f (binintersect y (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H10 : SNo z
Hypothesis H11 : SNoLev z = ordsucc x
Hypothesis H12 : binintersect z (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x )
Hypothesis H13 : nat_p (f (binintersect z (SNoElts_ x ) ) )
Hypothesis H14 : SNo (f (binintersect z (SNoElts_ x ) ) )
Hypothesis H15 : f (binintersect z (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H16 : x ∈ SNoLev y
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__16__1
Beginning of Section Conj_SNoS_omega_Lev_equip__16__4
Variable x : set
Variable f : (set → set )
Variable f2 : (set → set )
Variable y : set
Variable z : set
Hypothesis H0 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H1 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ SNoLev u = x ) → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ SNoLev v = x ) → f w = f u → w = u ) )
Hypothesis H2 : (∀w : set , x ∈ w → f2 w = f (binintersect w (SNoElts_ x ) ) )
Hypothesis H3 : (∀w : set , nIn x w → f2 w = exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + f (binintersect w (SNoElts_ x ) ) )
Hypothesis H5 : SNoLev y = ordsucc x
Hypothesis H6 : binintersect y (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x )
Hypothesis H7 : nat_p (f (binintersect y (SNoElts_ x ) ) )
Hypothesis H8 : SNo (f (binintersect y (SNoElts_ x ) ) )
Hypothesis H9 : f (binintersect y (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H10 : SNo z
Hypothesis H11 : SNoLev z = ordsucc x
Hypothesis H12 : binintersect z (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x )
Hypothesis H13 : nat_p (f (binintersect z (SNoElts_ x ) ) )
Hypothesis H14 : SNo (f (binintersect z (SNoElts_ x ) ) )
Hypothesis H15 : f (binintersect z (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H16 : x ∈ SNoLev y
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__16__4
Beginning of Section Conj_SNoS_omega_Lev_equip__16__6
Variable x : set
Variable f : (set → set )
Variable f2 : (set → set )
Variable y : set
Variable z : set
Hypothesis H0 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H1 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ SNoLev u = x ) → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ SNoLev v = x ) → f w = f u → w = u ) )
Hypothesis H2 : (∀w : set , x ∈ w → f2 w = f (binintersect w (SNoElts_ x ) ) )
Hypothesis H3 : (∀w : set , nIn x w → f2 w = exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + f (binintersect w (SNoElts_ x ) ) )
Hypothesis H4 : SNo y
Hypothesis H5 : SNoLev y = ordsucc x
Hypothesis H7 : nat_p (f (binintersect y (SNoElts_ x ) ) )
Hypothesis H8 : SNo (f (binintersect y (SNoElts_ x ) ) )
Hypothesis H9 : f (binintersect y (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H10 : SNo z
Hypothesis H11 : SNoLev z = ordsucc x
Hypothesis H12 : binintersect z (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x )
Hypothesis H13 : nat_p (f (binintersect z (SNoElts_ x ) ) )
Hypothesis H14 : SNo (f (binintersect z (SNoElts_ x ) ) )
Hypothesis H15 : f (binintersect z (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H16 : x ∈ SNoLev y
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__16__6
Beginning of Section Conj_SNoS_omega_Lev_equip__17__14
Variable x : set
Variable f : (set → set )
Variable f2 : (set → set )
Variable y : set
Variable z : set
Hypothesis H0 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H1 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ SNoLev u = x ) → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ SNoLev v = x ) → f w = f u → w = u ) )
Hypothesis H2 : (∀w : set , x ∈ w → f2 w = f (binintersect w (SNoElts_ x ) ) )
Hypothesis H3 : (∀w : set , nIn x w → f2 w = exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + f (binintersect w (SNoElts_ x ) ) )
Hypothesis H4 : SNo y
Hypothesis H5 : SNoLev y = ordsucc x
Hypothesis H6 : binintersect y (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x )
Hypothesis H7 : nat_p (f (binintersect y (SNoElts_ x ) ) )
Hypothesis H8 : SNo (f (binintersect y (SNoElts_ x ) ) )
Hypothesis H9 : f (binintersect y (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H10 : SNo z
Hypothesis H11 : SNoLev z = ordsucc x
Hypothesis H12 : binintersect z (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x )
Hypothesis H13 : nat_p (f (binintersect z (SNoElts_ x ) ) )
Hypothesis H15 : f (binintersect z (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__17__14
Beginning of Section Conj_SNoS_omega_Lev_equip__18__0
Variable x : set
Variable f : (set → set )
Hypothesis H1 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H2 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H3 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H4 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H5 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H6 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H7 : (∀y : set , SNo y → y < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + y ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H8 : exp_SNo_nat (ordsucc (ordsucc Empty ) ) x < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H9 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = x ) → (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x ) → f y = f z → y = z ) )
Hypothesis H10 : (∀y : set , y ∈ exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (∃z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x ) ∧ f z = y ) )
Hypothesis H11 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = ordsucc x ) → (∀P : prop , (SNo y → SNoLev y = ordsucc x → binintersect y (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = x ) → SNo (binintersect y (SNoElts_ x ) ) → SNoLev (binintersect y (SNoElts_ x ) ) = x → P ) → P ) )
Hypothesis H12 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = ordsucc x ) → (∀P : prop , (nat_p (f (binintersect y (SNoElts_ x ) ) ) → ordinal (f (binintersect y (SNoElts_ x ) ) ) → SNo (f (binintersect y (SNoElts_ x ) ) ) → f (binintersect y (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → P ) → P ) )
Theorem. (
Conj_SNoS_omega_Lev_equip__18__0 )
(∃f2 : set → set , (∀y : set , x ∈ y → f2 y = f (binintersect y (SNoElts_ x ) ) ) ∧ (∀y : set , nIn x y → f2 y = exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + f (binintersect y (SNoElts_ x ) ) ) ) → (∃f2 : set → set , bij (Sep (SNoS_ ω ) (λy : set ⇒ SNoLev y = ordsucc x ) ) (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x ) f2 )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__18__0
Beginning of Section Conj_SNoS_omega_Lev_equip__18__3
Variable x : set
Variable f : (set → set )
Hypothesis H0 : nat_p x
Hypothesis H1 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H2 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H4 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H5 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H6 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H7 : (∀y : set , SNo y → y < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + y ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H8 : exp_SNo_nat (ordsucc (ordsucc Empty ) ) x < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H9 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = x ) → (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x ) → f y = f z → y = z ) )
Hypothesis H10 : (∀y : set , y ∈ exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (∃z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x ) ∧ f z = y ) )
Hypothesis H11 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = ordsucc x ) → (∀P : prop , (SNo y → SNoLev y = ordsucc x → binintersect y (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = x ) → SNo (binintersect y (SNoElts_ x ) ) → SNoLev (binintersect y (SNoElts_ x ) ) = x → P ) → P ) )
Hypothesis H12 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = ordsucc x ) → (∀P : prop , (nat_p (f (binintersect y (SNoElts_ x ) ) ) → ordinal (f (binintersect y (SNoElts_ x ) ) ) → SNo (f (binintersect y (SNoElts_ x ) ) ) → f (binintersect y (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → P ) → P ) )
Theorem. (
Conj_SNoS_omega_Lev_equip__18__3 )
(∃f2 : set → set , (∀y : set , x ∈ y → f2 y = f (binintersect y (SNoElts_ x ) ) ) ∧ (∀y : set , nIn x y → f2 y = exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + f (binintersect y (SNoElts_ x ) ) ) ) → (∃f2 : set → set , bij (Sep (SNoS_ ω ) (λy : set ⇒ SNoLev y = ordsucc x ) ) (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x ) f2 )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__18__3
Beginning of Section Conj_SNoS_omega_Lev_equip__18__6
Variable x : set
Variable f : (set → set )
Hypothesis H0 : nat_p x
Hypothesis H1 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H2 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H3 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H4 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H5 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H7 : (∀y : set , SNo y → y < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + y ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H8 : exp_SNo_nat (ordsucc (ordsucc Empty ) ) x < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x
Hypothesis H9 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = x ) → (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x ) → f y = f z → y = z ) )
Hypothesis H10 : (∀y : set , y ∈ exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (∃z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ SNoLev w = x ) ∧ f z = y ) )
Hypothesis H11 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = ordsucc x ) → (∀P : prop , (SNo y → SNoLev y = ordsucc x → binintersect y (SNoElts_ x ) ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = x ) → SNo (binintersect y (SNoElts_ x ) ) → SNoLev (binintersect y (SNoElts_ x ) ) = x → P ) → P ) )
Hypothesis H12 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ SNoLev z = ordsucc x ) → (∀P : prop , (nat_p (f (binintersect y (SNoElts_ x ) ) ) → ordinal (f (binintersect y (SNoElts_ x ) ) ) → SNo (f (binintersect y (SNoElts_ x ) ) ) → f (binintersect y (SNoElts_ x ) ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → P ) → P ) )
Theorem. (
Conj_SNoS_omega_Lev_equip__18__6 )
(∃f2 : set → set , (∀y : set , x ∈ y → f2 y = f (binintersect y (SNoElts_ x ) ) ) ∧ (∀y : set , nIn x y → f2 y = exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + f (binintersect y (SNoElts_ x ) ) ) ) → (∃f2 : set → set , bij (Sep (SNoS_ ω ) (λy : set ⇒ SNoLev y = ordsucc x ) ) (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x ) f2 )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__18__6
Beginning of Section Conj_SNoS_omega_Lev_equip__22__1
Variable x : set
Hypothesis H0 : nat_p x
Hypothesis H2 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H3 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H4 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H5 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H6 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H7 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Theorem. (
Conj_SNoS_omega_Lev_equip__22__1 )
(∀y : set , SNo y → y < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + y ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x ) → equip (Sep (SNoS_ ω ) (λy : set ⇒ SNoLev y = ordsucc x ) ) (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__22__1
Beginning of Section Conj_SNoS_omega_Lev_equip__22__4
Variable x : set
Hypothesis H0 : nat_p x
Hypothesis H1 : equip (Sep (SNoS_ ω ) (λy : set ⇒ SNoLev y = x ) ) (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H2 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H3 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H5 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H6 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H7 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Theorem. (
Conj_SNoS_omega_Lev_equip__22__4 )
(∀y : set , SNo y → y < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x → (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + y ) < exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x ) → equip (Sep (SNoS_ ω ) (λy : set ⇒ SNoLev y = ordsucc x ) ) (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__22__4
Beginning of Section Conj_SNoS_omega_Lev_equip__24__5
Variable x : set
Hypothesis H0 : nat_p x
Hypothesis H1 : equip (Sep (SNoS_ ω ) (λy : set ⇒ SNoLev y = x ) ) (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H2 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H3 : ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Hypothesis H4 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Theorem. (
Conj_SNoS_omega_Lev_equip__24__5 )
ordinal (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x ) → equip (Sep (SNoS_ ω ) (λy : set ⇒ SNoLev y = ordsucc x ) ) (exp_SNo_nat (ordsucc (ordsucc Empty ) ) x + exp_SNo_nat (ordsucc (ordsucc Empty ) ) x )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_Lev_equip__24__5
Beginning of Section Conj_int_add_SNo__1__1
Variable x : set
Variable y : set
Hypothesis H2 : SNo x
Proof: Load proof Proof not loaded.
End of Section Conj_int_add_SNo__1__1
Beginning of Section Conj_int_mul_SNo__3__2
Variable x : set
Variable y : set
Hypothesis H1 : SNo x
Proof: Load proof Proof not loaded.
End of Section Conj_int_mul_SNo__3__2
Beginning of Section Conj_int_mul_SNo__10__2
Variable x : set
Variable y : set
Hypothesis H1 : SNo x
Hypothesis H3 : ordinal y
Proof: Load proof Proof not loaded.
End of Section Conj_int_mul_SNo__10__2
Beginning of Section Conj_SNo_triangle2__2__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo (- y )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_triangle2__2__0
Beginning of Section Conj_double_SNo_max_1__1__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀w : set , w ∈ SNoL x → SNo w → w ≤ y )
Hypothesis H3 : SNoLev y ∈ SNoLev x
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z ∈ SNoLev y
Hypothesis H7 : z < x
Proof: Load proof Proof not loaded.
End of Section Conj_double_SNo_max_1__1__6
Beginning of Section Conj_double_SNo_max_1__2__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H3 : x < z
Hypothesis H4 : w ∈ SNoR z
Hypothesis H5 : (y + w ) < x + x
Hypothesis H6 : SNo w
Hypothesis H7 : SNoLev w ∈ SNoLev z
Hypothesis H8 : z < w
Proof: Load proof Proof not loaded.
End of Section Conj_double_SNo_max_1__2__2
Beginning of Section Conj_double_SNo_min_1__5__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H5 : (x + x ) < y + z
Hypothesis H6 : SNo (- x )
Hypothesis H7 : SNo (- y )
Hypothesis H8 : SNo (- z )
Hypothesis H9 : SNo (x + x )
Proof: Load proof Proof not loaded.
End of Section Conj_double_SNo_min_1__5__1
Beginning of Section Conj_double_SNo_min_1__5__5
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo_min_of (SNoR x ) y
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H6 : SNo (- x )
Hypothesis H7 : SNo (- y )
Hypothesis H8 : SNo (- z )
Hypothesis H9 : SNo (x + x )
Proof: Load proof Proof not loaded.
End of Section Conj_double_SNo_min_1__5__5
Beginning of Section Conj_double_SNo_min_1__5__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo_min_of (SNoR x ) y
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H5 : (x + x ) < y + z
Hypothesis H7 : SNo (- y )
Hypothesis H8 : SNo (- z )
Hypothesis H9 : SNo (x + x )
Proof: Load proof Proof not loaded.
End of Section Conj_double_SNo_min_1__5__6
Beginning of Section Conj_double_SNo_min_1__5__9
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo_min_of (SNoR x ) y
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H5 : (x + x ) < y + z
Hypothesis H6 : SNo (- x )
Hypothesis H7 : SNo (- y )
Hypothesis H8 : SNo (- z )
Proof: Load proof Proof not loaded.
End of Section Conj_double_SNo_min_1__5__9
Beginning of Section Conj_double_SNo_min_1__7__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : z < x
Hypothesis H5 : (x + x ) < y + z
Hypothesis H6 : SNo (- x )
Hypothesis H7 : SNo (- y )
Proof: Load proof Proof not loaded.
End of Section Conj_double_SNo_min_1__7__1
Beginning of Section Conj_finite_max_exists__3__1
Variable x : set
Variable y : set
Variable f : (set → set )
Hypothesis H0 : (∀z : set , (∀w : set , w ∈ z → SNo w ) → equip z (ordsucc x ) → (∃w : set , SNo_max_of z w ) )
Hypothesis H2 : (∀z : set , z ∈ ordsucc (ordsucc x ) → f z ∈ y )
Hypothesis H3 : (∀z : set , z ∈ ordsucc (ordsucc x ) → (∀w : set , w ∈ ordsucc (ordsucc x ) → f z = f w → z = w ) )
Hypothesis H4 : (∀z : set , z ∈ y → (∃w : set , w ∈ ordsucc (ordsucc x ) ∧ f w = z ) )
Hypothesis H5 : Subq (Repl (ordsucc x ) f ) y
Proof: Load proof Proof not loaded.
End of Section Conj_finite_max_exists__3__1
Beginning of Section Conj_SNoS_omega_SNoL_max_exists__1__0
Variable x : set
Hypothesis H1 : SNoL x ≠ Empty
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_SNoL_max_exists__1__0
Beginning of Section Conj_SNoS_omega_SNoR_min_exists__1__0
Variable x : set
Hypothesis H1 : SNoR x ≠ Empty
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_SNoR_min_exists__1__0
Beginning of Section Conj_minus_SNo_diadic_rational_p__3__0
Variable x : set
Variable y : set
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_diadic_rational_p__3__0
Beginning of Section Conj_mul_SNo_diadic_rational_p__1__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (eps_ z )
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : SNo w
Hypothesis H6 : SNo (eps_ u )
Hypothesis H8 : SNo v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_diadic_rational_p__1__7
Beginning of Section Conj_mul_SNo_diadic_rational_p__3__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo (eps_ z )
Hypothesis H3 : x = eps_ z * w
Hypothesis H4 : SNo w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_diadic_rational_p__3__2
Beginning of Section Conj_add_SNo_diadic_rational_p__1__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (eps_ z )
Hypothesis H3 : x = eps_ z * w
Hypothesis H5 : SNo (eps_ u )
Hypothesis H7 : y = eps_ u * v
Hypothesis H9 : exp_SNo_nat (ordsucc (ordsucc Empty ) ) u ∈ int
Hypothesis H10 : exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w ∈ int
Hypothesis H11 : exp_SNo_nat (ordsucc (ordsucc Empty ) ) z ∈ int
Theorem. (
Conj_add_SNo_diadic_rational_p__1__8 )
exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v ∈ int → exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w + exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v ∈ int ∧ x + y = eps_ (z + u ) * (exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w + exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_diadic_rational_p__1__8
Beginning of Section Conj_add_SNo_diadic_rational_p__1__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (eps_ z )
Hypothesis H3 : x = eps_ z * w
Hypothesis H5 : SNo (eps_ u )
Hypothesis H7 : y = eps_ u * v
Hypothesis H8 : SNo (eps_ u * v )
Hypothesis H9 : exp_SNo_nat (ordsucc (ordsucc Empty ) ) u ∈ int
Hypothesis H10 : exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w ∈ int
Theorem. (
Conj_add_SNo_diadic_rational_p__1__11 )
exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v ∈ int → exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w + exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v ∈ int ∧ x + y = eps_ (z + u ) * (exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w + exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_diadic_rational_p__1__11
Beginning of Section Conj_add_SNo_diadic_rational_p__4__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (eps_ z )
Hypothesis H3 : x = eps_ z * w
Hypothesis H5 : SNo (eps_ u )
Hypothesis H7 : y = eps_ u * v
Hypothesis H8 : SNo (eps_ u * v )
Theorem. (
Conj_add_SNo_diadic_rational_p__4__0 )
exp_SNo_nat (ordsucc (ordsucc Empty ) ) u ∈ int → exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w + exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v ∈ int ∧ x + y = eps_ (z + u ) * (exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w + exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_diadic_rational_p__4__0
Beginning of Section Conj_add_SNo_diadic_rational_p__4__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (eps_ z )
Hypothesis H3 : x = eps_ z * w
Hypothesis H5 : SNo (eps_ u )
Hypothesis H8 : SNo (eps_ u * v )
Theorem. (
Conj_add_SNo_diadic_rational_p__4__7 )
exp_SNo_nat (ordsucc (ordsucc Empty ) ) u ∈ int → exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w + exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v ∈ int ∧ x + y = eps_ (z + u ) * (exp_SNo_nat (ordsucc (ordsucc Empty ) ) u * w + exp_SNo_nat (ordsucc (ordsucc Empty ) ) z * v )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_diadic_rational_p__4__7
Beginning of Section Conj_add_SNo_diadic_rational_p__5__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (eps_ z )
Hypothesis H3 : x = eps_ z * w
Hypothesis H5 : SNo (eps_ u )
Hypothesis H7 : y = eps_ u * v
Hypothesis H8 : SNo v
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_diadic_rational_p__5__6
Beginning of Section Conj_add_SNo_diadic_rational_p__5__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (eps_ z )
Hypothesis H3 : x = eps_ z * w
Hypothesis H5 : SNo (eps_ u )
Hypothesis H8 : SNo v
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_diadic_rational_p__5__7
Beginning of Section Conj_add_SNo_diadic_rational_p__7__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H3 : x = eps_ z * w
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_diadic_rational_p__7__1
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__3__1
Variable x : set
Variable y : set
Hypothesis H0 : nat_p x
Hypothesis H2 : ¬ diadic_rational_p y
Hypothesis H3 : ordinal y
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_diadic_rational_p_lem__3__1
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__9__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀v : set , v ∈ x → (∀x2 : set , SNo x2 → SNoLev x2 = v → diadic_rational_p x2 ) )
Hypothesis H3 : SNoLev y = x
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H5 : SNoLev z ∈ SNoLev y
Hypothesis H6 : SNo w
Hypothesis H7 : diadic_rational_p w
Hypothesis H8 : w + u = y + y
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u ∈ SNoLev z
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_diadic_rational_p_lem__9__2
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__10__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀u : set , u ∈ x → (∀v : set , SNo v → SNoLev v = u → diadic_rational_p v ) )
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = x
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H5 : SNo_max_of (SNoL y ) z
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z ∈ SNoLev y
Hypothesis H8 : z < y
Hypothesis H9 : SNo_min_of (SNoR y ) w
Hypothesis H11 : SNoLev w ∈ SNoLev y
Hypothesis H12 : y < w
Hypothesis H13 : SNo (y + y )
Hypothesis H14 : SNo (z + w )
Hypothesis H15 : diadic_rational_p z
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_diadic_rational_p_lem__10__10
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__10__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀u : set , u ∈ x → (∀v : set , SNo v → SNoLev v = u → diadic_rational_p v ) )
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = x
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H5 : SNo_max_of (SNoL y ) z
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z ∈ SNoLev y
Hypothesis H8 : z < y
Hypothesis H9 : SNo_min_of (SNoR y ) w
Hypothesis H10 : SNo w
Hypothesis H11 : SNoLev w ∈ SNoLev y
Hypothesis H13 : SNo (y + y )
Hypothesis H14 : SNo (z + w )
Hypothesis H15 : diadic_rational_p z
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_diadic_rational_p_lem__10__12
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__11__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀u : set , u ∈ x → (∀v : set , SNo v → SNoLev v = u → diadic_rational_p v ) )
Hypothesis H2 : SNo y
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H5 : SNo_max_of (SNoL y ) z
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z ∈ SNoLev y
Hypothesis H8 : z < y
Hypothesis H9 : SNo_min_of (SNoR y ) w
Hypothesis H10 : SNo w
Hypothesis H11 : SNoLev w ∈ SNoLev y
Hypothesis H12 : y < w
Hypothesis H13 : SNo (y + y )
Hypothesis H14 : SNo (z + w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_diadic_rational_p_lem__11__3
Beginning of Section Conj_SNoS_omega_diadic_rational_p_lem__11__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H1 : (∀u : set , u ∈ x → (∀v : set , SNo v → SNoLev v = u → diadic_rational_p v ) )
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = x
Hypothesis H4 : ¬ diadic_rational_p y
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z ∈ SNoLev y
Hypothesis H8 : z < y
Hypothesis H9 : SNo_min_of (SNoR y ) w
Hypothesis H10 : SNo w
Hypothesis H11 : SNoLev w ∈ SNoLev y
Hypothesis H12 : y < w
Hypothesis H13 : SNo (y + y )
Hypothesis H14 : SNo (z + w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_diadic_rational_p_lem__11__5
Beginning of Section Conj_SNoS_ordsucc_omega_bdd_above__4__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Hypothesis H2 : x < y
Hypothesis H3 : SNoLev y ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_ordsucc_omega_bdd_above__4__0
Beginning of Section Conj_SNoS_ordsucc_omega_bdd_drat_intvl__3__0
Variable x : set
Variable y : set
Hypothesis H1 : nIn x (SNoS_ ω )
Hypothesis H2 : nat_p y
Hypothesis H3 : - y < x → x < y → (∃z : set , z ∈ SNoS_ ω ∧ (z < x ∧ x < z + ordsucc Empty ) )
Hypothesis H4 : - (ordsucc y ) < x
Hypothesis H5 : x < ordsucc y
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_ordsucc_omega_bdd_drat_intvl__3__0
Beginning of Section Conj_SNoS_ordsucc_omega_bdd_drat_intvl__5__2
Variable x : set
Hypothesis H0 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H1 : - ω < x
Hypothesis H3 : SNo x
Hypothesis H4 : ¬ (∀y : set , y ∈ ω → (∃z : set , z ∈ SNoS_ ω ∧ (z < x ∧ x < z + eps_ y ) ) )
Hypothesis H5 : nIn x (SNoS_ ω )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_ordsucc_omega_bdd_drat_intvl__5__2
Beginning of Section Conj_real_E__3__6
Variable x : set
Variable P : prop
Hypothesis H0 : SNo x → SNoLev x ∈ ordsucc ω → x ∈ SNoS_ (ordsucc ω ) → - ω < x → x < ω → (∀y : set , y ∈ SNoS_ ω → (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z ) → y = x ) → (∀y : set , y ∈ ω → (∃z : set , z ∈ SNoS_ ω ∧ (z < x ∧ x < z + eps_ y ) ) ) → P
Hypothesis H1 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H2 : (∀y : set , y ∈ SNoS_ ω → (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z ) → y = x )
Hypothesis H3 : SNoLev x ∈ ordsucc ω
Hypothesis H4 : SNo x
Hypothesis H5 : x < ω
Theorem. (
Conj_real_E__3__6 )
(∀y : set , y ∈ ω → (∃z : set , z ∈ SNoS_ ω ∧ (z < x ∧ x < z + eps_ y ) ) ) → P
Proof: Load proof Proof not loaded.
End of Section Conj_real_E__3__6
Beginning of Section Conj_real_E__4__0
Variable x : set
Variable P : prop
Hypothesis H1 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H2 : x ≠ - ω
Hypothesis H3 : (∀y : set , y ∈ SNoS_ ω → (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z ) → y = x )
Hypothesis H4 : SNoLev x ∈ ordsucc ω
Hypothesis H5 : SNo x
Hypothesis H6 : x < ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_E__4__0
Beginning of Section Conj_real_E__4__6
Variable x : set
Variable P : prop
Hypothesis H0 : SNo x → SNoLev x ∈ ordsucc ω → x ∈ SNoS_ (ordsucc ω ) → - ω < x → x < ω → (∀y : set , y ∈ SNoS_ ω → (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z ) → y = x ) → (∀y : set , y ∈ ω → (∃z : set , z ∈ SNoS_ ω ∧ (z < x ∧ x < z + eps_ y ) ) ) → P
Hypothesis H1 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H2 : x ≠ - ω
Hypothesis H3 : (∀y : set , y ∈ SNoS_ ω → (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z ) → y = x )
Hypothesis H4 : SNoLev x ∈ ordsucc ω
Hypothesis H5 : SNo x
Proof: Load proof Proof not loaded.
End of Section Conj_real_E__4__6
Beginning of Section Conj_SNoS_omega_real__2__0
Variable x : set
Variable y : set
Hypothesis H1 : y ∈ SNoS_ ω
Hypothesis H2 : (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z )
Hypothesis H3 : Empty < y + - x
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_real__2__0
Beginning of Section Conj_SNoS_omega_real__5__1
Variable x : set
Variable y : set
Hypothesis H0 : x ∈ SNoS_ ω
Hypothesis H2 : y ∈ SNoS_ ω
Hypothesis H3 : (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z )
Hypothesis H4 : SNo y
Hypothesis H5 : Empty < x + - y
Proof: Load proof Proof not loaded.
End of Section Conj_SNoS_omega_real__5__1
Beginning of Section Conj_SNo_prereal_incr_lower_pos__4__6
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H2 : (∀u : set , u ∈ SNoS_ ω → Empty < u → u < x → x < u + eps_ y → P )
Hypothesis H3 : x < z + eps_ y
Hypothesis H4 : SNo z
Hypothesis H5 : z ≤ Empty
Hypothesis H8 : eps_ w ≤ x
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_prereal_incr_lower_pos__4__6
Beginning of Section Conj_SNoCutP_SNoCut_lim__4__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀w : set , w ∈ x → ordsucc w ∈ x )
Hypothesis H2 : Subq y (SNoS_ x )
Hypothesis H3 : Subq z (SNoS_ x )
Hypothesis H5 : (∀w : set , w ∈ y → SNoLev w ∈ x )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut_lim__4__4
Beginning of Section Conj_SNo_approx_real__4__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H2 : z ∈ SNoS_ ω
Hypothesis H3 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (- z )
Hypothesis H6 : SNo (x + - z )
Hypothesis H8 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Hypothesis H9 : SNo (ap y (ordsucc w ) )
Hypothesis H10 : z < ap y (ordsucc w )
Hypothesis H11 : Empty < ap y (ordsucc w ) + - z
Hypothesis H13 : ap y (ordsucc w ) < x
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__4__12
Beginning of Section Conj_SNo_approx_real__9__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : (∀u : set , u ∈ ω → ap y u < x )
Hypothesis H2 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H3 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H4 : z ∈ SNoS_ ω
Hypothesis H5 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (- z )
Hypothesis H8 : SNo (x + - z )
Hypothesis H10 : z ≤ ap y w
Hypothesis H11 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__9__0
Beginning of Section Conj_SNo_approx_real__9__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set , u ∈ ω → ap y u < x )
Hypothesis H2 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H3 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H4 : z ∈ SNoS_ ω
Hypothesis H5 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (- z )
Hypothesis H8 : SNo (x + - z )
Hypothesis H10 : z ≤ ap y w
Hypothesis H11 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__9__9
Beginning of Section Conj_SNo_approx_real__10__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (- x )
Hypothesis H2 : z ∈ SNoS_ ω
Hypothesis H3 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (z + - x )
Hypothesis H6 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Hypothesis H7 : SNo (ap y (ordsucc w ) )
Hypothesis H8 : ap y (ordsucc w ) < z
Hypothesis H9 : Empty < z + - (ap y (ordsucc w ) )
Hypothesis H11 : x < ap y (ordsucc w )
Hypothesis H12 : abs_SNo (z + - x ) = z + - x
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__10__10
Beginning of Section Conj_SNo_approx_real__12__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (- x )
Hypothesis H2 : z ∈ SNoS_ ω
Hypothesis H3 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (z + - x )
Hypothesis H6 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Hypothesis H8 : ap y (ordsucc w ) < z
Hypothesis H9 : Empty < z + - (ap y (ordsucc w ) )
Hypothesis H10 : SNo (z + - (ap y (ordsucc w ) ) )
Hypothesis H11 : x < ap y (ordsucc w )
Hypothesis H12 : x < z
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__12__7
Beginning of Section Conj_SNo_approx_real__12__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (- x )
Hypothesis H2 : z ∈ SNoS_ ω
Hypothesis H3 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (z + - x )
Hypothesis H6 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Hypothesis H7 : SNo (ap y (ordsucc w ) )
Hypothesis H8 : ap y (ordsucc w ) < z
Hypothesis H10 : SNo (z + - (ap y (ordsucc w ) ) )
Hypothesis H11 : x < ap y (ordsucc w )
Hypothesis H12 : x < z
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__12__9
Beginning of Section Conj_SNo_approx_real__14__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set , u ∈ ω → x < ap y u )
Hypothesis H2 : SNo (- x )
Hypothesis H3 : z ∈ SNoS_ ω
Hypothesis H4 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (z + - x )
Hypothesis H9 : SNo (ap y (ordsucc w ) )
Hypothesis H10 : ap y (ordsucc w ) < z
Hypothesis H11 : Empty < z + - (ap y (ordsucc w ) )
Hypothesis H12 : SNo (z + - (ap y (ordsucc w ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__14__8
Beginning of Section Conj_SNo_approx_real__14__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set , u ∈ ω → x < ap y u )
Hypothesis H2 : SNo (- x )
Hypothesis H3 : z ∈ SNoS_ ω
Hypothesis H4 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (z + - x )
Hypothesis H8 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Hypothesis H9 : SNo (ap y (ordsucc w ) )
Hypothesis H11 : Empty < z + - (ap y (ordsucc w ) )
Hypothesis H12 : SNo (z + - (ap y (ordsucc w ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__14__10
Beginning of Section Conj_SNo_approx_real__18__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : (∀u : set , u ∈ ω → x < ap y u )
Hypothesis H2 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y u < ap y v ) )
Hypothesis H3 : SNo (- x )
Hypothesis H4 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H5 : z ∈ SNoS_ ω
Hypothesis H6 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H7 : SNo z
Hypothesis H8 : SNo (z + - x )
Hypothesis H10 : ap y w ≤ z
Hypothesis H11 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__18__0
Beginning of Section Conj_SNo_approx_real__18__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set , u ∈ ω → x < ap y u )
Hypothesis H2 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y u < ap y v ) )
Hypothesis H3 : SNo (- x )
Hypothesis H4 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H5 : z ∈ SNoS_ ω
Hypothesis H6 : (∀u : set , u ∈ ω → abs_SNo (z + - x ) < eps_ u )
Hypothesis H7 : SNo z
Hypothesis H10 : ap y w ≤ z
Hypothesis H11 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - (ap y (ordsucc w ) ) ) < eps_ v ) → u = ap y (ordsucc w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__18__8
Beginning of Section Conj_SNo_approx_real__19__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H2 : (∀u : set , u ∈ ω → x < ap z u )
Hypothesis H3 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap z u < ap z v ) )
Hypothesis H4 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H5 : SNo (- x )
Hypothesis H6 : (∀u : set , u ∈ ω → SNo (ap z u ) )
Hypothesis H7 : (∀u : set , SNo u → (∀v : set , v ∈ Repl ω (ap y ) → v < u ) → (∀v : set , v ∈ Repl ω (ap z ) → u < v ) → Subq (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoLev u ) ∧ SNoEq_ (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) u )
Hypothesis H8 : SNoLev x = ω
Hypothesis H9 : w ∈ SNoS_ ω
Hypothesis H10 : (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u )
Hypothesis H11 : SNoLev w ∈ ω
Hypothesis H12 : SNo w
Hypothesis H14 : (∀u : set , u ∈ Repl ω (ap y ) → u < w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__19__13
Beginning of Section Conj_SNo_approx_real__20__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀u : set , u ∈ ω → ap y u < x )
Hypothesis H4 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H5 : (∀u : set , u ∈ ω → x < ap z u )
Hypothesis H6 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap z u < ap z v ) )
Hypothesis H7 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H8 : SNo (- x )
Hypothesis H9 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H10 : (∀u : set , u ∈ ω → SNo (ap z u ) )
Hypothesis H11 : (∀u : set , SNo u → (∀v : set , v ∈ Repl ω (ap y ) → v < u ) → (∀v : set , v ∈ Repl ω (ap z ) → u < v ) → Subq (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoLev u ) ∧ SNoEq_ (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) u )
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w ∈ SNoS_ ω
Hypothesis H14 : (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u )
Hypothesis H15 : SNoLev w ∈ ω
Hypothesis H17 : SNo (- w )
Hypothesis H18 : SNo (x + - w )
Hypothesis H19 : SNo (w + - x )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__20__16
Beginning of Section Conj_SNo_approx_real__21__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀u : set , u ∈ ω → ap y u < x )
Hypothesis H4 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H5 : (∀u : set , u ∈ ω → x < ap z u )
Hypothesis H6 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap z u < ap z v ) )
Hypothesis H7 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H8 : SNo (- x )
Hypothesis H9 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H10 : (∀u : set , u ∈ ω → SNo (ap z u ) )
Hypothesis H11 : (∀u : set , SNo u → (∀v : set , v ∈ Repl ω (ap y ) → v < u ) → (∀v : set , v ∈ Repl ω (ap z ) → u < v ) → Subq (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoLev u ) ∧ SNoEq_ (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) u )
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w ∈ SNoS_ ω
Hypothesis H14 : (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u )
Hypothesis H15 : SNoLev w ∈ ω
Hypothesis H16 : SNo w
Hypothesis H17 : SNo (- w )
Hypothesis H18 : SNo (x + - w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__21__1
Beginning of Section Conj_SNo_approx_real__21__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀u : set , u ∈ ω → ap y u < x )
Hypothesis H4 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H5 : (∀u : set , u ∈ ω → x < ap z u )
Hypothesis H6 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap z u < ap z v ) )
Hypothesis H7 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H8 : SNo (- x )
Hypothesis H9 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H10 : (∀u : set , u ∈ ω → SNo (ap z u ) )
Hypothesis H11 : (∀u : set , SNo u → (∀v : set , v ∈ Repl ω (ap y ) → v < u ) → (∀v : set , v ∈ Repl ω (ap z ) → u < v ) → Subq (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoLev u ) ∧ SNoEq_ (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) u )
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w ∈ SNoS_ ω
Hypothesis H14 : (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u )
Hypothesis H15 : SNoLev w ∈ ω
Hypothesis H16 : SNo w
Hypothesis H17 : SNo (- w )
Hypothesis H18 : SNo (x + - w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__21__2
Beginning of Section Conj_SNo_approx_real__22__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H4 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H5 : (∀u : set , u ∈ ω → x < ap z u )
Hypothesis H6 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap z u < ap z v ) )
Hypothesis H7 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H8 : SNo (- x )
Hypothesis H9 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H10 : (∀u : set , u ∈ ω → SNo (ap z u ) )
Hypothesis H11 : (∀u : set , SNo u → (∀v : set , v ∈ Repl ω (ap y ) → v < u ) → (∀v : set , v ∈ Repl ω (ap z ) → u < v ) → Subq (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoLev u ) ∧ SNoEq_ (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) u )
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w ∈ SNoS_ ω
Hypothesis H14 : (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u )
Hypothesis H15 : SNoLev w ∈ ω
Hypothesis H16 : SNo w
Hypothesis H17 : SNo (- w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__22__3
Beginning of Section Conj_SNo_approx_real__22__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀u : set , u ∈ ω → ap y u < x )
Hypothesis H4 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H5 : (∀u : set , u ∈ ω → x < ap z u )
Hypothesis H6 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap z u < ap z v ) )
Hypothesis H7 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H8 : SNo (- x )
Hypothesis H10 : (∀u : set , u ∈ ω → SNo (ap z u ) )
Hypothesis H11 : (∀u : set , SNo u → (∀v : set , v ∈ Repl ω (ap y ) → v < u ) → (∀v : set , v ∈ Repl ω (ap z ) → u < v ) → Subq (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoLev u ) ∧ SNoEq_ (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) u )
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w ∈ SNoS_ ω
Hypothesis H14 : (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u )
Hypothesis H15 : SNoLev w ∈ ω
Hypothesis H16 : SNo w
Hypothesis H17 : SNo (- w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__22__9
Beginning of Section Conj_SNo_approx_real__23__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀u : set , u ∈ ω → ap y u < x )
Hypothesis H4 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H5 : (∀u : set , u ∈ ω → x < ap z u )
Hypothesis H6 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap z u < ap z v ) )
Hypothesis H7 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H8 : SNo (- x )
Hypothesis H9 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H10 : (∀u : set , u ∈ ω → SNo (ap z u ) )
Hypothesis H11 : (∀u : set , SNo u → (∀v : set , v ∈ Repl ω (ap y ) → v < u ) → (∀v : set , v ∈ Repl ω (ap z ) → u < v ) → Subq (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoLev u ) ∧ SNoEq_ (SNoLev (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) ) (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) ) u )
Hypothesis H12 : SNoLev x = ω
Hypothesis H13 : w ∈ SNoS_ ω
Hypothesis H14 : (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u )
Hypothesis H15 : SNoLev w ∈ ω
Hypothesis H16 : SNo w
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__23__2
Beginning of Section Conj_SNo_approx_real__26__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀w : set , w ∈ ω → ap y w < x )
Hypothesis H4 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H5 : (∀w : set , w ∈ ω → x < ap z w )
Hypothesis H6 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H7 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H8 : SNo (- x )
Hypothesis H9 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H10 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__26__1
Beginning of Section Conj_SNo_approx_real__28__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀w : set , w ∈ ω → ap y w < x )
Hypothesis H4 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H5 : (∀w : set , w ∈ ω → x < ap z w )
Hypothesis H7 : x = SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H8 : SNo (- x )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real__28__6
Beginning of Section Conj_SNo_approx_real_rep__1__0
Variable x : set
Variable y : set
Hypothesis H1 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H2 : SNo y
Hypothesis H3 : x < y
Hypothesis H4 : y ∈ SNoS_ ω
Hypothesis H5 : Empty < y + - x
Hypothesis H6 : ¬ (∃z : set , z ∈ ω ∧ (x + eps_ z ) ≤ y )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__1__0
Beginning of Section Conj_SNo_approx_real_rep__1__1
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : x < y
Hypothesis H4 : y ∈ SNoS_ ω
Hypothesis H5 : Empty < y + - x
Hypothesis H6 : ¬ (∃z : set , z ∈ ω ∧ (x + eps_ z ) ≤ y )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__1__1
Beginning of Section Conj_SNo_approx_real_rep__3__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - x ) < eps_ v ) → u = x )
Hypothesis H2 : (∀u : set , u ∈ ω → SNo (ap z u ) )
Hypothesis H3 : (∀u : set , u ∈ ω → (ap z u + - (eps_ u ) ) < x )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H5 : (∀u : set , u ∈ ω → SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) < ap z u )
Hypothesis H6 : SNo w
Hypothesis H7 : x < w
Hypothesis H8 : w ∈ SNoS_ ω
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__3__0
Beginning of Section Conj_SNo_approx_real_rep__6__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - x ) < eps_ v ) → u = x )
Hypothesis H3 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H5 : (∀u : set , u ∈ ω → ap y u < SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H6 : SNo w
Hypothesis H7 : w < x
Hypothesis H8 : w ∈ SNoS_ ω
Hypothesis H9 : Empty < x + - w
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__6__2
Beginning of Section Conj_SNo_approx_real_rep__6__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - x ) < eps_ v ) → u = x )
Hypothesis H2 : (∀u : set , u ∈ ω → ap y u < x ∧ x < ap y u + eps_ u ∧ (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H3 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H5 : (∀u : set , u ∈ ω → ap y u < SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H6 : SNo w
Hypothesis H7 : w < x
Hypothesis H8 : w ∈ SNoS_ ω
Hypothesis H9 : Empty < x + - w
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__6__4
Beginning of Section Conj_SNo_approx_real_rep__7__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set , u ∈ SNoS_ ω → (∀v : set , v ∈ ω → abs_SNo (u + - x ) < eps_ v ) → u = x )
Hypothesis H3 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H5 : (∀u : set , u ∈ ω → ap y u < SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H6 : SNo w
Hypothesis H7 : w < x
Hypothesis H8 : w ∈ SNoS_ ω
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__7__2
Beginning of Section Conj_SNo_approx_real_rep__9__9
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ setexp (SNoS_ ω ) ω → (∀u : set , u ∈ setexp (SNoS_ ω ) ω → (∀v : set , v ∈ ω → ap w v < x ) → (∀v : set , v ∈ ω → x < ap w v + eps_ v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap w x2 < ap w v ) ) → (∀v : set , v ∈ ω → (ap u v + - (eps_ v ) ) < x ) → (∀v : set , v ∈ ω → x < ap u v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap u v < ap u x2 ) ) → SNoCutP (Repl ω (ap w ) ) (Repl ω (ap u ) ) → x = SNoCut (Repl ω (ap w ) ) (Repl ω (ap u ) ) → P ) )
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ SNoS_ ω → (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u ) → w = x )
Hypothesis H4 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Hypothesis H10 : (∀w : set , w ∈ ω → x < ap y w + eps_ w )
Hypothesis H11 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H12 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x )
Hypothesis H13 : (∀w : set , w ∈ ω → x < ap z w )
Hypothesis H14 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H15 : SNoCutP (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H16 : SNo (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H17 : (∀w : set , w ∈ ω → ap y w < SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H18 : (∀w : set , w ∈ ω → SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) < ap z w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__9__9
Beginning of Section Conj_SNo_approx_real_rep__9__10
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ setexp (SNoS_ ω ) ω → (∀u : set , u ∈ setexp (SNoS_ ω ) ω → (∀v : set , v ∈ ω → ap w v < x ) → (∀v : set , v ∈ ω → x < ap w v + eps_ v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap w x2 < ap w v ) ) → (∀v : set , v ∈ ω → (ap u v + - (eps_ v ) ) < x ) → (∀v : set , v ∈ ω → x < ap u v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap u v < ap u x2 ) ) → SNoCutP (Repl ω (ap w ) ) (Repl ω (ap u ) ) → x = SNoCut (Repl ω (ap w ) ) (Repl ω (ap u ) ) → P ) )
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ SNoS_ ω → (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u ) → w = x )
Hypothesis H4 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Hypothesis H9 : (∀w : set , w ∈ ω → ap y w < x )
Hypothesis H11 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H12 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x )
Hypothesis H13 : (∀w : set , w ∈ ω → x < ap z w )
Hypothesis H14 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H15 : SNoCutP (Repl ω (ap y ) ) (Repl ω (ap z ) )
Hypothesis H16 : SNo (SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H17 : (∀w : set , w ∈ ω → ap y w < SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) )
Hypothesis H18 : (∀w : set , w ∈ ω → SNoCut (Repl ω (ap y ) ) (Repl ω (ap z ) ) < ap z w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__9__10
Beginning of Section Conj_SNo_approx_real_rep__11__2
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ setexp (SNoS_ ω ) ω → (∀u : set , u ∈ setexp (SNoS_ ω ) ω → (∀v : set , v ∈ ω → ap w v < x ) → (∀v : set , v ∈ ω → x < ap w v + eps_ v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap w x2 < ap w v ) ) → (∀v : set , v ∈ ω → (ap u v + - (eps_ v ) ) < x ) → (∀v : set , v ∈ ω → x < ap u v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap u v < ap u x2 ) ) → SNoCutP (Repl ω (ap w ) ) (Repl ω (ap u ) ) → x = SNoCut (Repl ω (ap w ) ) (Repl ω (ap u ) ) → P ) )
Hypothesis H3 : (∀w : set , w ∈ SNoS_ ω → (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u ) → w = x )
Hypothesis H4 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x ∧ x < ap z w ∧ (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H9 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Hypothesis H10 : (∀w : set , w ∈ ω → ap y w < x )
Hypothesis H11 : (∀w : set , w ∈ ω → x < ap y w + eps_ w )
Hypothesis H12 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H13 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x )
Hypothesis H14 : (∀w : set , w ∈ ω → x < ap z w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__11__2
Beginning of Section Conj_SNo_approx_real_rep__11__3
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ setexp (SNoS_ ω ) ω → (∀u : set , u ∈ setexp (SNoS_ ω ) ω → (∀v : set , v ∈ ω → ap w v < x ) → (∀v : set , v ∈ ω → x < ap w v + eps_ v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap w x2 < ap w v ) ) → (∀v : set , v ∈ ω → (ap u v + - (eps_ v ) ) < x ) → (∀v : set , v ∈ ω → x < ap u v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap u v < ap u x2 ) ) → SNoCutP (Repl ω (ap w ) ) (Repl ω (ap u ) ) → x = SNoCut (Repl ω (ap w ) ) (Repl ω (ap u ) ) → P ) )
Hypothesis H2 : SNo x
Hypothesis H4 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x ∧ x < ap z w ∧ (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H9 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Hypothesis H10 : (∀w : set , w ∈ ω → ap y w < x )
Hypothesis H11 : (∀w : set , w ∈ ω → x < ap y w + eps_ w )
Hypothesis H12 : (∀w : set , w ∈ ω → (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H13 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x )
Hypothesis H14 : (∀w : set , w ∈ ω → x < ap z w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__11__3
Beginning of Section Conj_SNo_approx_real_rep__14__0
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ setexp (SNoS_ ω ) ω → (∀u : set , u ∈ setexp (SNoS_ ω ) ω → (∀v : set , v ∈ ω → ap w v < x ) → (∀v : set , v ∈ ω → x < ap w v + eps_ v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap w x2 < ap w v ) ) → (∀v : set , v ∈ ω → (ap u v + - (eps_ v ) ) < x ) → (∀v : set , v ∈ ω → x < ap u v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap u v < ap u x2 ) ) → SNoCutP (Repl ω (ap w ) ) (Repl ω (ap u ) ) → x = SNoCut (Repl ω (ap w ) ) (Repl ω (ap u ) ) → P ) )
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ SNoS_ ω → (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u ) → w = x )
Hypothesis H4 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x ∧ x < ap z w ∧ (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H9 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Hypothesis H10 : (∀w : set , w ∈ ω → ap y w < x )
Hypothesis H11 : (∀w : set , w ∈ ω → x < ap y w + eps_ w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__14__0
Beginning of Section Conj_SNo_approx_real_rep__14__4
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ setexp (SNoS_ ω ) ω → (∀u : set , u ∈ setexp (SNoS_ ω ) ω → (∀v : set , v ∈ ω → ap w v < x ) → (∀v : set , v ∈ ω → x < ap w v + eps_ v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap w x2 < ap w v ) ) → (∀v : set , v ∈ ω → (ap u v + - (eps_ v ) ) < x ) → (∀v : set , v ∈ ω → x < ap u v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap u v < ap u x2 ) ) → SNoCutP (Repl ω (ap w ) ) (Repl ω (ap u ) ) → x = SNoCut (Repl ω (ap w ) ) (Repl ω (ap u ) ) → P ) )
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ SNoS_ ω → (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u ) → w = x )
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x ∧ x < ap z w ∧ (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H9 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Hypothesis H10 : (∀w : set , w ∈ ω → ap y w < x )
Hypothesis H11 : (∀w : set , w ∈ ω → x < ap y w + eps_ w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__14__4
Beginning of Section Conj_SNo_approx_real_rep__14__10
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ setexp (SNoS_ ω ) ω → (∀u : set , u ∈ setexp (SNoS_ ω ) ω → (∀v : set , v ∈ ω → ap w v < x ) → (∀v : set , v ∈ ω → x < ap w v + eps_ v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap w x2 < ap w v ) ) → (∀v : set , v ∈ ω → (ap u v + - (eps_ v ) ) < x ) → (∀v : set , v ∈ ω → x < ap u v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap u v < ap u x2 ) ) → SNoCutP (Repl ω (ap w ) ) (Repl ω (ap u ) ) → x = SNoCut (Repl ω (ap w ) ) (Repl ω (ap u ) ) → P ) )
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ SNoS_ ω → (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u ) → w = x )
Hypothesis H4 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x ∧ x < ap z w ∧ (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H9 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Hypothesis H11 : (∀w : set , w ∈ ω → x < ap y w + eps_ w )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__14__10
Beginning of Section Conj_SNo_approx_real_rep__16__2
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ setexp (SNoS_ ω ) ω → (∀u : set , u ∈ setexp (SNoS_ ω ) ω → (∀v : set , v ∈ ω → ap w v < x ) → (∀v : set , v ∈ ω → x < ap w v + eps_ v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap w x2 < ap w v ) ) → (∀v : set , v ∈ ω → (ap u v + - (eps_ v ) ) < x ) → (∀v : set , v ∈ ω → x < ap u v ) → (∀v : set , v ∈ ω → (∀x2 : set , x2 ∈ v → ap u v < ap u x2 ) ) → SNoCutP (Repl ω (ap w ) ) (Repl ω (ap u ) ) → x = SNoCut (Repl ω (ap w ) ) (Repl ω (ap u ) ) → P ) )
Hypothesis H3 : (∀w : set , w ∈ SNoS_ ω → (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u ) → w = x )
Hypothesis H4 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x ∧ x < ap z w ∧ (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H9 : (∀w : set , w ∈ ω → SNo (ap z w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__16__2
Beginning of Section Conj_SNo_approx_real_rep__17__1
Variable x : set
Variable P : prop
Variable y : set
Variable z : set
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ SNoS_ ω → (∀u : set , u ∈ ω → abs_SNo (w + - x ) < eps_ u ) → w = x )
Hypothesis H4 : y ∈ setexp (SNoS_ ω ) ω
Hypothesis H5 : (∀w : set , w ∈ ω → ap y w < x ∧ x < ap y w + eps_ w ∧ (∀u : set , u ∈ w → ap y u < ap y w ) )
Hypothesis H6 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H7 : (∀w : set , w ∈ ω → (ap z w + - (eps_ w ) ) < x ∧ x < ap z w ∧ (∀u : set , u ∈ w → ap z w < ap z u ) )
Hypothesis H8 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_approx_real_rep__17__1
Beginning of Section Conj_real_add_SNo__1__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , v ∈ ω → x < ap z v + eps_ v )
Hypothesis H1 : (∀v : set , v ∈ ω → y < ap w v + eps_ v )
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : (∀v : set , v ∈ ω → SNo (ap z (ordsucc v ) ) )
Hypothesis H5 : (∀v : set , v ∈ ω → SNo (ap w (ordsucc v ) ) )
Theorem. (
Conj_real_add_SNo__1__6 )
SNo (eps_ (ordsucc u ) ) → (x + y ) < (ap z (ordsucc u ) + ap w (ordsucc u ) ) + eps_ (ordsucc u ) + eps_ (ordsucc u )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__1__6
Beginning of Section Conj_real_add_SNo__2__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap x v < ap x u ) )
Hypothesis H1 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y v < ap y u ) )
Hypothesis H2 : (∀u : set , u ∈ ω → SNo (ap x (ordsucc u ) ) )
Hypothesis H4 : (∀u : set , u ∈ ω → ap (Sigma ω (λv : set ⇒ ap x (ordsucc v ) + ap y (ordsucc v ) ) ) u = ap x (ordsucc u ) + ap y (ordsucc u ) )
Theorem. (
Conj_real_add_SNo__2__3 )
w ∈ ω → ap (Sigma ω (λu : set ⇒ ap x (ordsucc u ) + ap y (ordsucc u ) ) ) w < ap x (ordsucc z ) + ap y (ordsucc z )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__2__3
Beginning of Section Conj_real_add_SNo__5__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap x u < ap x v ) )
Hypothesis H1 : (∀u : set , u ∈ ω → (∀v : set , v ∈ u → ap y u < ap y v ) )
Hypothesis H2 : (∀u : set , u ∈ ω → SNo (ap x (ordsucc u ) ) )
Hypothesis H3 : (∀u : set , u ∈ ω → SNo (ap y (ordsucc u ) ) )
Hypothesis H4 : (∀u : set , u ∈ ω → ap (Sigma ω (λv : set ⇒ ap x (ordsucc v ) + ap y (ordsucc v ) ) ) u = ap x (ordsucc u ) + ap y (ordsucc u ) )
Theorem. (
Conj_real_add_SNo__5__5 )
w ∈ ω → (ap x (ordsucc z ) + ap y (ordsucc z ) ) < ap (Sigma ω (λu : set ⇒ ap x (ordsucc u ) + ap y (ordsucc u ) ) ) w
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__5__5
Beginning of Section Conj_real_add_SNo__6__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y )
Hypothesis H3 : (∀v : set , v ∈ SNoS_ ω → (∀x2 : set , x2 ∈ ω → abs_SNo (v + - y ) < eps_ x2 ) → v = y )
Hypothesis H4 : (∀v : set , v ∈ ω → SNo (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ) )
Hypothesis H5 : (∀v : set , v ∈ ω → (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v + - (eps_ v ) ) < x + y )
Hypothesis H7 : y < u
Hypothesis H8 : u ∈ SNoS_ ω
Hypothesis H9 : ¬ (∃v : set , v ∈ ω ∧ ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ≤ x + u )
Hypothesis H10 : Empty < u + - y
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__6__6
Beginning of Section Conj_real_add_SNo__6__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y )
Hypothesis H3 : (∀v : set , v ∈ SNoS_ ω → (∀x2 : set , x2 ∈ ω → abs_SNo (v + - y ) < eps_ x2 ) → v = y )
Hypothesis H4 : (∀v : set , v ∈ ω → SNo (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ) )
Hypothesis H5 : (∀v : set , v ∈ ω → (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v + - (eps_ v ) ) < x + y )
Hypothesis H6 : SNo u
Hypothesis H7 : y < u
Hypothesis H8 : u ∈ SNoS_ ω
Hypothesis H9 : ¬ (∃v : set , v ∈ ω ∧ ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ≤ x + u )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__6__10
Beginning of Section Conj_real_add_SNo__7__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y )
Hypothesis H3 : (∀v : set , v ∈ SNoS_ ω → (∀x2 : set , x2 ∈ ω → abs_SNo (v + - y ) < eps_ x2 ) → v = y )
Hypothesis H4 : (∀v : set , v ∈ ω → SNo (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ) )
Hypothesis H5 : (∀v : set , v ∈ ω → (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v + - (eps_ v ) ) < x + y )
Hypothesis H6 : SNo u
Hypothesis H7 : y < u
Hypothesis H8 : u ∈ SNoS_ ω
Hypothesis H9 : ¬ (∃v : set , v ∈ ω ∧ ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ≤ x + u )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__7__0
Beginning of Section Conj_real_add_SNo__8__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y )
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ ω → (∀z2 : set , z2 ∈ ω → abs_SNo (y2 + - y ) < eps_ z2 ) → y2 = y )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → SNo (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Hypothesis H5 : (∀y2 : set , y2 ∈ ω → (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 + - (eps_ y2 ) ) < x + y )
Hypothesis H6 : SNo (SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) )
Hypothesis H7 : (∀y2 : set , y2 ∈ Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) → SNoCut (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) ) < y2 )
Hypothesis H8 : SNo x2
Hypothesis H9 : y < x2
Hypothesis H10 : x2 ∈ SNoS_ ω
Theorem. (
Conj_real_add_SNo__8__0 )
(∃y2 : set , y2 ∈ ω ∧ ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ≤ x + x2 ) → SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) < x + x2
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__8__0
Beginning of Section Conj_real_add_SNo__8__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y )
Hypothesis H3 : (∀y2 : set , y2 ∈ SNoS_ ω → (∀z2 : set , z2 ∈ ω → abs_SNo (y2 + - y ) < eps_ z2 ) → y2 = y )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → SNo (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Hypothesis H5 : (∀y2 : set , y2 ∈ ω → (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 + - (eps_ y2 ) ) < x + y )
Hypothesis H7 : (∀y2 : set , y2 ∈ Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) → SNoCut (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) ) < y2 )
Hypothesis H8 : SNo x2
Hypothesis H9 : y < x2
Hypothesis H10 : x2 ∈ SNoS_ ω
Theorem. (
Conj_real_add_SNo__8__6 )
(∃y2 : set , y2 ∈ ω ∧ ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ≤ x + x2 ) → SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) < x + x2
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__8__6
Beginning of Section Conj_real_add_SNo__9__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo x
Hypothesis H3 : SNo (x + y )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ ω → (∀z2 : set , z2 ∈ ω → abs_SNo (y2 + - y ) < eps_ z2 ) → y2 = y )
Hypothesis H5 : (∀y2 : set , y2 ∈ ω → SNo (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Hypothesis H6 : (∀y2 : set , y2 ∈ ω → (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 + - (eps_ y2 ) ) < x + y )
Hypothesis H7 : SNo (SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) → SNoCut (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) ) < y2 )
Hypothesis H9 : SNo x2
Hypothesis H10 : SNoLev x2 ∈ SNoLev y
Hypothesis H11 : y < x2
Theorem. (
Conj_real_add_SNo__9__2 )
x2 ∈ SNoS_ ω → SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) < x + x2
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__9__2
Beginning of Section Conj_real_add_SNo__10__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y )
Hypothesis H3 : (∀v : set , v ∈ SNoS_ ω → (∀x2 : set , x2 ∈ ω → abs_SNo (v + - x ) < eps_ x2 ) → v = x )
Hypothesis H4 : (∀v : set , v ∈ ω → SNo (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ) )
Hypothesis H5 : (∀v : set , v ∈ ω → (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v + - (eps_ v ) ) < x + y )
Hypothesis H6 : SNo u
Hypothesis H8 : u ∈ SNoS_ ω
Hypothesis H9 : ¬ (∃v : set , v ∈ ω ∧ ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ≤ u + y )
Hypothesis H10 : Empty < u + - x
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__10__7
Beginning of Section Conj_real_add_SNo__13__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo x
Hypothesis H3 : SNo (x + y )
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ ω → (∀z2 : set , z2 ∈ ω → abs_SNo (y2 + - x ) < eps_ z2 ) → y2 = x )
Hypothesis H5 : (∀y2 : set , y2 ∈ ω → SNo (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Hypothesis H6 : (∀y2 : set , y2 ∈ ω → (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 + - (eps_ y2 ) ) < x + y )
Hypothesis H7 : SNo (SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) → SNoCut (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) ) < y2 )
Hypothesis H9 : SNo x2
Hypothesis H10 : SNoLev x2 ∈ SNoLev x
Hypothesis H11 : x < x2
Theorem. (
Conj_real_add_SNo__13__2 )
x2 ∈ SNoS_ ω → SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) < x2 + y
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__13__2
Beginning of Section Conj_real_add_SNo__13__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H4 : (∀y2 : set , y2 ∈ SNoS_ ω → (∀z2 : set , z2 ∈ ω → abs_SNo (y2 + - x ) < eps_ z2 ) → y2 = x )
Hypothesis H5 : (∀y2 : set , y2 ∈ ω → SNo (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Hypothesis H6 : (∀y2 : set , y2 ∈ ω → (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 + - (eps_ y2 ) ) < x + y )
Hypothesis H7 : SNo (SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) )
Hypothesis H8 : (∀y2 : set , y2 ∈ Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) → SNoCut (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) ) ) < y2 )
Hypothesis H9 : SNo x2
Hypothesis H10 : SNoLev x2 ∈ SNoLev x
Hypothesis H11 : x < x2
Theorem. (
Conj_real_add_SNo__13__3 )
x2 ∈ SNoS_ ω → SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) < x2 + y
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__13__3
Beginning of Section Conj_real_add_SNo__18__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀v : set , v ∈ SNoS_ ω → (∀x2 : set , x2 ∈ ω → abs_SNo (v + - x ) < eps_ x2 ) → v = x )
Hypothesis H4 : (∀v : set , v ∈ ω → SNo (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ) )
Hypothesis H5 : (∀v : set , v ∈ ω → (x + y ) < ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v + eps_ v )
Hypothesis H6 : SNo u
Hypothesis H7 : u < x
Hypothesis H8 : u ∈ SNoS_ ω
Hypothesis H9 : ¬ (∃v : set , v ∈ ω ∧ (u + y ) ≤ ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v )
Hypothesis H10 : Empty < x + - u
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__18__2
Beginning of Section Conj_real_add_SNo__18__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y )
Hypothesis H3 : (∀v : set , v ∈ SNoS_ ω → (∀x2 : set , x2 ∈ ω → abs_SNo (v + - x ) < eps_ x2 ) → v = x )
Hypothesis H4 : (∀v : set , v ∈ ω → SNo (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v ) )
Hypothesis H5 : (∀v : set , v ∈ ω → (x + y ) < ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v + eps_ v )
Hypothesis H7 : u < x
Hypothesis H8 : u ∈ SNoS_ ω
Hypothesis H9 : ¬ (∃v : set , v ∈ ω ∧ (u + y ) ≤ ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap w (ordsucc x2 ) ) ) v )
Hypothesis H10 : Empty < x + - u
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__18__6
Beginning of Section Conj_real_add_SNo__22__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo (x + y )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Hypothesis H9 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H10 : Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 < x + y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 + eps_ x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) y2 < ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) x2 ) )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 + - (eps_ x2 ) ) < x + y )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) x2 < ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Hypothesis H17 : SNoCutP (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ) ) )
Hypothesis H18 : SNo (SNoCut (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ) ) ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) → x2 < SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) )
Hypothesis H20 : (∀x2 : set , x2 ∈ Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) → SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) < x2 )
Theorem. (
Conj_real_add_SNo__22__6 )
x + y = SNoCut (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ) ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__22__6
Beginning of Section Conj_real_add_SNo__22__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo (x + y )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H9 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H10 : Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 < x + y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 + eps_ x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) y2 < ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) x2 ) )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 + - (eps_ x2 ) ) < x + y )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) x2 < ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Hypothesis H17 : SNoCutP (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ) ) )
Hypothesis H18 : SNo (SNoCut (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ) ) ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) → x2 < SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) )
Hypothesis H20 : (∀x2 : set , x2 ∈ Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) → SNoCut (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) ) ) < x2 )
Theorem. (
Conj_real_add_SNo__22__8 )
x + y = SNoCut (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ) ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__22__8
Beginning of Section Conj_real_add_SNo__23__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo (x + y )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Hypothesis H9 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H10 : Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 < x + y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 + eps_ x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) y2 < ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) x2 ) )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 + - (eps_ x2 ) ) < x + y )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) x2 < ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Theorem. (
Conj_real_add_SNo__23__0 )
SNoCutP (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ) ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__23__0
Beginning of Section Conj_real_add_SNo__23__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo (x + y )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Hypothesis H9 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H10 : Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 < x + y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 + eps_ x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) y2 < ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) x2 ) )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) x2 < ap (Sigma ω (λz2 : set ⇒ ap w (ordsucc z2 ) + ap v (ordsucc z2 ) ) ) y2 ) )
Theorem. (
Conj_real_add_SNo__23__14 )
SNoCutP (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ) ) ) (Repl ω (ap (Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ) ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__23__14
Beginning of Section Conj_real_add_SNo__25__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H6 : SNo x
Hypothesis H7 : SNo y
Hypothesis H8 : SNo (x + y )
Hypothesis H9 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H10 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Hypothesis H16 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H17 : Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 + eps_ x2 )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) y2 < ap (Sigma ω (λz2 : set ⇒ ap z (ordsucc z2 ) + ap u (ordsucc z2 ) ) ) x2 ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 + - (eps_ x2 ) ) < x + y )
Theorem. (
Conj_real_add_SNo__25__18 )
(∀x2 : set , x2 ∈ ω → (x + y ) < ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__25__18
Beginning of Section Conj_real_add_SNo__29__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Hypothesis H27 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H28 : Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Theorem. (
Conj_real_add_SNo__29__8 )
(∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 < x + y ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__29__8
Beginning of Section Conj_real_add_SNo__29__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Hypothesis H27 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Hypothesis H28 : Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Theorem. (
Conj_real_add_SNo__29__22 )
(∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 < x + y ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__29__22
Beginning of Section Conj_real_add_SNo__30__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Hypothesis H27 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H28 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Hypothesis H29 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Theorem. (
Conj_real_add_SNo__30__3 )
Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__30__3
Beginning of Section Conj_real_add_SNo__30__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Hypothesis H27 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H28 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Hypothesis H29 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Theorem. (
Conj_real_add_SNo__30__7 )
Sigma ω (λx2 : set ⇒ ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__30__7
Beginning of Section Conj_real_add_SNo__30__28
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Hypothesis H27 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H29 : Sigma ω (λx2 : set ⇒ ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) ∈ setexp (SNoS_ ω ) ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__30__28
Beginning of Section Conj_real_add_SNo__31__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H27 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H28 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Hypothesis H29 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Hypothesis H30 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__31__24
Beginning of Section Conj_real_add_SNo__32__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H27 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H28 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Hypothesis H29 : (∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) )
Theorem. (
Conj_real_add_SNo__32__17 )
(∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__32__17
Beginning of Section Conj_real_add_SNo__33__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H27 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H28 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Theorem. (
Conj_real_add_SNo__33__2 )
(∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__33__2
Beginning of Section Conj_real_add_SNo__33__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H27 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Hypothesis H28 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) )
Theorem. (
Conj_real_add_SNo__33__11 )
(∀x2 : set , x2 ∈ ω → SNo (ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__33__11
Beginning of Section Conj_real_add_SNo__34__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Hypothesis H27 : (∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) )
Theorem. (
Conj_real_add_SNo__34__4 )
(∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap w (ordsucc y2 ) + ap v (ordsucc y2 ) ) ) x2 = ap w (ordsucc x2 ) + ap v (ordsucc x2 ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__34__4
Beginning of Section Conj_real_add_SNo__35__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Theorem. (
Conj_real_add_SNo__35__11 )
(∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__35__11
Beginning of Section Conj_real_add_SNo__35__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → SNo (ap v (ordsucc x2 ) ) )
Theorem. (
Conj_real_add_SNo__35__13 )
(∀x2 : set , x2 ∈ ω → ap (Sigma ω (λy2 : set ⇒ ap z (ordsucc y2 ) + ap u (ordsucc y2 ) ) ) x2 = ap z (ordsucc x2 ) + ap u (ordsucc x2 ) ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__35__13
Beginning of Section Conj_real_add_SNo__36__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H15 : SNo y
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__36__12
Beginning of Section Conj_real_add_SNo__36__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H14 : SNo x
Hypothesis H16 : SNo (x + y )
Hypothesis H17 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → ap v (ordsucc x2 ) ∈ SNoS_ ω )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__36__15
Beginning of Section Conj_real_add_SNo__37__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H8 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H15 : SNo x
Hypothesis H16 : SNo y
Hypothesis H17 : SNo (x + y )
Hypothesis H18 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H19 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → SNo (ap u (ordsucc x2 ) ) )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → ap w (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → SNo (ap w (ordsucc x2 ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__37__9
Beginning of Section Conj_real_add_SNo__40__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H9 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H16 : SNo x
Hypothesis H17 : SNo y
Hypothesis H18 : SNo (x + y )
Hypothesis H19 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H20 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__40__2
Beginning of Section Conj_real_add_SNo__40__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : w ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H9 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H10 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H16 : SNo x
Hypothesis H17 : SNo y
Hypothesis H18 : SNo (x + y )
Hypothesis H20 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap u (ordsucc x2 ) ∈ SNoS_ ω )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__40__19
Beginning of Section Conj_real_add_SNo__41__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : w ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H10 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : SNo x
Hypothesis H18 : SNo y
Hypothesis H19 : SNo (x + y )
Hypothesis H20 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H21 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → ap z (ordsucc x2 ) ∈ SNoS_ ω )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → SNo (ap z (ordsucc x2 ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__41__9
Beginning of Section Conj_real_add_SNo__43__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : w ∈ setexp (SNoS_ ω ) ω
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H11 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Hypothesis H20 : SNo (x + y )
Hypothesis H21 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Hypothesis H22 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__43__10
Beginning of Section Conj_real_add_SNo__44__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : w ∈ setexp (SNoS_ ω ) ω
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H10 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Hypothesis H20 : SNo (x + y )
Hypothesis H21 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Theorem. (
Conj_real_add_SNo__44__7 )
(∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - y ) < eps_ y2 ) → x2 = y ) → x + y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__44__7
Beginning of Section Conj_real_add_SNo__44__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : w ∈ setexp (SNoS_ ω ) ω
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H10 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Hypothesis H20 : SNo (x + y )
Hypothesis H21 : (∀x2 : set , x2 ∈ SNoS_ ω → (∀y2 : set , y2 ∈ ω → abs_SNo (x2 + - x ) < eps_ y2 ) → x2 = x )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__44__17
Beginning of Section Conj_real_add_SNo__45__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : w ∈ setexp (SNoS_ ω ) ω
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H10 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Hypothesis H20 : SNo (x + y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__45__16
Beginning of Section Conj_real_add_SNo__45__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : w ∈ setexp (SNoS_ ω ) ω
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H10 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H18 : SNo x
Hypothesis H19 : SNo y
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__45__20
Beginning of Section Conj_real_add_SNo__47__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H2 : z ∈ setexp (SNoS_ ω ) ω
Hypothesis H3 : w ∈ setexp (SNoS_ ω ) ω
Hypothesis H4 : (∀x2 : set , x2 ∈ ω → ap z x2 < x )
Hypothesis H5 : (∀x2 : set , x2 ∈ ω → x < ap z x2 + eps_ x2 )
Hypothesis H6 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap z y2 < ap z x2 ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ ω → (ap w x2 + - (eps_ x2 ) ) < x )
Hypothesis H8 : (∀x2 : set , x2 ∈ ω → x < ap w x2 )
Hypothesis H9 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap w x2 < ap w y2 ) )
Hypothesis H10 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H11 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H12 : (∀x2 : set , x2 ∈ ω → ap u x2 < y )
Hypothesis H13 : (∀x2 : set , x2 ∈ ω → y < ap u x2 + eps_ x2 )
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < y )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → y < ap v x2 )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H18 : SNo x
Proof: Load proof Proof not loaded.
End of Section Conj_real_add_SNo__47__0
Beginning of Section Conj_real_mul_SNo_pos__2__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : SNo (eps_ (v + x2 ) )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__2__2
Beginning of Section Conj_real_mul_SNo_pos__2__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : SNo (eps_ (v + x2 ) )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__2__11
Beginning of Section Conj_real_mul_SNo_pos__2__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Hypothesis H22 : SNo (eps_ (v + x2 ) )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__2__21
Beginning of Section Conj_real_mul_SNo_pos__2__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__2__22
Beginning of Section Conj_real_mul_SNo_pos__4__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : v + x2 ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__4__10
Beginning of Section Conj_real_mul_SNo_pos__5__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__5__1
Beginning of Section Conj_real_mul_SNo_pos__5__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__5__5
Beginning of Section Conj_real_mul_SNo_pos__5__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__5__21
Beginning of Section Conj_real_mul_SNo_pos__6__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Hypothesis H20 : SNo (eps_ v )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__6__13
Beginning of Section Conj_real_mul_SNo_pos__7__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__7__0
Beginning of Section Conj_real_mul_SNo_pos__7__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (y + - u )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ y + - u
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__7__5
Beginning of Section Conj_real_mul_SNo_pos__8__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoR x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - x → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w ∈ SNoR x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u ) ≤ z + w * u
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (w * u )
Hypothesis H17 : SNo (- (w * u ) )
Hypothesis H18 : SNo (w + - x )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__8__14
Beginning of Section Conj_real_mul_SNo_pos__10__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H4 : (∀v : set , v ∈ SNoR x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - x → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w ∈ SNoR x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u ) ≤ z + w * u
Hypothesis H14 : SNo (w * y )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (w * u )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__10__3
Beginning of Section Conj_real_mul_SNo_pos__10__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoR x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - x → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w ∈ SNoR x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H13 : (w * y + x * u ) ≤ z + w * u
Hypothesis H14 : SNo (w * y )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (w * u )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__10__12
Beginning of Section Conj_real_mul_SNo_pos__14__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : SNo z
Hypothesis H5 : x * y < z
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (x * u )
Hypothesis H11 : SNo (w * u )
Hypothesis H12 : SNo (- (w * u ) )
Hypothesis H13 : SNo (x + - w )
Hypothesis H14 : SNo (u + - y )
Hypothesis H16 : eps_ v ≤ x + - w
Hypothesis H18 : eps_ x2 ≤ u + - y
Hypothesis H19 : SNo (eps_ v )
Hypothesis H20 : SNo (eps_ x2 )
Hypothesis H21 : SNo (eps_ (v + x2 ) )
Hypothesis H22 : SNo (eps_ v * eps_ x2 )
Hypothesis H23 : abs_SNo (z + - (x * y ) ) < eps_ (v + x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__14__9
Beginning of Section Conj_real_mul_SNo_pos__15__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (x + - w )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ x + - w
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : SNo (eps_ (v + x2 ) )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__15__5
Beginning of Section Conj_real_mul_SNo_pos__15__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (x + - w )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ x + - w
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : SNo (eps_ (v + x2 ) )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__15__11
Beginning of Section Conj_real_mul_SNo_pos__15__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (x + - w )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ x + - w
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : SNo (eps_ (v + x2 ) )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__15__12
Beginning of Section Conj_real_mul_SNo_pos__17__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (x + - w )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ x + - w
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : v + x2 ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__17__10
Beginning of Section Conj_real_mul_SNo_pos__18__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (x + - w )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ x + - w
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__18__5
Beginning of Section Conj_real_mul_SNo_pos__18__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : x * y < z
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (w * y + x * u ) ≤ z + w * u
Hypothesis H10 : SNo (w * y )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (w * u )
Hypothesis H13 : SNo (- (w * u ) )
Hypothesis H14 : SNo (x + - w )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ x + - w
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__18__21
Beginning of Section Conj_real_mul_SNo_pos__21__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoR y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - y → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u ) ≤ z + w * u
Hypothesis H14 : SNo (w * y )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (w * u )
Hypothesis H17 : SNo (- (w * u ) )
Hypothesis H18 : SNo (x + - w )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__21__1
Beginning of Section Conj_real_mul_SNo_pos__21__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoR y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - y → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u ) ≤ z + w * u
Hypothesis H14 : SNo (w * y )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (w * u )
Hypothesis H17 : SNo (- (w * u ) )
Hypothesis H18 : SNo (x + - w )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__21__2
Beginning of Section Conj_real_mul_SNo_pos__25__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoR y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - y → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : x * y < z
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (w * y + x * u ) ≤ z + w * u
Hypothesis H14 : SNo (w * y )
Hypothesis H15 : SNo (x * u )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__25__1
Beginning of Section Conj_real_mul_SNo_pos__29__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo z
Hypothesis H4 : z < x * y
Hypothesis H5 : SNo w
Hypothesis H6 : SNo u
Hypothesis H7 : (z + w * u ) ≤ w * y + x * u
Hypothesis H8 : SNo (w * u )
Hypothesis H10 : SNo (- (x * u ) )
Hypothesis H11 : SNo (w * y )
Hypothesis H12 : SNo (- (w * y ) )
Hypothesis H13 : SNo (w + - x )
Hypothesis H14 : SNo (u + - y )
Hypothesis H16 : eps_ v ≤ w + - x
Hypothesis H18 : eps_ x2 ≤ u + - y
Hypothesis H19 : SNo (eps_ v )
Hypothesis H20 : SNo (eps_ x2 )
Hypothesis H21 : SNo (eps_ (v + x2 ) )
Hypothesis H22 : SNo (eps_ v * eps_ x2 )
Hypothesis H23 : abs_SNo (z + - (x * y ) ) < eps_ (v + x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__29__9
Beginning of Section Conj_real_mul_SNo_pos__30__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u ) ≤ w * y + x * u
Hypothesis H9 : SNo (w * u )
Hypothesis H10 : SNo (x * u )
Hypothesis H11 : SNo (- (x * u ) )
Hypothesis H13 : SNo (- (w * y ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : SNo (eps_ (v + x2 ) )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__30__12
Beginning of Section Conj_real_mul_SNo_pos__30__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u ) ≤ w * y + x * u
Hypothesis H9 : SNo (w * u )
Hypothesis H10 : SNo (x * u )
Hypothesis H11 : SNo (- (x * u ) )
Hypothesis H12 : SNo (w * y )
Hypothesis H13 : SNo (- (w * y ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Hypothesis H22 : SNo (eps_ (v + x2 ) )
Hypothesis H23 : SNo (eps_ v * eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__30__15
Beginning of Section Conj_real_mul_SNo_pos__33__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u ) ≤ w * y + x * u
Hypothesis H9 : SNo (w * u )
Hypothesis H10 : SNo (x * u )
Hypothesis H11 : SNo (- (x * u ) )
Hypothesis H12 : SNo (w * y )
Hypothesis H13 : SNo (- (w * y ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__33__1
Beginning of Section Conj_real_mul_SNo_pos__33__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u ) ≤ w * y + x * u
Hypothesis H9 : SNo (w * u )
Hypothesis H10 : SNo (x * u )
Hypothesis H11 : SNo (- (x * u ) )
Hypothesis H12 : SNo (w * y )
Hypothesis H13 : SNo (- (w * y ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ u + - y
Hypothesis H20 : SNo (eps_ v )
Hypothesis H21 : SNo (eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__33__18
Beginning of Section Conj_real_mul_SNo_pos__35__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H4 : SNo z
Hypothesis H5 : z < x * y
Hypothesis H6 : SNo w
Hypothesis H7 : SNo u
Hypothesis H8 : (z + w * u ) ≤ w * y + x * u
Hypothesis H10 : SNo (x * u )
Hypothesis H11 : SNo (- (x * u ) )
Hypothesis H12 : SNo (w * y )
Hypothesis H13 : SNo (- (w * y ) )
Hypothesis H14 : SNo (w + - x )
Hypothesis H15 : SNo (u + - y )
Hypothesis H17 : eps_ v ≤ w + - x
Hypothesis H19 : eps_ x2 ≤ u + - y
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__35__9
Beginning of Section Conj_real_mul_SNo_pos__36__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀v : set , v ∈ SNoR x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - x → P ) → P ) )
Hypothesis H4 : (∀v : set , v ∈ SNoR y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - y → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w ∈ SNoR x
Hypothesis H9 : u ∈ SNoR y
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H12 : (z + w * u ) ≤ w * y + x * u
Hypothesis H13 : SNo (w * u )
Hypothesis H14 : SNo (x * u )
Hypothesis H15 : SNo (- (x * u ) )
Hypothesis H16 : SNo (w * y )
Hypothesis H17 : SNo (- (w * y ) )
Hypothesis H18 : SNo (w + - x )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__36__0
Beginning of Section Conj_real_mul_SNo_pos__39__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀v : set , v ∈ SNoR x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - x → P ) → P ) )
Hypothesis H4 : (∀v : set , v ∈ SNoR y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - y → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w ∈ SNoR x
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H12 : (z + w * u ) ≤ w * y + x * u
Hypothesis H13 : SNo (w * u )
Hypothesis H14 : SNo (x * u )
Hypothesis H15 : SNo (- (x * u ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__39__9
Beginning of Section Conj_real_mul_SNo_pos__39__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀v : set , v ∈ SNoR x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - x → P ) → P ) )
Hypothesis H4 : (∀v : set , v ∈ SNoR y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - y → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w ∈ SNoR x
Hypothesis H9 : u ∈ SNoR y
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H13 : SNo (w * u )
Hypothesis H14 : SNo (x * u )
Hypothesis H15 : SNo (- (x * u ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__39__12
Beginning of Section Conj_real_mul_SNo_pos__41__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀v : set , v ∈ SNoR x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - x → P ) → P ) )
Hypothesis H4 : (∀v : set , v ∈ SNoR y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - y → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w ∈ SNoR x
Hypothesis H9 : u ∈ SNoR y
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H12 : (z + w * u ) ≤ w * y + x * u
Hypothesis H13 : SNo (w * u )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__41__1
Beginning of Section Conj_real_mul_SNo_pos__42__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H4 : (∀v : set , v ∈ SNoR y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ v + - y → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H6 : SNo z
Hypothesis H7 : z < x * y
Hypothesis H8 : w ∈ SNoR x
Hypothesis H9 : u ∈ SNoR y
Hypothesis H10 : SNo w
Hypothesis H11 : SNo u
Hypothesis H12 : (z + w * u ) ≤ w * y + x * u
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__42__3
Beginning of Section Conj_real_mul_SNo_pos__45__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u ) ≤ w * y + x * u
Hypothesis H10 : SNo (w * u )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (- (x * u ) )
Hypothesis H13 : SNo (w * y )
Hypothesis H14 : SNo (- (w * y ) )
Hypothesis H15 : SNo (x + - w )
Hypothesis H16 : SNo (y + - u )
Hypothesis H18 : eps_ v ≤ x + - w
Hypothesis H20 : eps_ x2 ≤ y + - u
Hypothesis H21 : SNo (eps_ v )
Hypothesis H22 : SNo (eps_ x2 )
Hypothesis H23 : SNo (eps_ (v + x2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__45__5
Beginning of Section Conj_real_mul_SNo_pos__45__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u ) ≤ w * y + x * u
Hypothesis H10 : SNo (w * u )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (- (x * u ) )
Hypothesis H13 : SNo (w * y )
Hypothesis H15 : SNo (x + - w )
Hypothesis H16 : SNo (y + - u )
Hypothesis H18 : eps_ v ≤ x + - w
Hypothesis H20 : eps_ x2 ≤ y + - u
Hypothesis H21 : SNo (eps_ v )
Hypothesis H22 : SNo (eps_ x2 )
Hypothesis H23 : SNo (eps_ (v + x2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__45__14
Beginning of Section Conj_real_mul_SNo_pos__46__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u ) ≤ w * y + x * u
Hypothesis H10 : SNo (w * u )
Hypothesis H11 : SNo (x * u )
Hypothesis H13 : SNo (w * y )
Hypothesis H14 : SNo (- (w * y ) )
Hypothesis H15 : SNo (x + - w )
Hypothesis H16 : SNo (y + - u )
Hypothesis H18 : eps_ v ≤ x + - w
Hypothesis H20 : eps_ x2 ≤ y + - u
Hypothesis H21 : SNo (eps_ v )
Hypothesis H22 : SNo (eps_ x2 )
Hypothesis H23 : v + x2 ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__46__12
Beginning of Section Conj_real_mul_SNo_pos__46__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u ) ≤ w * y + x * u
Hypothesis H10 : SNo (w * u )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (- (x * u ) )
Hypothesis H13 : SNo (w * y )
Hypothesis H14 : SNo (- (w * y ) )
Hypothesis H15 : SNo (x + - w )
Hypothesis H16 : SNo (y + - u )
Hypothesis H20 : eps_ x2 ≤ y + - u
Hypothesis H21 : SNo (eps_ v )
Hypothesis H22 : SNo (eps_ x2 )
Hypothesis H23 : v + x2 ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__46__18
Beginning of Section Conj_real_mul_SNo_pos__47__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u ) ≤ w * y + x * u
Hypothesis H10 : SNo (w * u )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (- (x * u ) )
Hypothesis H13 : SNo (w * y )
Hypothesis H14 : SNo (- (w * y ) )
Hypothesis H15 : SNo (x + - w )
Hypothesis H16 : SNo (y + - u )
Hypothesis H18 : eps_ v ≤ x + - w
Hypothesis H20 : eps_ x2 ≤ y + - u
Hypothesis H22 : SNo (eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__47__21
Beginning of Section Conj_real_mul_SNo_pos__48__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀y2 : set , y2 ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ y2 )
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u ) ≤ w * y + x * u
Hypothesis H10 : SNo (w * u )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (- (x * u ) )
Hypothesis H13 : SNo (w * y )
Hypothesis H14 : SNo (- (w * y ) )
Hypothesis H15 : SNo (x + - w )
Hypothesis H16 : SNo (y + - u )
Hypothesis H18 : eps_ v ≤ x + - w
Hypothesis H20 : eps_ x2 ≤ y + - u
Hypothesis H21 : SNo (eps_ v )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__48__19
Beginning of Section Conj_real_mul_SNo_pos__49__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H5 : SNo z
Hypothesis H6 : z < x * y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : (z + w * u ) ≤ w * y + x * u
Hypothesis H10 : SNo (w * u )
Hypothesis H11 : SNo (x * u )
Hypothesis H12 : SNo (- (x * u ) )
Hypothesis H13 : SNo (w * y )
Hypothesis H14 : SNo (- (w * y ) )
Hypothesis H15 : SNo (x + - w )
Hypothesis H16 : SNo (y + - u )
Hypothesis H18 : eps_ v ≤ x + - w
Hypothesis H20 : eps_ x2 ≤ y + - u
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__49__4
Beginning of Section Conj_real_mul_SNo_pos__51__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u ) ≤ w * y + x * u
Hypothesis H14 : SNo (w * u )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (- (x * u ) )
Hypothesis H17 : SNo (w * y )
Hypothesis H18 : SNo (- (w * y ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__51__2
Beginning of Section Conj_real_mul_SNo_pos__53__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u ) ≤ w * y + x * u
Hypothesis H14 : SNo (w * u )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (- (x * u ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__53__0
Beginning of Section Conj_real_mul_SNo_pos__53__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u ) ≤ w * y + x * u
Hypothesis H14 : SNo (w * u )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (- (x * u ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__53__1
Beginning of Section Conj_real_mul_SNo_pos__53__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u ) ≤ w * y + x * u
Hypothesis H14 : SNo (w * u )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (- (x * u ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__53__6
Beginning of Section Conj_real_mul_SNo_pos__53__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w ∈ SNoL x
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u ) ≤ w * y + x * u
Hypothesis H14 : SNo (w * u )
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (- (x * u ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__53__10
Beginning of Section Conj_real_mul_SNo_pos__53__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H8 : z < x * y
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u ) ≤ w * y + x * u
Hypothesis H15 : SNo (x * u )
Hypothesis H16 : SNo (- (x * u ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__53__14
Beginning of Section Conj_real_mul_SNo_pos__55__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ x + - v → P ) → P ) )
Hypothesis H5 : (∀v : set , v ∈ SNoL y → (∀P : prop , (∀x2 : set , x2 ∈ ω → eps_ x2 ≤ y + - v → P ) → P ) )
Hypothesis H6 : (∀v : set , v ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ v )
Hypothesis H7 : SNo z
Hypothesis H9 : w ∈ SNoL x
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : SNo w
Hypothesis H12 : SNo u
Hypothesis H13 : (z + w * u ) ≤ w * y + x * u
Hypothesis H14 : SNo (w * u )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__55__8
Beginning of Section Conj_real_mul_SNo_pos__59__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : eps_ z * x < ordsucc Empty
Hypothesis H4 : eps_ z * y < ordsucc Empty
Hypothesis H6 : w + ordsucc Empty ∈ ω
Hypothesis H7 : w + ordsucc (ordsucc Empty ) ∈ ω
Hypothesis H8 : u < x
Hypothesis H9 : SNo u
Hypothesis H10 : v < y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo (eps_ z )
Hypothesis H13 : SNo (eps_ (w + ordsucc Empty ) )
Hypothesis H14 : SNo (eps_ (w + ordsucc (ordsucc Empty ) ) )
Theorem. (
Conj_real_mul_SNo_pos__59__5 )
SNo (eps_ z * eps_ (w + ordsucc (ordsucc Empty ) ) ) → (u * eps_ z * eps_ (w + ordsucc (ordsucc Empty ) ) + (eps_ z * eps_ (w + ordsucc (ordsucc Empty ) ) ) * v + (eps_ z * eps_ (w + ordsucc (ordsucc Empty ) ) ) * eps_ z * eps_ (w + ordsucc (ordsucc Empty ) ) ) < (eps_ (w + ordsucc (ordsucc Empty ) ) + eps_ (w + ordsucc (ordsucc Empty ) ) ) + eps_ (w + ordsucc Empty )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__59__5
Beginning of Section Conj_real_mul_SNo_pos__69__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ v + - x
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H16 : y2 + z2 ∈ ω
Hypothesis H17 : SNo (eps_ (y2 + z2 ) )
Hypothesis H18 : SNo (- (eps_ (y2 + z2 ) ) )
Hypothesis H19 : SNo (ap w (y2 + z2 ) )
Hypothesis H20 : SNo (v * y )
Hypothesis H22 : SNo (- (v * x2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__69__21
Beginning of Section Conj_real_mul_SNo_pos__70__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ v + - x
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H16 : y2 + z2 ∈ ω
Hypothesis H17 : SNo (eps_ (y2 + z2 ) )
Hypothesis H18 : SNo (- (eps_ (y2 + z2 ) ) )
Hypothesis H19 : SNo (ap w (y2 + z2 ) )
Hypothesis H20 : SNo (v * y )
Hypothesis H21 : SNo (x * x2 )
Hypothesis H22 : SNo (v * x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__70__1
Beginning of Section Conj_real_mul_SNo_pos__71__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ v + - x
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H16 : y2 + z2 ∈ ω
Hypothesis H17 : SNo (eps_ (y2 + z2 ) )
Hypothesis H18 : SNo (- (eps_ (y2 + z2 ) ) )
Hypothesis H19 : SNo (ap w (y2 + z2 ) )
Hypothesis H20 : SNo (v * y )
Hypothesis H21 : SNo (x * x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__71__3
Beginning of Section Conj_real_mul_SNo_pos__71__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ v + - x
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H16 : y2 + z2 ∈ ω
Hypothesis H17 : SNo (eps_ (y2 + z2 ) )
Hypothesis H19 : SNo (ap w (y2 + z2 ) )
Hypothesis H20 : SNo (v * y )
Hypothesis H21 : SNo (x * x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__71__18
Beginning of Section Conj_real_mul_SNo_pos__72__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H16 : y2 + z2 ∈ ω
Hypothesis H17 : SNo (eps_ (y2 + z2 ) )
Hypothesis H18 : SNo (- (eps_ (y2 + z2 ) ) )
Hypothesis H19 : SNo (ap w (y2 + z2 ) )
Hypothesis H20 : SNo (v * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__72__9
Beginning of Section Conj_real_mul_SNo_pos__72__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ v + - x
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H16 : y2 + z2 ∈ ω
Hypothesis H17 : SNo (eps_ (y2 + z2 ) )
Hypothesis H18 : SNo (- (eps_ (y2 + z2 ) ) )
Hypothesis H19 : SNo (ap w (y2 + z2 ) )
Hypothesis H20 : SNo (v * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__72__13
Beginning of Section Conj_real_mul_SNo_pos__73__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ v + - x
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H17 : SNo (eps_ (y2 + z2 ) )
Hypothesis H18 : SNo (- (eps_ (y2 + z2 ) ) )
Hypothesis H19 : SNo (ap w (y2 + z2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__73__16
Beginning of Section Conj_real_mul_SNo_pos__76__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H10 : eps_ y2 ≤ v + - x
Hypothesis H12 : eps_ z2 ≤ y + - x2
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H17 : y2 + z2 ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__76__16
Beginning of Section Conj_real_mul_SNo_pos__77__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H12 : eps_ z2 ≤ y + - x2
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H16 : SNo (eps_ z2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__77__10
Beginning of Section Conj_real_mul_SNo_pos__84__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ x + - v
Hypothesis H11 : eps_ z2 ≤ x2 + - y
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H16 : y2 + z2 ∈ ω
Hypothesis H17 : SNo (eps_ (y2 + z2 ) )
Hypothesis H18 : SNo (- (eps_ (y2 + z2 ) ) )
Hypothesis H19 : SNo (ap w (y2 + z2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__84__2
Beginning of Section Conj_real_mul_SNo_pos__85__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H10 : eps_ y2 ≤ x + - v
Hypothesis H12 : eps_ z2 ≤ x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H16 : SNo (eps_ z2 )
Hypothesis H17 : y2 + z2 ∈ ω
Hypothesis H18 : SNo (eps_ (y2 + z2 ) )
Hypothesis H19 : SNo (- (eps_ (y2 + z2 ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__85__6
Beginning of Section Conj_real_mul_SNo_pos__85__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H10 : eps_ y2 ≤ x + - v
Hypothesis H12 : eps_ z2 ≤ x2 + - y
Hypothesis H13 : SNo v
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H16 : SNo (eps_ z2 )
Hypothesis H17 : y2 + z2 ∈ ω
Hypothesis H18 : SNo (eps_ (y2 + z2 ) )
Hypothesis H19 : SNo (- (eps_ (y2 + z2 ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__85__14
Beginning of Section Conj_real_mul_SNo_pos__85__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H10 : eps_ y2 ≤ x + - v
Hypothesis H12 : eps_ z2 ≤ x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H16 : SNo (eps_ z2 )
Hypothesis H17 : y2 + z2 ∈ ω
Hypothesis H18 : SNo (eps_ (y2 + z2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__85__19
Beginning of Section Conj_real_mul_SNo_pos__86__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H10 : eps_ y2 ≤ x + - v
Hypothesis H12 : eps_ z2 ≤ x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H16 : SNo (eps_ z2 )
Hypothesis H17 : y2 + z2 ∈ ω
Hypothesis H18 : SNo (eps_ (y2 + z2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__86__4
Beginning of Section Conj_real_mul_SNo_pos__86__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H10 : eps_ y2 ≤ x + - v
Hypothesis H12 : eps_ z2 ≤ x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H16 : SNo (eps_ z2 )
Hypothesis H17 : y2 + z2 ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__86__18
Beginning of Section Conj_real_mul_SNo_pos__87__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H10 : eps_ y2 ≤ x + - v
Hypothesis H12 : eps_ z2 ≤ x2 + - y
Hypothesis H13 : SNo v
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H16 : SNo (eps_ z2 )
Hypothesis H17 : y2 + z2 ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__87__14
Beginning of Section Conj_real_mul_SNo_pos__88__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H12 : eps_ z2 ≤ x2 + - y
Hypothesis H13 : SNo v
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo (eps_ y2 )
Hypothesis H16 : SNo (eps_ z2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__88__10
Beginning of Section Conj_real_mul_SNo_pos__90__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (- (x * y ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → SNo (ap w w2 ) )
Hypothesis H5 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) < ap w w2 )
Hypothesis H7 : (∀w2 : set , w2 ∈ ω → (ap w w2 + - (eps_ w2 ) ) < x * y )
Hypothesis H8 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H10 : eps_ y2 ≤ x + - v
Hypothesis H12 : eps_ z2 ≤ x2 + - y
Hypothesis H13 : SNo v
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__90__14
Beginning of Section Conj_real_mul_SNo_pos__93__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H6 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H8 : eps_ y2 ≤ v + - x
Hypothesis H10 : eps_ z2 ≤ x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H14 : SNo (eps_ z2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H16 : SNo (eps_ (y2 + z2 ) )
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Hypothesis H18 : SNo (v * y )
Hypothesis H19 : SNo (x * x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__93__1
Beginning of Section Conj_real_mul_SNo_pos__93__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H6 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H8 : eps_ y2 ≤ v + - x
Hypothesis H10 : eps_ z2 ≤ x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H14 : SNo (eps_ z2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Hypothesis H18 : SNo (v * y )
Hypothesis H19 : SNo (x * x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__93__16
Beginning of Section Conj_real_mul_SNo_pos__94__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H8 : eps_ y2 ≤ v + - x
Hypothesis H10 : eps_ z2 ≤ x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H14 : SNo (eps_ z2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H16 : SNo (eps_ (y2 + z2 ) )
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Hypothesis H18 : SNo (v * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__94__6
Beginning of Section Conj_real_mul_SNo_pos__94__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H6 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H8 : eps_ y2 ≤ v + - x
Hypothesis H10 : eps_ z2 ≤ x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H14 : SNo (eps_ z2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H16 : SNo (eps_ (y2 + z2 ) )
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Hypothesis H18 : SNo (v * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__94__7
Beginning of Section Conj_real_mul_SNo_pos__95__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H6 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H8 : eps_ y2 ≤ v + - x
Hypothesis H10 : eps_ z2 ≤ x2 + - y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H16 : SNo (eps_ (y2 + z2 ) )
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__95__14
Beginning of Section Conj_real_mul_SNo_pos__100__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀w2 : set , w2 ∈ ω → SNo (ap z w2 ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H11 : eps_ z2 ≤ x2 + - y
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__100__9
Beginning of Section Conj_real_mul_SNo_pos__100__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀w2 : set , w2 ∈ ω → SNo (ap z w2 ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ v + - x
Hypothesis H11 : eps_ z2 ≤ x2 + - y
Hypothesis H12 : SNo v
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__100__13
Beginning of Section Conj_real_mul_SNo_pos__101__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H6 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H8 : eps_ y2 ≤ x + - v
Hypothesis H10 : eps_ z2 ≤ y + - x2
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H14 : SNo (eps_ z2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H16 : SNo (eps_ (y2 + z2 ) )
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Hypothesis H18 : SNo (v * y )
Hypothesis H19 : SNo (x * x2 )
Hypothesis H20 : SNo (- (v * x2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__101__1
Beginning of Section Conj_real_mul_SNo_pos__101__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H6 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H8 : eps_ y2 ≤ x + - v
Hypothesis H10 : eps_ z2 ≤ y + - x2
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H14 : SNo (eps_ z2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H16 : SNo (eps_ (y2 + z2 ) )
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Hypothesis H18 : SNo (v * y )
Hypothesis H19 : SNo (x * x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__101__20
Beginning of Section Conj_real_mul_SNo_pos__104__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H6 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H8 : eps_ y2 ≤ x + - v
Hypothesis H10 : eps_ z2 ≤ y + - x2
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H14 : SNo (eps_ z2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H16 : SNo (eps_ (y2 + z2 ) )
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Hypothesis H18 : SNo (v * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__104__4
Beginning of Section Conj_real_mul_SNo_pos__105__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H4 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H8 : eps_ y2 ≤ x + - v
Hypothesis H10 : eps_ z2 ≤ y + - x2
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (eps_ y2 )
Hypothesis H14 : SNo (eps_ z2 )
Hypothesis H15 : y2 + z2 ∈ ω
Hypothesis H16 : SNo (eps_ (y2 + z2 ) )
Hypothesis H17 : SNo (ap z (y2 + z2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__105__6
Beginning of Section Conj_real_mul_SNo_pos__106__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀w2 : set , w2 ∈ ω → SNo (ap z w2 ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ x + - v
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Hypothesis H16 : y2 + z2 ∈ ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__106__17
Beginning of Section Conj_real_mul_SNo_pos__107__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀w2 : set , w2 ∈ ω → SNo (ap z w2 ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ x + - v
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__107__16
Beginning of Section Conj_real_mul_SNo_pos__108__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀w2 : set , w2 ∈ ω → SNo (ap z w2 ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ x + - v
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__108__6
Beginning of Section Conj_real_mul_SNo_pos__108__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H3 : (∀w2 : set , w2 ∈ ω → SNo (ap z w2 ) )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ x + - v
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Hypothesis H15 : SNo (eps_ z2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__108__11
Beginning of Section Conj_real_mul_SNo_pos__109__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Variable z2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y )
Hypothesis H4 : SNo (SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H5 : (∀w2 : set , w2 ∈ ω → ap z w2 < SNoCut (Repl ω (ap z ) ) (Repl ω (ap w ) ) )
Hypothesis H6 : (∀w2 : set , w2 ∈ ω → x * y < ap z w2 + eps_ w2 )
Hypothesis H7 : u = v * y + x * x2 + - (v * x2 )
Hypothesis H9 : eps_ y2 ≤ x + - v
Hypothesis H11 : eps_ z2 ≤ y + - x2
Hypothesis H12 : SNo v
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo (eps_ y2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__109__3
Beginning of Section Conj_real_mul_SNo_pos__111__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H19 : SNoCutP (Repl ω (ap u ) ) (Repl ω (ap v ) )
Hypothesis H20 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H21 : (∀x2 : set , x2 ∈ ω → ap u x2 < SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__111__23
Beginning of Section Conj_real_mul_SNo_pos__112__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H20 : SNoCutP (Repl ω (ap u ) ) (Repl ω (ap v ) )
Hypothesis H21 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → ap u x2 < SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → x * y < ap u x2 + eps_ x2 )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__112__11
Beginning of Section Conj_real_mul_SNo_pos__112__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H20 : SNoCutP (Repl ω (ap u ) ) (Repl ω (ap v ) )
Hypothesis H21 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → x * y < ap u x2 + eps_ x2 )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H26 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__112__22
Beginning of Section Conj_real_mul_SNo_pos__113__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H15 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H20 : SNoCutP (Repl ω (ap u ) ) (Repl ω (ap v ) )
Hypothesis H21 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H22 : (∀x2 : set , x2 ∈ ω → ap u x2 < SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → x * y < ap u x2 + eps_ x2 )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__113__6
Beginning of Section Conj_real_mul_SNo_pos__114__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H21 : SNoCutP (Repl ω (ap u ) ) (Repl ω (ap v ) )
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap u x2 < SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → x * y < ap u x2 + eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__114__6
Beginning of Section Conj_real_mul_SNo_pos__114__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap u x2 < SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Hypothesis H25 : (∀x2 : set , x2 ∈ ω → x * y < ap u x2 + eps_ x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__114__21
Beginning of Section Conj_real_mul_SNo_pos__114__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H21 : SNoCutP (Repl ω (ap u ) ) (Repl ω (ap v ) )
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap u x2 < SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__114__25
Beginning of Section Conj_real_mul_SNo_pos__115__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H21 : SNoCutP (Repl ω (ap u ) ) (Repl ω (ap v ) )
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap u x2 < SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__115__11
Beginning of Section Conj_real_mul_SNo_pos__115__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Hypothesis H22 : SNo (SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H23 : (∀x2 : set , x2 ∈ ω → ap u x2 < SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) )
Hypothesis H24 : (∀x2 : set , x2 ∈ ω → SNoCut (Repl ω (ap u ) ) (Repl ω (ap v ) ) < ap v x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__115__21
Beginning of Section Conj_real_mul_SNo_pos__116__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__116__0
Beginning of Section Conj_real_mul_SNo_pos__116__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Hypothesis H20 : (∀x2 : set , x2 ∈ ω → x * y < ap v x2 )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__116__5
Beginning of Section Conj_real_mul_SNo_pos__117__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__117__0
Beginning of Section Conj_real_mul_SNo_pos__117__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Hypothesis H18 : (∀x2 : set , x2 ∈ ω → SNo (ap v x2 ) )
Hypothesis H19 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__117__15
Beginning of Section Conj_real_mul_SNo_pos__118__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : ¬ x * y ∈ real
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo (x * y )
Hypothesis H4 : SNo (- (x * y ) )
Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x + - x2 → P ) → P ) )
Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR x → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - x → P ) → P ) )
Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ y + - x2 → P ) → P ) )
Hypothesis H8 : (∀x2 : set , x2 ∈ SNoR y → (∀P : prop , (∀y2 : set , y2 ∈ ω → eps_ y2 ≤ x2 + - y → P ) → P ) )
Hypothesis H9 : SNoCutP z w
Hypothesis H10 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H11 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
Hypothesis H12 : x * y = SNoCut z w
Hypothesis H13 : u ∈ setexp (SNoS_ ω ) ω
Hypothesis H14 : (∀x2 : set , x2 ∈ ω → ap u x2 < x * y ∧ x * y < ap u x2 + eps_ x2 ∧ (∀y2 : set , y2 ∈ x2 → ap u y2 < ap u x2 ) )
Hypothesis H15 : v ∈ setexp (SNoS_ ω ) ω
Hypothesis H16 : (∀x2 : set , x2 ∈ ω → (ap v x2 + - (eps_ x2 ) ) < x * y ∧ x * y < ap v x2 ∧ (∀y2 : set , y2 ∈ x2 → ap v x2 < ap v y2 ) )
Hypothesis H17 : (∀x2 : set , x2 ∈ ω → SNo (ap u x2 ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__118__18
Beginning of Section Conj_real_mul_SNo_pos__123__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H3 : SNo x
Hypothesis H4 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H5 : x < ω
Hypothesis H6 : SNo y
Hypothesis H7 : y ∈ SNoS_ (ordsucc ω )
Hypothesis H8 : y < ω
Hypothesis H9 : (∀u : set , u ∈ ω → (∀P : prop , (∀v : set , v ∈ SNoS_ ω → Empty < v → v < x → x < v + eps_ u → P ) → P ) )
Hypothesis H10 : (∀u : set , u ∈ ω → (∀P : prop , (∀v : set , v ∈ SNoS_ ω → Empty < v → v < y → y < v + eps_ u → P ) → P ) )
Hypothesis H11 : SNo (x * y )
Hypothesis H12 : SNo (- (x * y ) )
Hypothesis H13 : (∀u : set , SNo u → SNoLev u ∈ ω → SNoLev u ∈ SNoLev (x * y ) )
Hypothesis H14 : (∀u : set , u ∈ SNoL x → (∀P : prop , (∀v : set , v ∈ ω → eps_ v ≤ x + - u → P ) → P ) )
Hypothesis H15 : (∀u : set , u ∈ SNoR x → (∀P : prop , (∀v : set , v ∈ ω → eps_ v ≤ u + - x → P ) → P ) )
Hypothesis H16 : (∀u : set , u ∈ SNoL y → (∀P : prop , (∀v : set , v ∈ ω → eps_ v ≤ y + - u → P ) → P ) )
Hypothesis H17 : (∀u : set , u ∈ SNoR y → (∀P : prop , (∀v : set , v ∈ ω → eps_ v ≤ u + - y → P ) → P ) )
Hypothesis H18 : SNoCutP z w
Hypothesis H19 : (∀u : set , u ∈ z → (∀P : prop , (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2 ) → P ) ) → (∀v : set , v ∈ SNoR x → (∀x2 : set , x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2 ) → P ) ) → P ) )
Hypothesis H20 : (∀u : set , u ∈ w → (∀P : prop , (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2 ) → P ) ) → (∀v : set , v ∈ SNoR x → (∀x2 : set , x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2 ) → P ) ) → P ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__123__21
Beginning of Section Conj_real_mul_SNo_pos__127__3
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H4 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H5 : x < ω
Hypothesis H6 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H7 : SNo y
Hypothesis H8 : y ∈ SNoS_ (ordsucc ω )
Hypothesis H9 : y < ω
Hypothesis H10 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - y ) < eps_ w ) → z = y )
Hypothesis H11 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < x → x < w + eps_ z → P ) → P ) )
Hypothesis H12 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < y → y < w + eps_ z → P ) → P ) )
Hypothesis H13 : SNo (x * y )
Hypothesis H14 : SNo (- (x * y ) )
Hypothesis H15 : (∀z : set , SNo z → SNoLev z ∈ ω → SNoLev z ∈ SNoLev (x * y ) )
Hypothesis H16 : Subq (SNoL x ) (SNoS_ ω )
Hypothesis H17 : Subq (SNoR x ) (SNoS_ ω )
Hypothesis H18 : Subq (SNoL y ) (SNoS_ ω )
Hypothesis H19 : Subq (SNoR y ) (SNoS_ ω )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__127__3
Beginning of Section Conj_real_mul_SNo_pos__129__4
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H3 : SNo x
Hypothesis H5 : x < ω
Hypothesis H6 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H7 : SNo y
Hypothesis H8 : SNoLev y ∈ ordsucc ω
Hypothesis H9 : y ∈ SNoS_ (ordsucc ω )
Hypothesis H10 : y < ω
Hypothesis H11 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - y ) < eps_ w ) → z = y )
Hypothesis H12 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < x → x < w + eps_ z → P ) → P ) )
Hypothesis H13 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < y → y < w + eps_ z → P ) → P ) )
Hypothesis H14 : SNo (x * y )
Hypothesis H15 : SNo (- (x * y ) )
Hypothesis H16 : (∀z : set , SNo z → SNoLev z ∈ ω → SNoLev z ∈ SNoLev (x * y ) )
Hypothesis H17 : Subq (SNoL x ) (SNoS_ ω )
Hypothesis H18 : Subq (SNoR x ) (SNoS_ ω )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__129__4
Beginning of Section Conj_real_mul_SNo_pos__130__0
Variable x : set
Variable y : set
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x ∈ ordsucc ω
Hypothesis H5 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ∈ ordsucc ω
Hypothesis H10 : y ∈ SNoS_ (ordsucc ω )
Hypothesis H11 : y < ω
Hypothesis H12 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - y ) < eps_ w ) → z = y )
Hypothesis H13 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < x → x < w + eps_ z → P ) → P ) )
Hypothesis H14 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < y → y < w + eps_ z → P ) → P ) )
Hypothesis H15 : SNo (x * y )
Hypothesis H16 : SNo (- (x * y ) )
Hypothesis H17 : (∀z : set , SNo z → SNoLev z ∈ ω → SNoLev z ∈ SNoLev (x * y ) )
Hypothesis H18 : Subq (SNoL x ) (SNoS_ ω )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__130__0
Beginning of Section Conj_real_mul_SNo_pos__132__4
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H3 : SNo x
Hypothesis H5 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ∈ ordsucc ω
Hypothesis H10 : y ∈ SNoS_ (ordsucc ω )
Hypothesis H11 : y < ω
Hypothesis H12 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - y ) < eps_ w ) → z = y )
Hypothesis H13 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < x → x < w + eps_ z → P ) → P ) )
Hypothesis H14 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < y → y < w + eps_ z → P ) → P ) )
Hypothesis H15 : SNo (x * y )
Hypothesis H16 : SNo (- (x * y ) )
Hypothesis H17 : nIn (SNoLev (x * y ) ) ω
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__132__4
Beginning of Section Conj_real_mul_SNo_pos__133__12
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x ∈ ordsucc ω
Hypothesis H5 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ∈ ordsucc ω
Hypothesis H10 : y ∈ SNoS_ (ordsucc ω )
Hypothesis H11 : y < ω
Hypothesis H13 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < x → x < w + eps_ z → P ) → P ) )
Hypothesis H14 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < y → y < w + eps_ z → P ) → P ) )
Hypothesis H15 : SNo (x * y )
Hypothesis H16 : SNo (- (x * y ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__133__12
Beginning of Section Conj_real_mul_SNo_pos__135__10
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x ∈ ordsucc ω
Hypothesis H5 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ∈ ordsucc ω
Hypothesis H11 : y < ω
Hypothesis H12 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - y ) < eps_ w ) → z = y )
Hypothesis H13 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < x → x < w + eps_ z → P ) → P ) )
Hypothesis H14 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < y → y < w + eps_ z → P ) → P ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__135__10
Beginning of Section Conj_real_mul_SNo_pos__136__12
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x ∈ ordsucc ω
Hypothesis H5 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H8 : SNo y
Hypothesis H9 : SNoLev y ∈ ordsucc ω
Hypothesis H10 : y ∈ SNoS_ (ordsucc ω )
Hypothesis H11 : y < ω
Hypothesis H13 : (∀z : set , z ∈ ω → (∃w : set , w ∈ SNoS_ ω ∧ (w < y ∧ y < w + eps_ z ) ) )
Hypothesis H14 : (∀z : set , z ∈ ω → (∀P : prop , (∀w : set , w ∈ SNoS_ ω → Empty < w → w < x → x < w + eps_ z → P ) → P ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__136__12
Beginning of Section Conj_real_mul_SNo_pos__137__4
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : Empty < y
Hypothesis H2 : ¬ x * y ∈ real
Hypothesis H3 : SNo x
Hypothesis H5 : x ∈ SNoS_ (ordsucc ω )
Hypothesis H6 : x < ω
Hypothesis H7 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - x ) < eps_ w ) → z = x )
Hypothesis H8 : (∀z : set , z ∈ ω → (∃w : set , w ∈ SNoS_ ω ∧ (w < x ∧ x < w + eps_ z ) ) )
Hypothesis H9 : SNo y
Hypothesis H10 : SNoLev y ∈ ordsucc ω
Hypothesis H11 : y ∈ SNoS_ (ordsucc ω )
Hypothesis H12 : y < ω
Hypothesis H13 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - y ) < eps_ w ) → z = y )
Hypothesis H14 : (∀z : set , z ∈ ω → (∃w : set , w ∈ SNoS_ ω ∧ (w < y ∧ y < w + eps_ z ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_mul_SNo_pos__137__4
Beginning of Section Conj_abs_SNo_intvl_bd__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : y < x + z
Hypothesis H4 : Empty ≤ y + - x
Proof: Load proof Proof not loaded.
End of Section Conj_abs_SNo_intvl_bd__1__1
Beginning of Section Conj_pos_small_real_recip_ex__6__9
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : x < ordsucc Empty
Hypothesis H1 : SNo x
Hypothesis H2 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H3 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) → SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) < w )
Hypothesis H4 : y ∈ SNoS_ ω
Hypothesis H5 : (∀w : set , w ∈ ω → abs_SNo (y + - (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) ) ) < eps_ w )
Hypothesis H6 : SNo y
Hypothesis H7 : SNo (x * y )
Hypothesis H8 : SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < y
Hypothesis H10 : ordsucc Empty ≤ x * y + - (eps_ z )
Theorem. (
Conj_pos_small_real_recip_ex__6__9 )
¬ SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < y + - (eps_ z )
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__6__9
Beginning of Section Conj_pos_small_real_recip_ex__8__0
Variable x : set
Variable y : set
Hypothesis H1 : ¬ (∃z : set , z ∈ real ∧ x * z = ordsucc Empty )
Hypothesis H2 : SNo x
Hypothesis H3 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H4 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) → z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H5 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z )
Hypothesis H6 : y ∈ SNoS_ ω
Hypothesis H7 : (∀z : set , z ∈ ω → abs_SNo (y + - (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ z )
Hypothesis H8 : SNo y
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ w ) → z = x * y )
Hypothesis H12 : x * y < ordsucc Empty → (∃z : set , z ∈ ω ∧ (x * y + eps_ z ) ≤ ordsucc Empty )
Theorem. (
Conj_pos_small_real_recip_ex__8__0 )
(ordsucc Empty < x * y → (∃z : set , z ∈ ω ∧ ordsucc Empty ≤ x * y + - (eps_ z ) ) ) → y = SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) )
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__8__0
Beginning of Section Conj_pos_small_real_recip_ex__9__3
Variable x : set
Variable y : set
Hypothesis H0 : x < ordsucc Empty
Hypothesis H1 : ¬ (∃z : set , z ∈ real ∧ x * z = ordsucc Empty )
Hypothesis H2 : SNo x
Hypothesis H4 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) → z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H5 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z )
Hypothesis H6 : y ∈ SNoS_ ω
Hypothesis H7 : (∀z : set , z ∈ ω → abs_SNo (y + - (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ z )
Hypothesis H8 : SNo y
Hypothesis H10 : SNo (x * y )
Hypothesis H11 : (∀z : set , z ∈ SNoS_ ω → (∀w : set , w ∈ ω → abs_SNo (z + - (x * y ) ) < eps_ w ) → z = x * y )
Hypothesis H12 : SNo (- (x * y ) )
Theorem. (
Conj_pos_small_real_recip_ex__9__3 )
(x * y < ordsucc Empty → (∃z : set , z ∈ ω ∧ (x * y + eps_ z ) ≤ ordsucc Empty ) ) → y = SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) )
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__9__3
Beginning of Section Conj_pos_small_real_recip_ex__11__1
Variable x : set
Variable y : set
Hypothesis H2 : ¬ (∃z : set , z ∈ real ∧ x * z = ordsucc Empty )
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) → z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z )
Hypothesis H7 : y ∈ SNoS_ ω
Hypothesis H8 : (∀z : set , z ∈ ω → abs_SNo (y + - (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ z )
Hypothesis H9 : SNo y
Hypothesis H10 : y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__11__1
Beginning of Section Conj_pos_small_real_recip_ex__11__2
Variable x : set
Variable y : set
Hypothesis H1 : x < ordsucc Empty
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) → z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z )
Hypothesis H7 : y ∈ SNoS_ ω
Hypothesis H8 : (∀z : set , z ∈ ω → abs_SNo (y + - (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ z )
Hypothesis H9 : SNo y
Hypothesis H10 : y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__11__2
Beginning of Section Conj_pos_small_real_recip_ex__11__7
Variable x : set
Variable y : set
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃z : set , z ∈ real ∧ x * z = ordsucc Empty )
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) → z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z )
Hypothesis H8 : (∀z : set , z ∈ ω → abs_SNo (y + - (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ z )
Hypothesis H9 : SNo y
Hypothesis H10 : y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__11__7
Beginning of Section Conj_pos_small_real_recip_ex__12__0
Variable x : set
Variable y : set
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃z : set , z ∈ real ∧ x * z = ordsucc Empty )
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) → z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z )
Hypothesis H7 : y ∈ SNoS_ ω
Hypothesis H8 : (∀z : set , z ∈ ω → abs_SNo (y + - (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ z )
Hypothesis H9 : SNo y
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__12__0
Beginning of Section Conj_pos_small_real_recip_ex__12__9
Variable x : set
Variable y : set
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃z : set , z ∈ real ∧ x * z = ordsucc Empty )
Hypothesis H3 : SNo x
Hypothesis H4 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) → z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z )
Hypothesis H7 : y ∈ SNoS_ ω
Hypothesis H8 : (∀z : set , z ∈ ω → abs_SNo (y + - (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ z )
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__12__9
Beginning of Section Conj_pos_small_real_recip_ex__13__3
Variable x : set
Variable y : set
Hypothesis H0 : Empty < x
Hypothesis H1 : SNo x
Hypothesis H2 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : eps_ y ≤ x
Hypothesis H6 : nat_p (exp_SNo_nat (ordsucc (ordsucc Empty ) ) y )
Hypothesis H7 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) y )
Theorem. (
Conj_pos_small_real_recip_ex__13__3 )
exp_SNo_nat (ordsucc (ordsucc Empty ) ) y + ordsucc Empty ∈ ω → SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) < ω
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__13__3
Beginning of Section Conj_pos_small_real_recip_ex__17__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) → w < SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) )
Hypothesis H4 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) → SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) < w )
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H9 : z ∈ SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) )
Hypothesis H11 : SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z + eps_ (ordsucc y )
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z )
Hypothesis H14 : SNo (eps_ (ordsucc y ) )
Hypothesis H15 : SNo (x * eps_ (ordsucc y ) )
Hypothesis H16 : SNo (z + eps_ (ordsucc y ) )
Hypothesis H17 : SNo (ordsucc Empty + - (x * z ) )
Hypothesis H18 : SNo (x * z + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) )
Theorem. (
Conj_pos_small_real_recip_ex__17__1 )
x * (z + eps_ (ordsucc y ) ) < x * z + eps_ (ordsucc y ) → abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ y
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__17__1
Beginning of Section Conj_pos_small_real_recip_ex__17__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) → w < SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) )
Hypothesis H4 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) → SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) < w )
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H9 : z ∈ SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) )
Hypothesis H11 : SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z + eps_ (ordsucc y )
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z )
Hypothesis H14 : SNo (eps_ (ordsucc y ) )
Hypothesis H15 : SNo (x * eps_ (ordsucc y ) )
Hypothesis H16 : SNo (z + eps_ (ordsucc y ) )
Hypothesis H17 : SNo (ordsucc Empty + - (x * z ) )
Hypothesis H18 : SNo (x * z + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) )
Theorem. (
Conj_pos_small_real_recip_ex__17__6 )
x * (z + eps_ (ordsucc y ) ) < x * z + eps_ (ordsucc y ) → abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ y
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__17__6
Beginning of Section Conj_pos_small_real_recip_ex__17__7
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) → w < SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) )
Hypothesis H4 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) → SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) < w )
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H9 : z ∈ SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) )
Hypothesis H11 : SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z + eps_ (ordsucc y )
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z )
Hypothesis H14 : SNo (eps_ (ordsucc y ) )
Hypothesis H15 : SNo (x * eps_ (ordsucc y ) )
Hypothesis H16 : SNo (z + eps_ (ordsucc y ) )
Hypothesis H17 : SNo (ordsucc Empty + - (x * z ) )
Hypothesis H18 : SNo (x * z + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) )
Theorem. (
Conj_pos_small_real_recip_ex__17__7 )
x * (z + eps_ (ordsucc y ) ) < x * z + eps_ (ordsucc y ) → abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ y
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__17__7
Beginning of Section Conj_pos_small_real_recip_ex__18__8
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) → w < SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) )
Hypothesis H4 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) → SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) < w )
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H9 : z ∈ SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) )
Hypothesis H11 : SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z + eps_ (ordsucc y )
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z )
Hypothesis H14 : SNo (eps_ (ordsucc y ) )
Hypothesis H15 : SNo (x * eps_ (ordsucc y ) )
Hypothesis H16 : SNo (z + eps_ (ordsucc y ) )
Hypothesis H17 : SNo (ordsucc Empty + - (x * z ) )
Theorem. (
Conj_pos_small_real_recip_ex__18__8 )
SNo (x * z + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) → abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ y
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__18__8
Beginning of Section Conj_pos_small_real_recip_ex__19__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H3 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) → w < SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) )
Hypothesis H4 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) → SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) < w )
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H9 : z ∈ SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) )
Hypothesis H11 : SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z + eps_ (ordsucc y )
Hypothesis H12 : SNo z
Hypothesis H13 : SNo (x * z )
Hypothesis H14 : SNo (eps_ (ordsucc y ) )
Hypothesis H15 : SNo (x * eps_ (ordsucc y ) )
Hypothesis H16 : SNo (z + eps_ (ordsucc y ) )
Theorem. (
Conj_pos_small_real_recip_ex__19__2 )
SNo (ordsucc Empty + - (x * z ) ) → abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ y
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__19__2
Beginning of Section Conj_pos_small_real_recip_ex__23__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : SNo x
Hypothesis H3 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) → w < SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) )
Hypothesis H4 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) → SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ x * u < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ordsucc Empty < x * u ) ) < w )
Hypothesis H5 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H6 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H7 : SNo (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) )
Hypothesis H9 : z ∈ SNoS_ ω
Hypothesis H10 : z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) )
Hypothesis H11 : SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z + eps_ (ordsucc y )
Hypothesis H12 : SNo z
Theorem. (
Conj_pos_small_real_recip_ex__23__0 )
SNo (x * z ) → abs_SNo (ordsucc Empty + - (x * SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ) ) < eps_ y
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__23__0
Beginning of Section Conj_pos_small_real_recip_ex__24__3
Variable x : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃y : set , y ∈ real ∧ x * y = ordsucc Empty )
Hypothesis H4 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) → y < SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) → SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) < y )
Hypothesis H6 : SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) ∈ real
Hypothesis H7 : SNo (SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) )
Hypothesis H8 : (∀y : set , y ∈ ω → (∃z : set , z ∈ SNoS_ ω ∧ (z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ∧ SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z + eps_ y ) ) )
Hypothesis H9 : x * SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__24__3
Beginning of Section Conj_pos_small_real_recip_ex__24__8
Variable x : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃y : set , y ∈ real ∧ x * y = ordsucc Empty )
Hypothesis H3 : SNo x
Hypothesis H4 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) → y < SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) → SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) < y )
Hypothesis H6 : SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) ∈ real
Hypothesis H7 : SNo (SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) )
Hypothesis H9 : x * SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__24__8
Beginning of Section Conj_pos_small_real_recip_ex__24__9
Variable x : set
Hypothesis H0 : Empty < x
Hypothesis H1 : x < ordsucc Empty
Hypothesis H2 : ¬ (∃y : set , y ∈ real ∧ x * y = ordsucc Empty )
Hypothesis H3 : SNo x
Hypothesis H4 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) → y < SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H5 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) → SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) < y )
Hypothesis H6 : SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) ∈ real
Hypothesis H7 : SNo (SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) )
Hypothesis H8 : (∀y : set , y ∈ ω → (∃z : set , z ∈ SNoS_ ω ∧ (z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) ∧ SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ x * w < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ordsucc Empty < x * w ) ) < z + eps_ y ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__24__9
Beginning of Section Conj_pos_small_real_recip_ex__26__3
Variable x : set
Hypothesis H1 : Empty < x
Hypothesis H2 : x < ordsucc Empty
Hypothesis H4 : SNo x
Hypothesis H5 : (∀y : set , y ∈ SNoS_ ω → (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z ) → y = x )
Hypothesis H6 : SNo (SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) )
Hypothesis H7 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) → y < SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) )
Hypothesis H8 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) → SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ x * z < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) ) < y )
Hypothesis H9 : SNoCut (Sep (SNoS_ ω ) (λy : set ⇒ x * y < ordsucc Empty ) ) (Sep (SNoS_ ω ) (λy : set ⇒ ordsucc Empty < x * y ) ) ∈ SNoS_ (ordsucc ω )
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__26__3
Beginning of Section Conj_pos_small_real_recip_ex__28__6
Variable x : set
Hypothesis H1 : Empty < x
Hypothesis H2 : x < ordsucc Empty
Hypothesis H3 : ¬ (∃y : set , y ∈ real ∧ x * y = ordsucc Empty )
Hypothesis H4 : SNo x
Hypothesis H5 : (∀y : set , y ∈ SNoS_ ω → (∀z : set , z ∈ ω → abs_SNo (y + - x ) < eps_ z ) → y = x )
Hypothesis H7 : (∀y : set , y ∈ Sep (SNoS_ ω ) (λz : set ⇒ ordsucc Empty < x * z ) → (∀P : prop , (SNo y → SNoLev y ∈ ω → ordsucc Empty < x * y → P ) → P ) )
Proof: Load proof Proof not loaded.
End of Section Conj_pos_small_real_recip_ex__28__6
Beginning of Section Conj_pos_real_recip_ex__1__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Proof: Load proof Proof not loaded.
End of Section Conj_pos_real_recip_ex__1__3
Beginning of Section Conj_pos_real_recip_ex__2__4
Variable x : set
Variable y : set
Hypothesis H1 : Empty < x
Hypothesis H2 : SNo x
Hypothesis H5 : eps_ y ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_pos_real_recip_ex__2__4
Beginning of Section Conj_real_Archimedean__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (exp_SNo_nat (ordsucc (ordsucc Empty ) ) y )
Hypothesis H2 : ordsucc Empty ≤ exp_SNo_nat (ordsucc (ordsucc Empty ) ) y * x
Hypothesis H4 : SNo z
Proof: Load proof Proof not loaded.
End of Section Conj_real_Archimedean__2__3
Beginning of Section Conj_real_Archimedean__8__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : SNo x
Hypothesis H3 : eps_ z ≤ x
Proof: Load proof Proof not loaded.
End of Section Conj_real_Archimedean__8__2
Beginning of Section Conj_real_complete1__3__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set , u ∈ ω → ap x u ≤ ap y u ∧ ap x u ≤ ap x (ordsucc u ) ∧ ap y (ordsucc u ) ≤ ap y u )
Hypothesis H2 : (∀u : set , u ∈ z → ap x u ≤ ap x z )
Hypothesis H3 : w ∈ ordsucc z
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__3__1
Beginning of Section Conj_real_complete1__3__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set , u ∈ ω → ap x u ≤ ap y u ∧ ap x u ≤ ap x (ordsucc u ) ∧ ap y (ordsucc u ) ≤ ap y u )
Hypothesis H1 : (∀u : set , u ∈ ω → SNo (ap x u ) )
Hypothesis H2 : (∀u : set , u ∈ z → ap x u ≤ ap x z )
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__3__3
Beginning of Section Conj_real_complete1__4__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set , u ∈ ω → ap x u ≤ ap y u ∧ ap x u ≤ ap x (ordsucc u ) ∧ ap y (ordsucc u ) ≤ ap y u )
Hypothesis H1 : (∀u : set , u ∈ ω → SNo (ap x u ) )
Hypothesis H2 : nat_p z
Hypothesis H4 : w ∈ ordsucc z
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__4__3
Beginning of Section Conj_real_complete1__9__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set , u ∈ ω → ap x u ≤ ap y u ∧ ap x u ≤ ap x (ordsucc u ) ∧ ap y (ordsucc u ) ≤ ap y u )
Hypothesis H2 : (∀u : set , u ∈ ω → SNo (ap y u ) )
Hypothesis H3 : (∀u : set , nat_p u → (∀v : set , v ∈ u → ap x v ≤ ap x u ) )
Hypothesis H4 : (∀u : set , nat_p u → (∀v : set , v ∈ u → ap y u ≤ ap y v ) )
Hypothesis H7 : nat_p z
Hypothesis H8 : nat_p w
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__9__1
Beginning of Section Conj_real_complete1__12__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H2 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) )
Hypothesis H3 : (∀w : set , SNo w → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) → u < w ) → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) → w < u ) → Subq (SNoLev (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) ) (SNoLev w ) ∧ SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) ) (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) w )
Hypothesis H4 : (∀w : set , w ∈ ω → ap x w ≤ SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ∧ SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ≤ ap y w )
Hypothesis H5 : z ∈ SNoS_ ω
Hypothesis H6 : ¬ (z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ∨ z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) )
Hypothesis H7 : SNoLev z ∈ ω
Hypothesis H8 : ordinal (SNoLev z )
Hypothesis H9 : SNo z
Hypothesis H10 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) → w < z )
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__12__0
Beginning of Section Conj_real_complete1__12__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ¬ (∃w : set , w ∈ real ∧ (∀u : set , u ∈ ω → ap x u ≤ w ∧ w ≤ ap y u ) )
Hypothesis H1 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H3 : (∀w : set , SNo w → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) → u < w ) → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) → w < u ) → Subq (SNoLev (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) ) (SNoLev w ) ∧ SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) ) (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) w )
Hypothesis H4 : (∀w : set , w ∈ ω → ap x w ≤ SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ∧ SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ≤ ap y w )
Hypothesis H5 : z ∈ SNoS_ ω
Hypothesis H6 : ¬ (z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ∨ z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) )
Hypothesis H7 : SNoLev z ∈ ω
Hypothesis H8 : ordinal (SNoLev z )
Hypothesis H9 : SNo z
Hypothesis H10 : (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) → w < z )
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__12__2
Beginning of Section Conj_real_complete1__13__7
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ¬ (∃w : set , w ∈ real ∧ (∀u : set , u ∈ ω → ap x u ≤ w ∧ w ≤ ap y u ) )
Hypothesis H1 : (∀w : set , w ∈ ω → SNo (ap x w ) )
Hypothesis H2 : (∀w : set , w ∈ ω → SNo (ap y w ) )
Hypothesis H3 : SNo (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) )
Hypothesis H4 : (∀w : set , SNo w → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) → u < w ) → (∀u : set , u ∈ Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) → w < u ) → Subq (SNoLev (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) ) (SNoLev w ) ∧ SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) ) (SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ) w )
Hypothesis H5 : (∀w : set , w ∈ ω → ap x w ≤ SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ∧ SNoCut (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) ) (Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) ) ≤ ap y w )
Hypothesis H6 : z ∈ SNoS_ ω
Hypothesis H8 : SNoLev z ∈ ω
Hypothesis H9 : ordinal (SNoLev z )
Hypothesis H10 : SNo z
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__13__7
Beginning of Section Conj_real_complete1__14__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , v ∈ ω → SNo (ap y v ) )
Hypothesis H1 : SNo (SNoCut (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) ) (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) ) )
Hypothesis H2 : (∀v : set , v ∈ ω → abs_SNo (z + - (SNoCut (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ x2 < ap x y2 ) ) (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ ap y y2 < x2 ) ) ) ) < eps_ v )
Hypothesis H3 : SNo z
Hypothesis H7 : Empty < z + - (ap y w )
Hypothesis H8 : SNoCut (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) ) (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) ) ≤ ap y w
Theorem. (
Conj_real_complete1__14__5 )
Empty < z + - (SNoCut (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) ) (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) ) ) → abs_SNo (z + - (ap y w ) ) < eps_ u
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__14__5
Beginning of Section Conj_real_complete1__15__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , v ∈ ω → SNo (ap y v ) )
Hypothesis H1 : SNo (SNoCut (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) ) (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) ) )
Hypothesis H2 : (∀v : set , v ∈ ω → SNoCut (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ x2 < ap x y2 ) ) (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ ap y y2 < x2 ) ) ≤ ap y v )
Hypothesis H3 : (∀v : set , v ∈ ω → abs_SNo (z + - (SNoCut (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ x2 < ap x y2 ) ) (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ ap y y2 < x2 ) ) ) ) < eps_ v )
Hypothesis H4 : SNo z
Hypothesis H8 : Empty < z + - (ap y w )
Theorem. (
Conj_real_complete1__15__6 )
SNoCut (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) ) (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) ) ≤ ap y w → abs_SNo (z + - (ap y w ) ) < eps_ u
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__15__6
Beginning of Section Conj_real_complete1__20__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set , v ∈ ω → SNo (ap x v ) )
Hypothesis H1 : SNo (SNoCut (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ v < ap x x2 ) ) (Sep (SNoS_ ω ) (λv : set ⇒ ∃x2 : set , x2 ∈ ω ∧ ap y x2 < v ) ) )
Hypothesis H2 : (∀v : set , v ∈ ω → ap x v ≤ SNoCut (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ x2 < ap x y2 ) ) (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ ap y y2 < x2 ) ) )
Hypothesis H3 : (∀v : set , v ∈ ω → abs_SNo (z + - (SNoCut (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ x2 < ap x y2 ) ) (Sep (SNoS_ ω ) (λx2 : set ⇒ ∃y2 : set , y2 ∈ ω ∧ ap y y2 < x2 ) ) ) ) < eps_ v )
Hypothesis H4 : SNo z
Hypothesis H6 : z < ap x w
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__20__7
Beginning of Section Conj_real_complete1__25__7
Variable x : set
Variable y : set
Hypothesis H0 : x ∈ setexp real ω
Hypothesis H1 : y ∈ setexp real ω
Hypothesis H2 : ¬ (∃z : set , z ∈ real ∧ (∀w : set , w ∈ ω → ap x w ≤ z ∧ z ≤ ap y w ) )
Hypothesis H3 : (∀z : set , z ∈ ω → SNo (ap x z ) )
Hypothesis H4 : (∀z : set , z ∈ ω → SNo (ap y z ) )
Hypothesis H5 : Subq (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ z < ap x w ) ) (SNoS_ ω )
Hypothesis H6 : Subq (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ ap y w < z ) ) (SNoS_ ω )
Hypothesis H8 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ z < ap x w ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ ap y w < z ) ) )
Hypothesis H9 : (∀z : set , SNo z → (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) → w < z ) → (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) → z < w ) → Subq (SNoLev (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ) ) (SNoLev z ) ∧ SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ) ) (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ) z )
Hypothesis H10 : (∀z : set , z ∈ ω → ap x z ≤ SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) )
Hypothesis H11 : (∀z : set , z ∈ ω → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ≤ ap y z )
Theorem. (
Conj_real_complete1__25__7 )
¬ (∀z : set , z ∈ ω → ap x z ≤ SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ∧ SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ≤ ap y z )
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__25__7
Beginning of Section Conj_real_complete1__26__11
Variable x : set
Variable y : set
Hypothesis H0 : x ∈ setexp real ω
Hypothesis H1 : y ∈ setexp real ω
Hypothesis H2 : ¬ (∃z : set , z ∈ real ∧ (∀w : set , w ∈ ω → ap x w ≤ z ∧ z ≤ ap y w ) )
Hypothesis H3 : (∀z : set , z ∈ ω → SNo (ap x z ) )
Hypothesis H4 : (∀z : set , z ∈ ω → SNo (ap y z ) )
Hypothesis H5 : (∀z : set , z ∈ ω → (∀w : set , w ∈ ω → ap x z ≤ ap y w ) )
Hypothesis H6 : Subq (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ z < ap x w ) ) (SNoS_ ω )
Hypothesis H7 : Subq (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ ap y w < z ) ) (SNoS_ ω )
Hypothesis H8 : SNoCutP (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ z < ap x w ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ ap y w < z ) )
Hypothesis H9 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ z < ap x w ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ ap y w < z ) ) )
Hypothesis H10 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) < z )
Hypothesis H12 : (∀z : set , z ∈ ω → ap x z ≤ SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) )
Theorem. (
Conj_real_complete1__26__11 )
¬ (∀z : set , z ∈ ω → SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ≤ ap y z )
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__26__11
Beginning of Section Conj_real_complete1__27__11
Variable x : set
Variable y : set
Hypothesis H0 : x ∈ setexp real ω
Hypothesis H1 : y ∈ setexp real ω
Hypothesis H2 : ¬ (∃z : set , z ∈ real ∧ (∀w : set , w ∈ ω → ap x w ≤ z ∧ z ≤ ap y w ) )
Hypothesis H3 : (∀z : set , z ∈ ω → SNo (ap x z ) )
Hypothesis H4 : (∀z : set , z ∈ ω → SNo (ap y z ) )
Hypothesis H5 : (∀z : set , z ∈ ω → (∀w : set , w ∈ ω → ap x z ≤ ap y w ) )
Hypothesis H6 : Subq (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ z < ap x w ) ) (SNoS_ ω )
Hypothesis H7 : Subq (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ ap y w < z ) ) (SNoS_ ω )
Hypothesis H8 : SNoCutP (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ z < ap x w ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ ap y w < z ) )
Hypothesis H9 : SNo (SNoCut (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ z < ap x w ) ) (Sep (SNoS_ ω ) (λz : set ⇒ ∃w : set , w ∈ ω ∧ ap y w < z ) ) )
Hypothesis H10 : (∀z : set , z ∈ Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) → z < SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) )
Hypothesis H12 : (∀z : set , SNo z → (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ u < ap x v ) → w < z ) → (∀w : set , w ∈ Sep (SNoS_ ω ) (λu : set ⇒ ∃v : set , v ∈ ω ∧ ap y v < u ) → z < w ) → Subq (SNoLev (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ) ) (SNoLev z ) ∧ SNoEq_ (SNoLev (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ) ) (SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) ) z )
Theorem. (
Conj_real_complete1__27__11 )
¬ (∀z : set , z ∈ ω → ap x z ≤ SNoCut (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ w < ap x u ) ) (Sep (SNoS_ ω ) (λw : set ⇒ ∃u : set , u ∈ ω ∧ ap y u < w ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__27__11
Beginning of Section Conj_real_complete1__31__1
Variable x : set
Variable y : set
Hypothesis H0 : x ∈ setexp real ω
Hypothesis H2 : (∀z : set , z ∈ ω → ap x z ≤ ap y z ∧ ap x z ≤ ap x (ordsucc z ) ∧ ap y (ordsucc z ) ≤ ap y z )
Hypothesis H3 : ¬ (∃z : set , z ∈ real ∧ (∀w : set , w ∈ ω → ap x w ≤ z ∧ z ≤ ap y w ) )
Hypothesis H4 : (∀z : set , z ∈ ω → SNo (ap x z ) )
Hypothesis H5 : (∀z : set , z ∈ ω → SNo (ap y z ) )
Hypothesis H6 : (∀z : set , nat_p z → (∀w : set , w ∈ z → ap x w ≤ ap x z ) )
Hypothesis H7 : (∀z : set , nat_p z → (∀w : set , w ∈ z → ap y z ≤ ap y w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_real_complete1__31__1
Beginning of Section Conj_ctagged_notin_SNo__3__0
Variable x : set
Variable y : set
Hypothesis H1 : ordinal (SNoLev x )
Hypothesis H2 : Subq x (SNoElts_ (SNoLev x ) )
Theorem. (
Conj_ctagged_notin_SNo__3__0 )
¬ SetAdjoin y (Sing (ordsucc (ordsucc Empty ) ) ) ∈ binunion (SNoLev x ) (Repl (SNoLev x ) (λz : set ⇒ SetAdjoin z (Sing (ordsucc Empty ) ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_ctagged_notin_SNo__3__0
Beginning of Section Conj_ctagged_eqE_Subq__1__1
Variable x : set
Variable y : set
Hypothesis H0 : Sing (ordsucc (ordsucc Empty ) ) ∈ x
Hypothesis H2 : ordinal y
Proof: Load proof Proof not loaded.
End of Section Conj_ctagged_eqE_Subq__1__1
Beginning of Section Conj_ctagged_eqE_Subq__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Sing (ordsucc (ordsucc Empty ) ) ∈ y
Hypothesis H1 : ordinal (SNoLev x )
Hypothesis H2 : z ∈ SNoLev x
Proof: Load proof Proof not loaded.
End of Section Conj_ctagged_eqE_Subq__2__3
Beginning of Section Conj_ctagged_eqE_Subq__5__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H3 : z ∈ Sing (Sing (ordsucc (ordsucc Empty ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_ctagged_eqE_Subq__5__2
Beginning of Section Conj_SNo_pair_prop_1_Subq__1__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo_pair x y = SNo_pair z w
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_pair_prop_1_Subq__1__0
Beginning of Section Conj_add_CSNo_minus_CSNo_rinv__1__1
Variable x : set
Hypothesis H0 : CSNo x
Theorem. (
Conj_add_CSNo_minus_CSNo_rinv__1__1 )
SNo (- (CSNo_Im x ) ) → SNo_pair (CSNo_Re x + CSNo_Re (SNo_pair (- (CSNo_Re x ) ) (- (CSNo_Im x ) ) ) ) (CSNo_Im x + CSNo_Im (SNo_pair (- (CSNo_Re x ) ) (- (CSNo_Im x ) ) ) ) = Empty
Proof: Load proof Proof not loaded.
End of Section Conj_add_CSNo_minus_CSNo_rinv__1__1
Beginning of Section Conj_add_CSNo_com__1__2
Variable x : set
Variable y : set
Hypothesis H0 : CSNo x
Hypothesis H1 : CSNo y
Proof: Load proof Proof not loaded.
End of Section Conj_add_CSNo_com__1__2
Beginning of Section Conj_add_CSNo_assoc__2__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : CSNo x
Hypothesis H1 : CSNo y
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (add_CSNo y z )
Theorem. (
Conj_add_CSNo_assoc__2__4 )
CSNo (add_CSNo x (add_CSNo y z ) ) → add_CSNo x (add_CSNo y z ) = add_CSNo (add_CSNo x y ) z
Proof: Load proof Proof not loaded.
End of Section Conj_add_CSNo_assoc__2__4
Beginning of Section Conj_mul_CSNo_assoc__2__8
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : CSNo x
Hypothesis H1 : CSNo y
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (mul_CSNo y z )
Hypothesis H4 : CSNo (mul_CSNo x y )
Hypothesis H5 : CSNo (mul_CSNo x (mul_CSNo y z ) )
Hypothesis H6 : CSNo (mul_CSNo (mul_CSNo x y ) z )
Hypothesis H7 : SNo (CSNo_Re x )
Hypothesis H9 : SNo (CSNo_Re z )
Hypothesis H10 : SNo (CSNo_Im x )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_CSNo_assoc__2__8
Beginning of Section Conj_mul_CSNo_assoc__3__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : CSNo x
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (mul_CSNo y z )
Hypothesis H4 : CSNo (mul_CSNo x y )
Hypothesis H5 : CSNo (mul_CSNo x (mul_CSNo y z ) )
Hypothesis H6 : CSNo (mul_CSNo (mul_CSNo x y ) z )
Hypothesis H7 : SNo (CSNo_Re x )
Hypothesis H8 : SNo (CSNo_Re y )
Hypothesis H9 : SNo (CSNo_Re z )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_CSNo_assoc__3__1
Beginning of Section Conj_mul_CSNo_assoc__4__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : CSNo x
Hypothesis H1 : CSNo y
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (mul_CSNo y z )
Hypothesis H4 : CSNo (mul_CSNo x y )
Hypothesis H5 : CSNo (mul_CSNo x (mul_CSNo y z ) )
Hypothesis H7 : SNo (CSNo_Re x )
Hypothesis H8 : SNo (CSNo_Re y )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_CSNo_assoc__4__6
Beginning of Section Conj_mul_CSNo_distrL__2__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : CSNo y
Hypothesis H2 : CSNo z
Hypothesis H3 : CSNo (add_CSNo y z )
Hypothesis H4 : CSNo (mul_CSNo x y )
Hypothesis H5 : CSNo (mul_CSNo x z )
Hypothesis H6 : CSNo (mul_CSNo x (add_CSNo y z ) )
Hypothesis H7 : CSNo (add_CSNo (mul_CSNo x y ) (mul_CSNo x z ) )
Hypothesis H8 : SNo (CSNo_Re x )
Hypothesis H9 : SNo (CSNo_Re y )
Hypothesis H10 : SNo (CSNo_Re z )
Hypothesis H11 : SNo (CSNo_Im x )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_CSNo_distrL__2__0
Beginning of Section Conj_CSNo_relative_recip__5__2
Variable x : set
Variable y : set
Hypothesis H0 : CSNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (CSNo_Re x )
Hypothesis H4 : SNo (CSNo_Im x )
Hypothesis H5 : SNo (y * CSNo_Re x )
Hypothesis H6 : CSNo (y * CSNo_Re x )
Hypothesis H7 : SNo (y * CSNo_Im x )
Hypothesis H8 : CSNo (y * CSNo_Im x )
Theorem. (
Conj_CSNo_relative_recip__5__2 )
CSNo (mul_CSNo Complex_i (y * CSNo_Im x ) ) → mul_CSNo x (add_CSNo (y * CSNo_Re x ) (minus_CSNo (mul_CSNo Complex_i (y * CSNo_Im x ) ) ) ) = ordsucc Empty
Proof: Load proof Proof not loaded.
End of Section Conj_CSNo_relative_recip__5__2
Beginning of Section Conj_nonzero_complex_recip_ex__2__4
Variable x : set
Hypothesis H0 : x ∈ complex
Hypothesis H1 : x ≠ Empty
Hypothesis H2 : CSNo_Re x ∈ real
Hypothesis H3 : CSNo_Im x ∈ real
Hypothesis H5 : SNo (CSNo_Im x * CSNo_Im x )
Hypothesis H6 : CSNo_Re x * CSNo_Re x + CSNo_Im x * CSNo_Im x ∈ real
Proof: Load proof Proof not loaded.
End of Section Conj_nonzero_complex_recip_ex__2__4