Beginning of Section Conj_mul_SNo_assoc_lem1__26__21
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__26__21
Beginning of Section Conj_mul_SNo_assoc_lem1__27__27
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Hypothesis H30 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__27__27
Beginning of Section Conj_mul_SNo_assoc_lem1__27__30
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__27__30
Beginning of Section Conj_mul_SNo_assoc_lem1__28__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Hypothesis H30 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__28__4
Beginning of Section Conj_mul_SNo_assoc_lem1__28__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Hypothesis H30 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__28__7
Beginning of Section Conj_mul_SNo_assoc_lem1__28__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Hypothesis H30 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__28__8
Beginning of Section Conj_mul_SNo_assoc_lem1__28__22
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Hypothesis H30 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__28__22
Beginning of Section Conj_mul_SNo_assoc_lem1__28__27
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Hypothesis H30 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__28__27
Beginning of Section Conj_mul_SNo_assoc_lem1__28__30
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__28__30
Beginning of Section Conj_mul_SNo_assoc_lem1__29__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Hypothesis H30 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__29__14
Beginning of Section Conj_mul_SNo_assoc_lem1__30__0
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__30__0
Beginning of Section Conj_mul_SNo_assoc_lem1__30__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Hypothesis H29 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__30__4
Beginning of Section Conj_mul_SNo_assoc_lem1__31__23
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__31__23
Beginning of Section Conj_mul_SNo_assoc_lem1__31__27
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g x (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__31__27
Beginning of Section Conj_mul_SNo_assoc_lem1__33__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Hypothesis H29 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__33__4
Beginning of Section Conj_mul_SNo_assoc_lem1__33__24
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Hypothesis H29 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__33__24
Beginning of Section Conj_mul_SNo_assoc_lem1__34__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__34__8
Beginning of Section Conj_mul_SNo_assoc_lem1__34__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__34__9
Beginning of Section Conj_mul_SNo_assoc_lem1__35__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Hypothesis H27 : SNo (g x (v + g x2 y2))
Hypothesis H28 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__35__4
Beginning of Section Conj_mul_SNo_assoc_lem1__36__3
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Hypothesis H27 : SNo (g x (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__36__3
Beginning of Section Conj_mul_SNo_assoc_lem1__36__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Hypothesis H27 : SNo (g x (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__36__11
Beginning of Section Conj_mul_SNo_assoc_lem1__36__23
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Hypothesis H27 : SNo (g x (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__36__23
Beginning of Section Conj_mul_SNo_assoc_lem1__36__27
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__36__27
Beginning of Section Conj_mul_SNo_assoc_lem1__37__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__37__11
Beginning of Section Conj_mul_SNo_assoc_lem1__38__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__38__11
Beginning of Section Conj_mul_SNo_assoc_lem1__38__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__38__13
Beginning of Section Conj_mul_SNo_assoc_lem1__40__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Hypothesis H25 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__40__19
Beginning of Section Conj_mul_SNo_assoc_lem1__40__25
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__40__25
Beginning of Section Conj_mul_SNo_assoc_lem1__41__17
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__41__17
Beginning of Section Conj_mul_SNo_assoc_lem1__43__3
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__43__3
Beginning of Section Conj_mul_SNo_assoc_lem1__43__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__43__6
Beginning of Section Conj_mul_SNo_assoc_lem1__43__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__43__19
Beginning of Section Conj_mul_SNo_assoc_lem1__46__0
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H7 : u ∈ SNoR x
Hypothesis H8 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H9 : SNo u
Hypothesis H10 : x < u
Hypothesis H11 : SNo v
Hypothesis H12 : x2 ∈ SNoL y
Hypothesis H13 : y2 ∈ SNoR z
Hypothesis H14 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 < y
Hypothesis H17 : SNo y2
Hypothesis H18 : z < y2
Hypothesis H19 : SNo (g x2 z + g y y2)
Hypothesis H20 : SNo (v + g x2 y2)
Hypothesis H21 : SNo (g x (v + g x2 y2))
Hypothesis H22 : SNo (g u (v + g x2 y2))
Hypothesis H23 : SNo (g u (g x2 z + g y y2))
Hypothesis H24 : SNo (g x (g x2 z + g y y2))
Hypothesis H25 : SNo (g u y + g x x2)
Hypothesis H26 : SNo (g x y + g u x2)
Hypothesis H27 : SNo (g (g u y + g x x2) z)
Hypothesis H28 : SNo (g (g x y + g u x2) z)
Hypothesis H29 : SNo (g (g u y + g x x2) y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__46__0
Beginning of Section Conj_mul_SNo_assoc_lem1__47__5
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H7 : u ∈ SNoR x
Hypothesis H8 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H9 : SNo u
Hypothesis H10 : x < u
Hypothesis H11 : SNo v
Hypothesis H12 : x2 ∈ SNoL y
Hypothesis H13 : y2 ∈ SNoR z
Hypothesis H14 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 < y
Hypothesis H17 : SNo y2
Hypothesis H18 : z < y2
Hypothesis H19 : SNo (g x2 z + g y y2)
Hypothesis H20 : SNo (v + g x2 y2)
Hypothesis H21 : SNo (g x (v + g x2 y2))
Hypothesis H22 : SNo (g u (v + g x2 y2))
Hypothesis H23 : SNo (g u (g x2 z + g y y2))
Hypothesis H24 : SNo (g x (g x2 z + g y y2))
Hypothesis H25 : SNo (g u y + g x x2)
Hypothesis H26 : SNo (g x y + g u x2)
Hypothesis H27 : SNo (g (g u y + g x x2) z)
Hypothesis H28 : SNo (g (g x y + g u x2) z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__47__5
Beginning of Section Conj_mul_SNo_assoc_lem1__48__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H7 : u ∈ SNoR x
Hypothesis H8 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H9 : SNo u
Hypothesis H10 : x < u
Hypothesis H11 : SNo v
Hypothesis H12 : x2 ∈ SNoL y
Hypothesis H13 : y2 ∈ SNoR z
Hypothesis H14 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 < y
Hypothesis H17 : SNo y2
Hypothesis H18 : z < y2
Hypothesis H19 : SNo (g x2 z + g y y2)
Hypothesis H20 : SNo (v + g x2 y2)
Hypothesis H21 : SNo (g x (v + g x2 y2))
Hypothesis H22 : SNo (g u (v + g x2 y2))
Hypothesis H23 : SNo (g u (g x2 z + g y y2))
Hypothesis H24 : SNo (g x (g x2 z + g y y2))
Hypothesis H25 : SNo (g u y + g x x2)
Hypothesis H26 : SNo (g x y + g u x2)
Hypothesis H27 : SNo (g (g u y + g x x2) z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__48__1
Beginning of Section Conj_mul_SNo_assoc_lem1__48__22
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H7 : u ∈ SNoR x
Hypothesis H8 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H9 : SNo u
Hypothesis H10 : x < u
Hypothesis H11 : SNo v
Hypothesis H12 : x2 ∈ SNoL y
Hypothesis H13 : y2 ∈ SNoR z
Hypothesis H14 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 < y
Hypothesis H17 : SNo y2
Hypothesis H18 : z < y2
Hypothesis H19 : SNo (g x2 z + g y y2)
Hypothesis H20 : SNo (v + g x2 y2)
Hypothesis H21 : SNo (g x (v + g x2 y2))
Hypothesis H23 : SNo (g u (g x2 z + g y y2))
Hypothesis H24 : SNo (g x (g x2 z + g y y2))
Hypothesis H25 : SNo (g u y + g x x2)
Hypothesis H26 : SNo (g x y + g u x2)
Hypothesis H27 : SNo (g (g u y + g x x2) z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__48__22
Beginning of Section Conj_mul_SNo_assoc_lem1__50__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u x2)
Hypothesis H21 : SNo (g x2 z + g y y2)
Hypothesis H22 : SNo (v + g x2 y2)
Hypothesis H23 : SNo (g x (v + g x2 y2))
Hypothesis H24 : SNo (g u (v + g x2 y2))
Hypothesis H25 : SNo (g u (g x2 z + g y y2))
Hypothesis H26 : SNo (g x (g x2 z + g y y2))
Hypothesis H27 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__50__11
Beginning of Section Conj_mul_SNo_assoc_lem1__52__3
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__52__3
Beginning of Section Conj_mul_SNo_assoc_lem1__52__10
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__52__10
Beginning of Section Conj_mul_SNo_assoc_lem1__52__25
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__52__25
Beginning of Section Conj_mul_SNo_assoc_lem1__53__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Hypothesis H29 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__53__6
Beginning of Section Conj_mul_SNo_assoc_lem1__53__23
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Hypothesis H29 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__53__23
Beginning of Section Conj_mul_SNo_assoc_lem1__54__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__54__13
Beginning of Section Conj_mul_SNo_assoc_lem1__54__20
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__54__20
Beginning of Section Conj_mul_SNo_assoc_lem1__54__23
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Hypothesis H27 : SNo (g u (v + g x2 y2))
Hypothesis H28 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__54__23
Beginning of Section Conj_mul_SNo_assoc_lem1__55__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Hypothesis H27 : SNo (g x (v + g x2 y2))
Hypothesis H28 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__55__8
Beginning of Section Conj_mul_SNo_assoc_lem1__57__15
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__57__15
Beginning of Section Conj_mul_SNo_assoc_lem1__58__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__58__7
Beginning of Section Conj_mul_SNo_assoc_lem1__58__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__58__9
Beginning of Section Conj_mul_SNo_assoc_lem1__59__2
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__59__2
Beginning of Section Conj_mul_SNo_assoc_lem1__59__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__59__7
Beginning of Section Conj_mul_SNo_assoc_lem1__59__18
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__59__18
Beginning of Section Conj_mul_SNo_assoc_lem1__60__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Hypothesis H25 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__60__6
Beginning of Section Conj_mul_SNo_assoc_lem1__61__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__61__1
Beginning of Section Conj_mul_SNo_assoc_lem1__62__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__62__1
Beginning of Section Conj_mul_SNo_assoc_lem1__64__15
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__64__15
Beginning of Section Conj_mul_SNo_assoc_lem1__65__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__65__9
Beginning of Section Conj_mul_SNo_assoc_lem1__67__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → (∀z2 : set, z2 ∈ SNoR (g x2 y2) → (∀P : prop, (∀w2 : set, w2 ∈ SNoL x2 → (∀u2 : set, u2 ∈ SNoR y2 → (g w2 y2 + g x2 u2) ≤ z2 + g w2 u2 → P)) → (∀w2 : set, w2 ∈ SNoR x2 → (∀u2 : set, u2 ∈ SNoL y2 → (g w2 y2 + g x2 u2) ≤ z2 + g w2 u2 → P)) → P)))
Hypothesis H2 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H3 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 ≤ x2 → w2 ≤ y2 → (g z2 y2 + g x2 w2) ≤ g x2 y2 + g z2 w2)
Hypothesis H5 : SNo y
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (g x y)
Hypothesis H8 : SNo (g y z)
Hypothesis H9 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → w = g x2 (g y z) + g x y2 + - (g x2 y2) → (g x2 (g z2 z + g y w2) + g x (y2 + g z2 w2)) ≤ g x (g z2 z + g y w2) + g x2 (y2 + g z2 w2) → (g (g x2 y + g x z2) z + g (g x y + g x2 z2) w2) < g (g x y + g x2 z2) z + g (g x2 y + g x z2) w2 → w < g (g x y) z))))
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoR (g y z)
Hypothesis H12 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__67__4
Beginning of Section Conj_mul_SNo_assoc_lem1__70__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (g x y)
Hypothesis H7 : w < x
Hypothesis H8 : SNo u
Hypothesis H9 : y < u
Hypothesis H10 : SNo v
Hypothesis H11 : z < v
Hypothesis H12 : SNo (g w y)
Hypothesis H13 : SNo (g w u)
Hypothesis H14 : SNo (g x u)
Hypothesis H15 : SNo (g w y + g x u)
Hypothesis H16 : SNo (g x y + g w u)
Hypothesis H17 : SNo (g (g w y + g x u) z)
Theorem. (
Conj_mul_SNo_assoc_lem1__70__6)
SNo (g (g x y + g w u) z) → (g (g w y + g x u) z + g (g x y + g w u) v) < g (g x y + g w u) z + g (g w y + g x u) v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__70__6
Beginning of Section Conj_mul_SNo_assoc_lem1__72__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (g x y)
Hypothesis H6 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : y < u
Hypothesis H10 : SNo v
Hypothesis H11 : z < v
Hypothesis H12 : SNo (g w y)
Hypothesis H13 : SNo (g w u)
Hypothesis H14 : SNo (g x u)
Hypothesis H15 : SNo (g w y + g x u)
Theorem. (
Conj_mul_SNo_assoc_lem1__72__7)
SNo (g x y + g w u) → (g (g w y + g x u) z + g (g x y + g w u) v) < g (g x y + g w u) z + g (g w y + g x u) v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__72__7
Beginning of Section Conj_mul_SNo_assoc_lem1__73__3
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H2 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (g x y)
Hypothesis H6 : SNo w
Hypothesis H7 : w < x
Hypothesis H8 : SNo u
Hypothesis H9 : y < u
Hypothesis H10 : SNo v
Hypothesis H11 : z < v
Hypothesis H12 : SNo (g w y)
Hypothesis H13 : SNo (g w u)
Hypothesis H14 : SNo (g x u)
Theorem. (
Conj_mul_SNo_assoc_lem1__73__3)
SNo (g w y + g x u) → (g (g w y + g x u) z + g (g x y + g w u) v) < g (g x y + g w u) z + g (g w y + g x u) v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__73__3
Beginning of Section Conj_mul_SNo_assoc_lem1__74__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__74__8
Beginning of Section Conj_mul_SNo_assoc_lem1__75__0
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__75__0
Beginning of Section Conj_mul_SNo_assoc_lem1__75__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__75__9
Beginning of Section Conj_mul_SNo_assoc_lem1__76__10
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Hypothesis H24 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__76__10
Beginning of Section Conj_mul_SNo_assoc_lem1__77__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__77__7
Beginning of Section Conj_mul_SNo_assoc_lem1__77__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__77__13
Beginning of Section Conj_mul_SNo_assoc_lem1__77__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__77__19
Beginning of Section Conj_mul_SNo_assoc_lem1__79__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__79__14
Beginning of Section Conj_mul_SNo_assoc_lem1__80__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__80__7
Beginning of Section Conj_mul_SNo_assoc_lem1__81__0
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__81__0
Beginning of Section Conj_mul_SNo_assoc_lem1__82__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g x2 z + g y y2)
Hypothesis H21 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__82__1
Beginning of Section Conj_mul_SNo_assoc_lem1__82__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g x2 z + g y y2)
Hypothesis H21 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__82__14
Beginning of Section Conj_mul_SNo_assoc_lem1__83__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__83__9
Beginning of Section Conj_mul_SNo_assoc_lem1__83__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__83__13
Beginning of Section Conj_mul_SNo_assoc_lem1__84__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g x2 z)
Hypothesis H21 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__84__13
Beginning of Section Conj_mul_SNo_assoc_lem1__84__20
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H21 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__84__20
Beginning of Section Conj_mul_SNo_assoc_lem1__85__0
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__85__0
Beginning of Section Conj_mul_SNo_assoc_lem1__85__3
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2)) ≤ g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2) → (g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2) < g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2 → w < g (g x y) z))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__85__3
Beginning of Section Conj_mul_SNo_assoc_lem1__87__3
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → (∀z2 : set, z2 ∈ SNoL (g x2 y2) → (∀P : prop, (∀w2 : set, w2 ∈ SNoL x2 → (∀u2 : set, u2 ∈ SNoL y2 → (z2 + g w2 u2) ≤ g w2 y2 + g x2 u2 → P)) → (∀w2 : set, w2 ∈ SNoR x2 → (∀u2 : set, u2 ∈ SNoR y2 → (z2 + g w2 u2) ≤ g w2 y2 + g x2 u2 → P)) → P)))
Hypothesis H2 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H4 : SNo x
Hypothesis H5 : SNo y
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (g x y)
Hypothesis H8 : SNo (g y z)
Hypothesis H9 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → w = g x2 (g y z) + g x y2 + - (g x2 y2) → (g x2 (g z2 z + g y w2) + g x (y2 + g z2 w2)) ≤ g x (g z2 z + g y w2) + g x2 (y2 + g z2 w2) → (g (g x2 y + g x z2) z + g (g x y + g x2 z2) w2) < g (g x y + g x2 z2) z + g (g x2 y + g x z2) w2 → w < g (g x y) z))))
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL (g y z)
Hypothesis H12 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__87__3
Beginning of Section Conj_mul_SNo_assoc_lem1__87__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → (∀z2 : set, z2 ∈ SNoL (g x2 y2) → (∀P : prop, (∀w2 : set, w2 ∈ SNoL x2 → (∀u2 : set, u2 ∈ SNoL y2 → (z2 + g w2 u2) ≤ g w2 y2 + g x2 u2 → P)) → (∀w2 : set, w2 ∈ SNoR x2 → (∀u2 : set, u2 ∈ SNoR y2 → (z2 + g w2 u2) ≤ g w2 y2 + g x2 u2 → P)) → P)))
Hypothesis H2 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H3 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 ≤ x2 → w2 ≤ y2 → (g z2 y2 + g x2 w2) ≤ g x2 y2 + g z2 w2)
Hypothesis H4 : SNo x
Hypothesis H5 : SNo y
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (g x y)
Hypothesis H8 : SNo (g y z)
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL (g y z)
Hypothesis H12 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__87__9
Beginning of Section Conj_mul_SNo_assoc_lem1__88__0
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo v → SNo x2 → SNo y2 → g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo v → SNo x2 → SNo y2 → g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H3 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → (∀y2 : set, y2 ∈ SNoL (g v x2) → (∀P : prop, (∀z2 : set, z2 ∈ SNoL v → (∀w2 : set, w2 ∈ SNoL x2 → (y2 + g z2 w2) ≤ g z2 x2 + g v w2 → P)) → (∀z2 : set, z2 ∈ SNoR v → (∀w2 : set, w2 ∈ SNoR x2 → (y2 + g z2 w2) ≤ g z2 x2 + g v w2 → P)) → P)))
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → (∀y2 : set, y2 ∈ SNoR (g v x2) → (∀P : prop, (∀z2 : set, z2 ∈ SNoL v → (∀w2 : set, w2 ∈ SNoR x2 → (g z2 x2 + g v w2) ≤ y2 + g z2 w2 → P)) → (∀z2 : set, z2 ∈ SNoR v → (∀w2 : set, w2 ∈ SNoL x2 → (g z2 x2 + g v w2) ≤ y2 + g z2 w2 → P)) → P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2) ≤ g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v ∈ SNoS_ (SNoLev x) → g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v ∈ SNoS_ (SNoLev y) → g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v ∈ SNoS_ (SNoLev z) → g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL (g y z) → v = g x2 (g y z) + g x y2 + - (g x2 y2) → P)) → (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR (g y z) → v = g x2 (g y z) + g x y2 + - (g x2 y2) → P)) → P))
Hypothesis H19 : SNo (g x y)
Hypothesis H20 : SNo (g y z)
Hypothesis H21 : SNo (g (g x y) z)
Theorem. (
Conj_mul_SNo_assoc_lem1__88__0)
(∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, SNo x2 → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → u = g v (g y z) + g x x2 + - (g v x2) → (g v (g y2 z + g y z2) + g x (x2 + g y2 z2)) ≤ g x (g y2 z + g y z2) + g v (x2 + g y2 z2) → (g (g v y + g x y2) z + g (g x y + g v y2) z2) < g (g x y + g v y2) z + g (g v y + g x y2) z2 → u < g (g x y) z)))) → u < g (g x y) z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__88__0
Beginning of Section Conj_mul_SNo_assoc_lem1__88__17
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → SNo (g v x2))
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo v → SNo x2 → SNo y2 → g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo v → SNo x2 → SNo y2 → g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H3 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → (∀y2 : set, y2 ∈ SNoL (g v x2) → (∀P : prop, (∀z2 : set, z2 ∈ SNoL v → (∀w2 : set, w2 ∈ SNoL x2 → (y2 + g z2 w2) ≤ g z2 x2 + g v w2 → P)) → (∀z2 : set, z2 ∈ SNoR v → (∀w2 : set, w2 ∈ SNoR x2 → (y2 + g z2 w2) ≤ g z2 x2 + g v w2 → P)) → P)))
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → (∀y2 : set, y2 ∈ SNoR (g v x2) → (∀P : prop, (∀z2 : set, z2 ∈ SNoL v → (∀w2 : set, w2 ∈ SNoR x2 → (g z2 x2 + g v w2) ≤ y2 + g z2 w2 → P)) → (∀z2 : set, z2 ∈ SNoR v → (∀w2 : set, w2 ∈ SNoL x2 → (g z2 x2 + g v w2) ≤ y2 + g z2 w2 → P)) → P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2) ≤ g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v ∈ SNoS_ (SNoLev x) → g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v ∈ SNoS_ (SNoLev y) → g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v ∈ SNoS_ (SNoLev z) → g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H19 : SNo (g x y)
Hypothesis H20 : SNo (g y z)
Hypothesis H21 : SNo (g (g x y) z)
Theorem. (
Conj_mul_SNo_assoc_lem1__88__17)
(∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, SNo x2 → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → u = g v (g y z) + g x x2 + - (g v x2) → (g v (g y2 z + g y z2) + g x (x2 + g y2 z2)) ≤ g x (g y2 z + g y z2) + g v (x2 + g y2 z2) → (g (g v y + g x y2) z + g (g x y + g v y2) z2) < g (g x y + g v y2) z + g (g v y + g x y2) z2 → u < g (g x y) z)))) → u < g (g x y) z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__88__17
Beginning of Section Conj_mul_SNo_assoc_lem1__89__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → SNo (g v x2))
Hypothesis H1 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo v → SNo x2 → SNo y2 → g v (x2 + y2) = g v x2 + g v y2)
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo v → SNo x2 → SNo y2 → g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H3 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → (∀y2 : set, y2 ∈ SNoL (g v x2) → (∀P : prop, (∀z2 : set, z2 ∈ SNoL v → (∀w2 : set, w2 ∈ SNoL x2 → (y2 + g z2 w2) ≤ g z2 x2 + g v w2 → P)) → (∀z2 : set, z2 ∈ SNoR v → (∀w2 : set, w2 ∈ SNoR x2 → (y2 + g z2 w2) ≤ g z2 x2 + g v w2 → P)) → P)))
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → (∀y2 : set, y2 ∈ SNoR (g v x2) → (∀P : prop, (∀z2 : set, z2 ∈ SNoL v → (∀w2 : set, w2 ∈ SNoR x2 → (g z2 x2 + g v w2) ≤ y2 + g z2 w2 → P)) → (∀z2 : set, z2 ∈ SNoR v → (∀w2 : set, w2 ∈ SNoL x2 → (g z2 x2 + g v w2) ≤ y2 + g z2 w2 → P)) → P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2) ≤ g v x2 + g y2 z2)
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v ∈ SNoS_ (SNoLev x) → g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v ∈ SNoS_ (SNoLev y) → g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v ∈ SNoS_ (SNoLev z) → g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL (g y z) → v = g x2 (g y z) + g x y2 + - (g x2 y2) → P)) → (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR (g y z) → v = g x2 (g y z) + g x y2 + - (g x2 y2) → P)) → P))
Hypothesis H19 : SNo (g x y)
Hypothesis H20 : SNo (g y z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__89__7
Beginning of Section Conj_mul_SNo_assoc_lem1__91__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → SNo (g v x2))
Hypothesis H2 : (∀v : set, ∀x2 : set, ∀y2 : set, SNo v → SNo x2 → SNo y2 → g (v + x2) y2 = g v y2 + g x2 y2)
Hypothesis H3 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → (∀y2 : set, y2 ∈ SNoL (g v x2) → (∀P : prop, (∀z2 : set, z2 ∈ SNoL v → (∀w2 : set, w2 ∈ SNoL x2 → (y2 + g z2 w2) ≤ g z2 x2 + g v w2 → P)) → (∀z2 : set, z2 ∈ SNoR v → (∀w2 : set, w2 ∈ SNoR x2 → (y2 + g z2 w2) ≤ g z2 x2 + g v w2 → P)) → P)))
Hypothesis H4 : (∀v : set, ∀x2 : set, SNo v → SNo x2 → (∀y2 : set, y2 ∈ SNoR (g v x2) → (∀P : prop, (∀z2 : set, z2 ∈ SNoL v → (∀w2 : set, w2 ∈ SNoR x2 → (g z2 x2 + g v w2) ≤ y2 + g z2 w2 → P)) → (∀z2 : set, z2 ∈ SNoR v → (∀w2 : set, w2 ∈ SNoL x2 → (g z2 x2 + g v w2) ≤ y2 + g z2 w2 → P)) → P)))
Hypothesis H5 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo v → SNo x2 → SNo y2 → SNo z2 → y2 < v → z2 < x2 → (g y2 x2 + g v z2) < g v x2 + g y2 z2)
Hypothesis H6 : (∀v : set, ∀x2 : set, ∀y2 : set, ∀z2 : set, SNo v → SNo x2 → SNo y2 → SNo z2 → y2 ≤ v → z2 ≤ x2 → (g y2 x2 + g v z2) ≤ g v x2 + g y2 z2)
Hypothesis H7 : SNo x
Hypothesis H8 : SNo y
Hypothesis H9 : SNo z
Hypothesis H10 : (∀v : set, v ∈ SNoS_ (SNoLev x) → g v (g y z) = g (g v y) z)
Hypothesis H11 : (∀v : set, v ∈ SNoS_ (SNoLev y) → g x (g v z) = g (g x v) z)
Hypothesis H12 : (∀v : set, v ∈ SNoS_ (SNoLev z) → g x (g y v) = g (g x y) v)
Hypothesis H13 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → g v (g x2 z) = g (g v x2) z))
Hypothesis H14 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → g v (g y x2) = g (g v y) x2))
Hypothesis H15 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → g x (g v x2) = g (g x v) x2))
Hypothesis H16 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → g v (g x2 y2) = g (g v x2) y2)))
Hypothesis H17 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL (g y z) → v = g x2 (g y z) + g x y2 + - (g x2 y2) → P)) → (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR (g y z) → v = g x2 (g y z) + g x y2 + - (g x2 y2) → P)) → P))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__91__1
Beginning of Section Conj_mul_SNo_assoc_lem2__2__20
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u ∈ SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H19 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Hypothesis H41 : SNo (g u v + g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__2__20
Beginning of Section Conj_mul_SNo_assoc_lem2__2__23
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u ∈ SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H19 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Hypothesis H41 : SNo (g u v + g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__2__23
Beginning of Section Conj_mul_SNo_assoc_lem2__3__25
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u ∈ SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H19 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__3__25
Beginning of Section Conj_mul_SNo_assoc_lem2__4__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__4__11
Beginning of Section Conj_mul_SNo_assoc_lem2__4__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__4__14
Beginning of Section Conj_mul_SNo_assoc_lem2__5__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__5__6
Beginning of Section Conj_mul_SNo_assoc_lem2__5__26
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__5__26
Beginning of Section Conj_mul_SNo_assoc_lem2__6__10
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__6__10
Beginning of Section Conj_mul_SNo_assoc_lem2__6__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__6__13
Beginning of Section Conj_mul_SNo_assoc_lem2__6__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__6__14
Beginning of Section Conj_mul_SNo_assoc_lem2__6__15
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__6__15
Beginning of Section Conj_mul_SNo_assoc_lem2__6__29
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__6__29
Beginning of Section Conj_mul_SNo_assoc_lem2__6__30
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__6__30
Beginning of Section Conj_mul_SNo_assoc_lem2__7__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__7__13
Beginning of Section Conj_mul_SNo_assoc_lem2__7__16
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__7__16
Beginning of Section Conj_mul_SNo_assoc_lem2__8__2
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__8__2
Beginning of Section Conj_mul_SNo_assoc_lem2__8__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__8__6
Beginning of Section Conj_mul_SNo_assoc_lem2__9__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__9__6
Beginning of Section Conj_mul_SNo_assoc_lem2__9__21
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__9__21
Beginning of Section Conj_mul_SNo_assoc_lem2__10__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__10__9
Beginning of Section Conj_mul_SNo_assoc_lem2__11__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__11__1
Beginning of Section Conj_mul_SNo_assoc_lem2__11__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__11__19
Beginning of Section Conj_mul_SNo_assoc_lem2__12__31
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__12__31
Beginning of Section Conj_mul_SNo_assoc_lem2__13__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Hypothesis H33 : SNo (g u (g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__13__8
Beginning of Section Conj_mul_SNo_assoc_lem2__14__5
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__14__5
Beginning of Section Conj_mul_SNo_assoc_lem2__14__29
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__14__29
Beginning of Section Conj_mul_SNo_assoc_lem2__15__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__15__1
Beginning of Section Conj_mul_SNo_assoc_lem2__15__27
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__15__27
Beginning of Section Conj_mul_SNo_assoc_lem2__15__29
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H20 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__15__29
Beginning of Section Conj_mul_SNo_assoc_lem2__18__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H21 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__18__13
Beginning of Section Conj_mul_SNo_assoc_lem2__18__18
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H21 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__18__18
Beginning of Section Conj_mul_SNo_assoc_lem2__19__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H21 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__19__8
Beginning of Section Conj_mul_SNo_assoc_lem2__19__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H21 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__19__11
Beginning of Section Conj_mul_SNo_assoc_lem2__21__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H21 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__21__8
Beginning of Section Conj_mul_SNo_assoc_lem2__22__22
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H21 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__22__22
Beginning of Section Conj_mul_SNo_assoc_lem2__23__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H14 : SNo (g y z)
Hypothesis H15 : SNo (g (g x y) z)
Hypothesis H16 : u ∈ SNoS_ (SNoLev x)
Hypothesis H17 : SNo v
Hypothesis H18 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H19 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H20 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H21 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H22 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H23 : SNo u
Hypothesis H24 : SNo x2
Hypothesis H25 : SNo y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__23__13
Beginning of Section Conj_mul_SNo_assoc_lem2__23__23
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g y z)
Hypothesis H15 : SNo (g (g x y) z)
Hypothesis H16 : u ∈ SNoS_ (SNoLev x)
Hypothesis H17 : SNo v
Hypothesis H18 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H19 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H20 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H21 : (g x (g x2 z + g y y2) + g u (v + g x2 y2)) ≤ g u (g x2 z + g y y2) + g x (v + g x2 y2)
Hypothesis H22 : (g (g x y + g u x2) z + g (g u y + g x x2) y2) < g (g u y + g x x2) z + g (g x y + g u x2) y2
Hypothesis H24 : SNo x2
Hypothesis H25 : SNo y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__23__23
Beginning of Section Conj_mul_SNo_assoc_lem2__24__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (g x y)
Hypothesis H6 : SNo w
Hypothesis H7 : x < w
Hypothesis H8 : SNo u
Hypothesis H9 : y < u
Hypothesis H10 : SNo v
Hypothesis H11 : z < v
Hypothesis H12 : SNo (g w y)
Hypothesis H13 : SNo (g w u)
Hypothesis H14 : SNo (g x u)
Hypothesis H15 : SNo (g (g w y + g x u) z)
Hypothesis H16 : SNo (g (g x y + g w u) z)
Hypothesis H17 : SNo (g (g w y + g x u) v)
Hypothesis H18 : SNo (g (g x y + g w u) v)
Hypothesis H19 : SNo (g w y + g x u)
Theorem. (
Conj_mul_SNo_assoc_lem2__24__1)
SNo (g x y + g w u) → (g (g x y + g w u) z + g (g w y + g x u) v) < g (g w y + g x u) z + g (g x y + g w u) v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__24__1
Beginning of Section Conj_mul_SNo_assoc_lem2__25__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : SNo z
Hypothesis H5 : SNo (g x y)
Hypothesis H6 : SNo w
Hypothesis H7 : x < w
Hypothesis H8 : SNo u
Hypothesis H9 : y < u
Hypothesis H10 : SNo v
Hypothesis H11 : z < v
Hypothesis H12 : SNo (g w y)
Hypothesis H13 : SNo (g w u)
Hypothesis H15 : SNo (g (g w y + g x u) z)
Hypothesis H16 : SNo (g (g x y + g w u) z)
Hypothesis H17 : SNo (g (g w y + g x u) v)
Hypothesis H18 : SNo (g (g x y + g w u) v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__25__14
Beginning of Section Conj_mul_SNo_assoc_lem2__28__17
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g u y + g x x2)
Hypothesis H26 : SNo (g x y + g u x2)
Hypothesis H27 : SNo (g (g u y + g x x2) z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__28__17
Beginning of Section Conj_mul_SNo_assoc_lem2__31__23
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__31__23
Beginning of Section Conj_mul_SNo_assoc_lem2__32__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__32__4
Beginning of Section Conj_mul_SNo_assoc_lem2__32__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__32__6
Beginning of Section Conj_mul_SNo_assoc_lem2__32__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__32__11
Beginning of Section Conj_mul_SNo_assoc_lem2__32__21
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g u y)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__32__21
Beginning of Section Conj_mul_SNo_assoc_lem2__33__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__33__1
Beginning of Section Conj_mul_SNo_assoc_lem2__34__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__34__7
Beginning of Section Conj_mul_SNo_assoc_lem2__36__5
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__36__5
Beginning of Section Conj_mul_SNo_assoc_lem2__36__10
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__36__10
Beginning of Section Conj_mul_SNo_assoc_lem2__37__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__37__9
Beginning of Section Conj_mul_SNo_assoc_lem2__37__12
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__37__12
Beginning of Section Conj_mul_SNo_assoc_lem2__37__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__37__14
Beginning of Section Conj_mul_SNo_assoc_lem2__39__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__39__13
Beginning of Section Conj_mul_SNo_assoc_lem2__40__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Hypothesis H25 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__40__4
Beginning of Section Conj_mul_SNo_assoc_lem2__40__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Hypothesis H25 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__40__14
Beginning of Section Conj_mul_SNo_assoc_lem2__42__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__42__4
Beginning of Section Conj_mul_SNo_assoc_lem2__42__15
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__42__15
Beginning of Section Conj_mul_SNo_assoc_lem2__42__18
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__42__18
Beginning of Section Conj_mul_SNo_assoc_lem2__45__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H15 : y2 ∈ SNoR z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__45__4
Beginning of Section Conj_mul_SNo_assoc_lem2__45__15
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoR y
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : y < x2
Hypothesis H19 : SNo y2
Hypothesis H20 : z < y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__45__15
Beginning of Section Conj_mul_SNo_assoc_lem2__48__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H7 : u ∈ SNoR x
Hypothesis H8 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H9 : SNo u
Hypothesis H10 : x < u
Hypothesis H11 : SNo v
Hypothesis H12 : x2 ∈ SNoL y
Hypothesis H13 : y2 ∈ SNoL z
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 < y
Hypothesis H17 : SNo y2
Hypothesis H18 : y2 < z
Hypothesis H19 : SNo (g x2 z + g y y2)
Hypothesis H20 : SNo (v + g x2 y2)
Hypothesis H21 : SNo (g u y + g x x2)
Hypothesis H22 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__48__14
Beginning of Section Conj_mul_SNo_assoc_lem2__48__21
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H7 : u ∈ SNoR x
Hypothesis H8 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H9 : SNo u
Hypothesis H10 : x < u
Hypothesis H11 : SNo v
Hypothesis H12 : x2 ∈ SNoL y
Hypothesis H13 : y2 ∈ SNoL z
Hypothesis H14 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 < y
Hypothesis H17 : SNo y2
Hypothesis H18 : y2 < z
Hypothesis H19 : SNo (g x2 z + g y y2)
Hypothesis H20 : SNo (v + g x2 y2)
Hypothesis H22 : SNo (g x y + g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__48__21
Beginning of Section Conj_mul_SNo_assoc_lem2__50__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u x2)
Hypothesis H21 : SNo (g x2 z + g y y2)
Hypothesis H22 : SNo (v + g x2 y2)
Hypothesis H23 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__50__1
Beginning of Section Conj_mul_SNo_assoc_lem2__50__2
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u x2)
Hypothesis H21 : SNo (g x2 z + g y y2)
Hypothesis H22 : SNo (v + g x2 y2)
Hypothesis H23 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__50__2
Beginning of Section Conj_mul_SNo_assoc_lem2__51__12
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__51__12
Beginning of Section Conj_mul_SNo_assoc_lem2__51__15
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__51__15
Beginning of Section Conj_mul_SNo_assoc_lem2__52__12
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__52__12
Beginning of Section Conj_mul_SNo_assoc_lem2__53__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__53__6
Beginning of Section Conj_mul_SNo_assoc_lem2__53__18
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__53__18
Beginning of Section Conj_mul_SNo_assoc_lem2__54__10
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__54__10
Beginning of Section Conj_mul_SNo_assoc_lem2__57__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__57__11
Beginning of Section Conj_mul_SNo_assoc_lem2__57__18
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Hypothesis H26 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__57__18
Beginning of Section Conj_mul_SNo_assoc_lem2__58__3
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Hypothesis H25 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__58__3
Beginning of Section Conj_mul_SNo_assoc_lem2__59__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__59__19
Beginning of Section Conj_mul_SNo_assoc_lem2__60__9
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Hypothesis H25 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__60__9
Beginning of Section Conj_mul_SNo_assoc_lem2__60__20
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Hypothesis H24 : SNo (g x2 z)
Hypothesis H25 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__60__20
Beginning of Section Conj_mul_SNo_assoc_lem2__62__21
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H22 : SNo (g u x2)
Hypothesis H23 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__62__21
Beginning of Section Conj_mul_SNo_assoc_lem2__63__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__63__4
Beginning of Section Conj_mul_SNo_assoc_lem2__63__5
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Hypothesis H22 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__63__5
Beginning of Section Conj_mul_SNo_assoc_lem2__64__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : x < u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : x2 ∈ SNoL y
Hypothesis H15 : y2 ∈ SNoL z
Hypothesis H16 : (v + g x2 y2) ≤ g x2 z + g y y2
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 < y
Hypothesis H19 : SNo y2
Hypothesis H20 : y2 < z
Hypothesis H21 : SNo (g u y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__64__4
Beginning of Section Conj_mul_SNo_assoc_lem2__66__10
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → (∀z2 : set, z2 ∈ SNoL (g x2 y2) → (∀P : prop, (∀w2 : set, w2 ∈ SNoL x2 → (∀u2 : set, u2 ∈ SNoL y2 → (z2 + g w2 u2) ≤ g w2 y2 + g x2 u2 → P)) → (∀w2 : set, w2 ∈ SNoR x2 → (∀u2 : set, u2 ∈ SNoR y2 → (z2 + g w2 u2) ≤ g w2 y2 + g x2 u2 → P)) → P)))
Hypothesis H2 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H3 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 ≤ x2 → w2 ≤ y2 → (g z2 y2 + g x2 w2) ≤ g x2 y2 + g z2 w2)
Hypothesis H4 : SNo x
Hypothesis H5 : SNo y
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (g x y)
Hypothesis H8 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → w = g x2 (g y z) + g x y2 + - (g x2 y2) → (g x (g z2 z + g y w2) + g x2 (y2 + g z2 w2)) ≤ g x2 (g z2 z + g y w2) + g x (y2 + g z2 w2) → (g (g x y + g x2 z2) z + g (g x2 y + g x z2) w2) < g (g x2 y + g x z2) z + g (g x y + g x2 z2) w2 → g (g x y) z < w))))
Hypothesis H9 : u ∈ SNoR x
Hypothesis H11 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H12 : SNo u
Hypothesis H13 : x < u
Hypothesis H14 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__66__10
Beginning of Section Conj_mul_SNo_assoc_lem2__71__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g u (v + g x2 y2))
Hypothesis H26 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__71__8
Beginning of Section Conj_mul_SNo_assoc_lem2__72__20
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__72__20
Beginning of Section Conj_mul_SNo_assoc_lem2__73__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__73__7
Beginning of Section Conj_mul_SNo_assoc_lem2__73__10
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__73__10
Beginning of Section Conj_mul_SNo_assoc_lem2__74__16
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__74__16
Beginning of Section Conj_mul_SNo_assoc_lem2__75__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__75__7
Beginning of Section Conj_mul_SNo_assoc_lem2__75__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__75__19
Beginning of Section Conj_mul_SNo_assoc_lem2__77__18
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__77__18
Beginning of Section Conj_mul_SNo_assoc_lem2__79__17
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__79__17
Beginning of Section Conj_mul_SNo_assoc_lem2__79__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H20 : SNo (g u y)
Hypothesis H21 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__79__19
Beginning of Section Conj_mul_SNo_assoc_lem2__80__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Hypothesis H19 : y2 < z
Hypothesis H20 : SNo (g u y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__80__11
Beginning of Section Conj_mul_SNo_assoc_lem2__81__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoR y
Hypothesis H14 : y2 ∈ SNoL z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : y < x2
Hypothesis H18 : SNo y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__81__19
Beginning of Section Conj_mul_SNo_assoc_lem2__82__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g x2 z + g y y2)
Hypothesis H21 : SNo (v + g x2 y2)
Hypothesis H22 : SNo (g x (v + g x2 y2))
Hypothesis H23 : SNo (g u (v + g x2 y2))
Hypothesis H24 : SNo (g u (g x2 z + g y y2))
Hypothesis H25 : SNo (g x (g x2 z + g y y2))
Hypothesis H26 : SNo (g u y + g x x2)
Hypothesis H27 : SNo (g (g x y + g u x2) z)
Hypothesis H28 : SNo (g (g u y + g x x2) z)
Hypothesis H29 : SNo (g (g x y + g u x2) y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__82__13
Beginning of Section Conj_mul_SNo_assoc_lem2__83__29
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g x2 z + g y y2)
Hypothesis H21 : SNo (v + g x2 y2)
Hypothesis H22 : SNo (g x (v + g x2 y2))
Hypothesis H23 : SNo (g u (v + g x2 y2))
Hypothesis H24 : SNo (g u (g x2 z + g y y2))
Hypothesis H25 : SNo (g x (g x2 z + g y y2))
Hypothesis H26 : SNo (g u y + g x x2)
Hypothesis H27 : SNo (g (g x y + g u x2) z)
Hypothesis H28 : SNo (g (g u y + g x x2) z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__83__29
Beginning of Section Conj_mul_SNo_assoc_lem2__84__12
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g x2 z + g y y2)
Hypothesis H21 : SNo (v + g x2 y2)
Hypothesis H22 : SNo (g x (v + g x2 y2))
Hypothesis H23 : SNo (g u (v + g x2 y2))
Hypothesis H24 : SNo (g u (g x2 z + g y y2))
Hypothesis H25 : SNo (g x (g x2 z + g y y2))
Hypothesis H26 : SNo (g u y + g x x2)
Hypothesis H27 : SNo (g (g x y + g u x2) z)
Hypothesis H28 : SNo (g (g u y + g x x2) z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__84__12
Beginning of Section Conj_mul_SNo_assoc_lem2__84__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g x2 z + g y y2)
Hypothesis H21 : SNo (v + g x2 y2)
Hypothesis H22 : SNo (g x (v + g x2 y2))
Hypothesis H23 : SNo (g u (v + g x2 y2))
Hypothesis H24 : SNo (g u (g x2 z + g y y2))
Hypothesis H25 : SNo (g x (g x2 z + g y y2))
Hypothesis H26 : SNo (g u y + g x x2)
Hypothesis H27 : SNo (g (g x y + g u x2) z)
Hypothesis H28 : SNo (g (g u y + g x x2) z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__84__14
Beginning of Section Conj_mul_SNo_assoc_lem2__86__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g x2 z + g y y2)
Hypothesis H21 : SNo (v + g x2 y2)
Hypothesis H22 : SNo (g x (v + g x2 y2))
Hypothesis H23 : SNo (g u (v + g x2 y2))
Hypothesis H24 : SNo (g u (g x2 z + g y y2))
Hypothesis H25 : SNo (g x (g x2 z + g y y2))
Hypothesis H26 : SNo (g x y + g u x2)
Hypothesis H27 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__86__1
Beginning of Section Conj_mul_SNo_assoc_lem2__86__26
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : x2 ∈ SNoL y
Hypothesis H14 : y2 ∈ SNoR z
Hypothesis H15 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H16 : SNo x2
Hypothesis H17 : x2 < y
Hypothesis H18 : SNo y2
Hypothesis H19 : z < y2
Hypothesis H20 : SNo (g x2 z + g y y2)
Hypothesis H21 : SNo (v + g x2 y2)
Hypothesis H22 : SNo (g x (v + g x2 y2))
Hypothesis H23 : SNo (g u (v + g x2 y2))
Hypothesis H24 : SNo (g u (g x2 z + g y y2))
Hypothesis H25 : SNo (g x (g x2 z + g y y2))
Hypothesis H27 : SNo (g u y + g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__86__26
Beginning of Section Conj_mul_SNo_assoc_lem2__91__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (v + g x2 y2)
Hypothesis H25 : SNo (g x (v + g x2 y2))
Hypothesis H26 : SNo (g u (v + g x2 y2))
Hypothesis H27 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__91__7
Beginning of Section Conj_mul_SNo_assoc_lem2__93__22
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (g x2 y2)
Hypothesis H25 : SNo (v + g x2 y2)
Hypothesis H26 : SNo (g x (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__93__22
Beginning of Section Conj_mul_SNo_assoc_lem2__94__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (g x2 y2)
Hypothesis H25 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__94__7
Beginning of Section Conj_mul_SNo_assoc_lem2__94__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (g x2 y2)
Hypothesis H25 : SNo (v + g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__94__13
Beginning of Section Conj_mul_SNo_assoc_lem2__95__2
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__95__2
Beginning of Section Conj_mul_SNo_assoc_lem2__95__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Hypothesis H24 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__95__8
Beginning of Section Conj_mul_SNo_assoc_lem2__96__20
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z + g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__96__20
Beginning of Section Conj_mul_SNo_assoc_lem2__97__24
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__97__24
Beginning of Section Conj_mul_SNo_assoc_lem2__98__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__98__8
Beginning of Section Conj_mul_SNo_assoc_lem2__98__11
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__98__11
Beginning of Section Conj_mul_SNo_assoc_lem2__98__16
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Hypothesis H23 : SNo (g x2 z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__98__16
Beginning of Section Conj_mul_SNo_assoc_lem2__99__3
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__99__3
Beginning of Section Conj_mul_SNo_assoc_lem2__99__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 < z2 → v2 < w2 → (g u2 w2 + g z2 v2) < g z2 w2 + g u2 v2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, ∀v2 : set, SNo z2 → SNo w2 → SNo u2 → SNo v2 → u2 ≤ z2 → v2 ≤ w2 → (g u2 w2 + g z2 v2) ≤ g z2 w2 + g u2 v2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : SNo (g x y)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀u2 : set, u2 ∈ SNoS_ (SNoLev y) → (∀v2 : set, v2 ∈ SNoS_ (SNoLev z) → w = g z2 (g y z) + g x w2 + - (g z2 w2) → (g x (g u2 z + g y v2) + g z2 (w2 + g u2 v2)) ≤ g z2 (g u2 z + g y v2) + g x (w2 + g u2 v2) → (g (g x y + g z2 u2) z + g (g z2 y + g x u2) v2) < g (g z2 y + g x u2) z + g (g x y + g z2 u2) v2 → g (g x y) z < w))))
Hypothesis H9 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H10 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (g u v)
Hypothesis H14 : SNo (g u y)
Hypothesis H15 : x2 ∈ SNoL y
Hypothesis H16 : y2 ∈ SNoR z
Hypothesis H17 : (g x2 z + g y y2) ≤ v + g x2 y2
Hypothesis H18 : SNo x2
Hypothesis H19 : x2 < y
Hypothesis H20 : SNo y2
Hypothesis H21 : z < y2
Hypothesis H22 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__99__8
Beginning of Section Conj_mul_SNo_assoc_lem2__101__4
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → SNo (g x2 y2))
Hypothesis H1 : (∀x2 : set, ∀y2 : set, SNo x2 → SNo y2 → (∀z2 : set, z2 ∈ SNoR (g x2 y2) → (∀P : prop, (∀w2 : set, w2 ∈ SNoL x2 → (∀u2 : set, u2 ∈ SNoR y2 → (g w2 y2 + g x2 u2) ≤ z2 + g w2 u2 → P)) → (∀w2 : set, w2 ∈ SNoR x2 → (∀u2 : set, u2 ∈ SNoL y2 → (g w2 y2 + g x2 u2) ≤ z2 + g w2 u2 → P)) → P)))
Hypothesis H2 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 < x2 → w2 < y2 → (g z2 y2 + g x2 w2) < g x2 y2 + g z2 w2)
Hypothesis H3 : (∀x2 : set, ∀y2 : set, ∀z2 : set, ∀w2 : set, SNo x2 → SNo y2 → SNo z2 → SNo w2 → z2 ≤ x2 → w2 ≤ y2 → (g z2 y2 + g x2 w2) ≤ g x2 y2 + g z2 w2)
Hypothesis H5 : SNo y
Hypothesis H6 : SNo z
Hypothesis H7 : SNo (g x y)
Hypothesis H8 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → w = g x2 (g y z) + g x y2 + - (g x2 y2) → (g x (g z2 z + g y w2) + g x2 (y2 + g z2 w2)) ≤ g x2 (g z2 z + g y w2) + g x (y2 + g z2 w2) → (g (g x y + g x2 z2) z + g (g x2 y + g x z2) w2) < g (g x2 y + g x z2) z + g (g x y + g x2 z2) w2 → g (g x y) z < w))))
Hypothesis H9 : u ∈ SNoL x
Hypothesis H10 : v ∈ SNoR (g y z)
Hypothesis H11 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H12 : SNo u
Hypothesis H13 : u < x
Hypothesis H14 : SNo v
Hypothesis H15 : SNo (g u v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem2__101__4