Beginning of Section Conj_mul_SNo_Lt__23__10
(*** $I sig/Nov2021ConjPreamble.mgs ***)
L4
Variable x : set
(*** Conj_mul_SNo_Lt__23__10 TMSJzQCLFKAzZP39iMF3SeiYqfkQEMGroHm bounty of about 25 bars ***)
L5
Variable y : set
L6
Variable z : set
L7
Variable w : set
L8
Variable u : set
L9
Hypothesis H0 : SNo x
L10
Hypothesis H1 : SNo z
L11
Hypothesis H2 : SNo w
L12
Hypothesis H3 : SNo (x * y)
L13
Hypothesis H4 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L14
Hypothesis H5 : SNo (z * y)
L15
Hypothesis H6 : SNo (x * w)
L16
Hypothesis H7 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L17
Hypothesis H8 : SNo (z * w)
L18
Hypothesis H9 : SNo (z * y + x * w)
L19
Hypothesis H11 : z SNoL x
L20
Hypothesis H12 : SNo u
L21
Hypothesis H13 : w < u
L22
Hypothesis H14 : SNoLev u SNoLev w
L23
Hypothesis H15 : u SNoL y
L24
Theorem. (Conj_mul_SNo_Lt__23__10)
u SNoR w(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__23__10
Beginning of Section Conj_mul_SNo_Lt__24__6
L30
Variable x : set
(*** Conj_mul_SNo_Lt__24__6 TMM5B3jeWUhr9Y2AMqqvCKXtF7M5rCSGXGB bounty of about 25 bars ***)
L31
Variable y : set
L32
Variable z : set
L33
Variable w : set
L34
Variable u : set
L35
Hypothesis H0 : SNo x
L36
Hypothesis H1 : SNo y
L37
Hypothesis H2 : SNo z
L38
Hypothesis H3 : SNo w
L39
Hypothesis H4 : SNo (x * y)
L40
Hypothesis H5 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L41
Hypothesis H7 : SNo (x * w)
L42
Hypothesis H8 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L43
Hypothesis H9 : SNo (z * w)
L44
Hypothesis H10 : SNo (z * y + x * w)
L45
Hypothesis H11 : SNo (x * y + z * w)
L46
Hypothesis H12 : z SNoL x
L47
Hypothesis H13 : SNo u
L48
Hypothesis H14 : w < u
L49
Hypothesis H15 : u < y
L50
Hypothesis H16 : SNoLev u SNoLev w
L51
Hypothesis H17 : SNoLev u SNoLev y
L52
Theorem. (Conj_mul_SNo_Lt__24__6)
u SNoL y(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__24__6
Beginning of Section Conj_mul_SNo_Lt__24__9
L58
Variable x : set
(*** Conj_mul_SNo_Lt__24__9 TMR6L3XCy7nHCdGqXLydM6J2cu2xvTcaEvE bounty of about 25 bars ***)
L59
Variable y : set
L60
Variable z : set
L61
Variable w : set
L62
Variable u : set
L63
Hypothesis H0 : SNo x
L64
Hypothesis H1 : SNo y
L65
Hypothesis H2 : SNo z
L66
Hypothesis H3 : SNo w
L67
Hypothesis H4 : SNo (x * y)
L68
Hypothesis H5 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L69
Hypothesis H6 : SNo (z * y)
L70
Hypothesis H7 : SNo (x * w)
L71
Hypothesis H8 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L72
Hypothesis H10 : SNo (z * y + x * w)
L73
Hypothesis H11 : SNo (x * y + z * w)
L74
Hypothesis H12 : z SNoL x
L75
Hypothesis H13 : SNo u
L76
Hypothesis H14 : w < u
L77
Hypothesis H15 : u < y
L78
Hypothesis H16 : SNoLev u SNoLev w
L79
Hypothesis H17 : SNoLev u SNoLev y
L80
Theorem. (Conj_mul_SNo_Lt__24__9)
u SNoL y(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__24__9
Beginning of Section Conj_mul_SNo_Lt__26__4
L86
Variable x : set
(*** Conj_mul_SNo_Lt__26__4 TMSh2aLEUxhrMRD3zK47Wk536jTYnEgofS4 bounty of about 25 bars ***)
L87
Variable y : set
L88
Variable z : set
L89
Variable w : set
L90
Variable u : set
L91
Hypothesis H0 : SNo (x * y)
L92
Hypothesis H1 : SNo (z * y)
L93
Hypothesis H2 : SNo (x * w)
L94
Hypothesis H3 : SNo (z * w)
L95
Hypothesis H5 : SNo (z * y + x * w)
L96
Hypothesis H6 : SNo (x * y + z * w)
L97
Hypothesis H7 : u SNoR z
L98
Hypothesis H8 : SNo (u * y)
L99
Hypothesis H9 : SNo (u * w)
L100
Hypothesis H10 : SNo (z * w + u * y)
L101
Hypothesis H11 : SNo (u * w + x * y)
L102
Hypothesis H12 : SNo (x * w + u * y)
L103
Hypothesis H13 : SNo (u * w + z * y)
L104
Hypothesis H14 : y SNoR w
L105
Hypothesis H15 : (x * w + u * y) < u * w + x * y
L106
Theorem. (Conj_mul_SNo_Lt__26__4)
(u * w + z * y) < z * w + u * y(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__26__4
Beginning of Section Conj_mul_SNo_Lt__27__13
L112
Variable x : set
(*** Conj_mul_SNo_Lt__27__13 TMWDCi488kgJBFgbimVVes2Si3XcVHjwmyV bounty of about 25 bars ***)
L113
Variable y : set
L114
Variable z : set
L115
Variable w : set
L116
Variable u : set
L117
Hypothesis H0 : SNo (x * y)
L118
Hypothesis H1 : SNo (z * y)
L119
Hypothesis H2 : SNo (x * w)
L120
Hypothesis H3 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L121
Hypothesis H4 : SNo (z * w)
L122
Hypothesis H5 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L123
Hypothesis H6 : SNo (z * y + x * w)
L124
Hypothesis H7 : SNo (x * y + z * w)
L125
Hypothesis H8 : u SNoL x
L126
Hypothesis H9 : u SNoR z
L127
Hypothesis H10 : SNo (u * y)
L128
Hypothesis H11 : SNo (u * w)
L129
Hypothesis H12 : SNo (z * w + u * y)
L130
Hypothesis H14 : SNo (x * w + u * y)
L131
Hypothesis H15 : SNo (u * w + z * y)
L132
Hypothesis H16 : y SNoR w
L133
Theorem. (Conj_mul_SNo_Lt__27__13)
(x * w + u * y) < u * w + x * y(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__27__13
Beginning of Section Conj_mul_SNo_Lt__29__0
L139
Variable x : set
(*** Conj_mul_SNo_Lt__29__0 TMTA4dcGiWCpsNH7JKXsHZSxv7KQxCw912S bounty of about 25 bars ***)
L140
Variable y : set
L141
Variable z : set
L142
Variable w : set
L143
Variable u : set
L144
Hypothesis H1 : SNo (z * y)
L145
Hypothesis H2 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L146
Hypothesis H3 : SNo (x * w)
L147
Hypothesis H4 : SNo (z * w)
L148
Hypothesis H5 : SNo (z * y + x * w)
L149
Hypothesis H6 : SNo (x * y + z * w)
L150
Hypothesis H7 : u SNoR z
L151
Hypothesis H8 : SNo (u * y)
L152
Hypothesis H9 : SNo (u * w)
L153
Hypothesis H10 : SNo (u * y + x * w)
L154
Hypothesis H11 : SNo (u * y + z * w)
L155
Hypothesis H12 : SNo (x * y + u * w)
L156
Hypothesis H13 : SNo (z * y + u * w)
L157
Hypothesis H14 : w SNoL y
L158
Hypothesis H15 : (u * y + x * w) < x * y + u * w
L159
Theorem. (Conj_mul_SNo_Lt__29__0)
(z * y + u * w) < u * y + z * w(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__29__0
Beginning of Section Conj_mul_SNo_Lt__29__6
L165
Variable x : set
(*** Conj_mul_SNo_Lt__29__6 TMWhvRjMoLy1WfwXqsJnxWVp2rUh7U6UWtY bounty of about 25 bars ***)
L166
Variable y : set
L167
Variable z : set
L168
Variable w : set
L169
Variable u : set
L170
Hypothesis H0 : SNo (x * y)
L171
Hypothesis H1 : SNo (z * y)
L172
Hypothesis H2 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L173
Hypothesis H3 : SNo (x * w)
L174
Hypothesis H4 : SNo (z * w)
L175
Hypothesis H5 : SNo (z * y + x * w)
L176
Hypothesis H7 : u SNoR z
L177
Hypothesis H8 : SNo (u * y)
L178
Hypothesis H9 : SNo (u * w)
L179
Hypothesis H10 : SNo (u * y + x * w)
L180
Hypothesis H11 : SNo (u * y + z * w)
L181
Hypothesis H12 : SNo (x * y + u * w)
L182
Hypothesis H13 : SNo (z * y + u * w)
L183
Hypothesis H14 : w SNoL y
L184
Hypothesis H15 : (u * y + x * w) < x * y + u * w
L185
Theorem. (Conj_mul_SNo_Lt__29__6)
(z * y + u * w) < u * y + z * w(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__29__6
Beginning of Section Conj_mul_SNo_Lt__29__10
L191
Variable x : set
(*** Conj_mul_SNo_Lt__29__10 TMKCfb9ckE56MyrzjUBFqG6zkWFq4k7tXKE bounty of about 25 bars ***)
L192
Variable y : set
L193
Variable z : set
L194
Variable w : set
L195
Variable u : set
L196
Hypothesis H0 : SNo (x * y)
L197
Hypothesis H1 : SNo (z * y)
L198
Hypothesis H2 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L199
Hypothesis H3 : SNo (x * w)
L200
Hypothesis H4 : SNo (z * w)
L201
Hypothesis H5 : SNo (z * y + x * w)
L202
Hypothesis H6 : SNo (x * y + z * w)
L203
Hypothesis H7 : u SNoR z
L204
Hypothesis H8 : SNo (u * y)
L205
Hypothesis H9 : SNo (u * w)
L206
Hypothesis H11 : SNo (u * y + z * w)
L207
Hypothesis H12 : SNo (x * y + u * w)
L208
Hypothesis H13 : SNo (z * y + u * w)
L209
Hypothesis H14 : w SNoL y
L210
Hypothesis H15 : (u * y + x * w) < x * y + u * w
L211
Theorem. (Conj_mul_SNo_Lt__29__10)
(z * y + u * w) < u * y + z * w(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__29__10
Beginning of Section Conj_mul_SNo_Lt__31__9
L217
Variable x : set
(*** Conj_mul_SNo_Lt__31__9 TMH5Grq7zsnjYv26ZDa8JowokvgfSzbBM6g bounty of about 25 bars ***)
L218
Variable y : set
L219
Variable z : set
L220
Variable w : set
L221
Variable u : set
L222
Hypothesis H0 : SNo y
L223
Hypothesis H1 : SNo w
L224
Hypothesis H2 : w < y
L225
Hypothesis H3 : SNo (x * y)
L226
Hypothesis H4 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L227
Hypothesis H5 : SNo (z * y)
L228
Hypothesis H6 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L229
Hypothesis H7 : SNo (x * w)
L230
Hypothesis H8 : SNo (z * w)
L231
Hypothesis H10 : SNo (x * y + z * w)
L232
Hypothesis H11 : u SNoL x
L233
Hypothesis H12 : u SNoR z
L234
Hypothesis H13 : SNo (u * y)
L235
Hypothesis H14 : SNo (u * w)
L236
Hypothesis H15 : SNo (u * y + x * w)
L237
Hypothesis H16 : SNo (u * y + z * w)
L238
Hypothesis H17 : SNo (x * y + u * w)
L239
Hypothesis H18 : SNo (z * y + u * w)
L240
Hypothesis H19 : SNoLev w SNoLev y
L241
Theorem. (Conj_mul_SNo_Lt__31__9)
w SNoL y(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__31__9
Beginning of Section Conj_mul_SNo_Lt__32__13
L247
Variable x : set
(*** Conj_mul_SNo_Lt__32__13 TML5bFhRXz3dvDHaDREG312xhDsUeajvaPE bounty of about 25 bars ***)
L248
Variable y : set
L249
Variable z : set
L250
Variable w : set
L251
Variable u : set
L252
Variable v : set
L253
Hypothesis H0 : SNo (x * y)
L254
Hypothesis H1 : SNo (z * y)
L255
Hypothesis H2 : SNo (x * w)
L256
Hypothesis H3 : SNo (z * w)
L257
Hypothesis H4 : SNo (z * y + x * w)
L258
Hypothesis H5 : SNo (x * y + z * w)
L259
Hypothesis H6 : SNo (u * y)
L260
Hypothesis H7 : SNo (u * w)
L261
Hypothesis H8 : SNo (x * v)
L262
Hypothesis H9 : SNo (z * v)
L263
Hypothesis H10 : SNo (u * v)
L264
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L265
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L266
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L267
Hypothesis H15 : SNo (u * v + u * v)
L268
Hypothesis H16 : SNo (u * y + z * v)
L269
Hypothesis H17 : SNo (u * w + x * v)
L270
Hypothesis H18 : SNo (z * y + u * v)
L271
Hypothesis H19 : SNo (x * w + u * v)
L272
Hypothesis H20 : SNo (u * w + z * v)
L273
Hypothesis H21 : SNo (u * y + x * v)
L274
Hypothesis H22 : SNo (x * y + u * v)
L275
Theorem. (Conj_mul_SNo_Lt__32__13)
SNo (z * w + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__32__13
Beginning of Section Conj_mul_SNo_Lt__33__2
L281
Variable x : set
(*** Conj_mul_SNo_Lt__33__2 TMHSmdzHtuLUHZGW6ztqu8vyfVuQq5WVEDR bounty of about 25 bars ***)
L282
Variable y : set
L283
Variable z : set
L284
Variable w : set
L285
Variable u : set
L286
Variable v : set
L287
Hypothesis H0 : SNo (x * y)
L288
Hypothesis H1 : SNo (z * y)
L289
Hypothesis H3 : SNo (z * w)
L290
Hypothesis H4 : SNo (z * y + x * w)
L291
Hypothesis H5 : SNo (x * y + z * w)
L292
Hypothesis H6 : SNo (u * y)
L293
Hypothesis H7 : SNo (u * w)
L294
Hypothesis H8 : SNo (x * v)
L295
Hypothesis H9 : SNo (z * v)
L296
Hypothesis H10 : SNo (u * v)
L297
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L298
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L299
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L300
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L301
Hypothesis H15 : SNo (u * v + u * v)
L302
Hypothesis H16 : SNo (u * y + z * v)
L303
Hypothesis H17 : SNo (u * w + x * v)
L304
Hypothesis H18 : SNo (z * y + u * v)
L305
Hypothesis H19 : SNo (x * w + u * v)
L306
Hypothesis H20 : SNo (u * w + z * v)
L307
Hypothesis H21 : SNo (u * y + x * v)
L308
Theorem. (Conj_mul_SNo_Lt__33__2)
SNo (x * y + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__33__2
Beginning of Section Conj_mul_SNo_Lt__33__21
L314
Variable x : set
(*** Conj_mul_SNo_Lt__33__21 TMYzh6zx9rAk9HCGP926gPZqUq8g7rmcKhC bounty of about 25 bars ***)
L315
Variable y : set
L316
Variable z : set
L317
Variable w : set
L318
Variable u : set
L319
Variable v : set
L320
Hypothesis H0 : SNo (x * y)
L321
Hypothesis H1 : SNo (z * y)
L322
Hypothesis H2 : SNo (x * w)
L323
Hypothesis H3 : SNo (z * w)
L324
Hypothesis H4 : SNo (z * y + x * w)
L325
Hypothesis H5 : SNo (x * y + z * w)
L326
Hypothesis H6 : SNo (u * y)
L327
Hypothesis H7 : SNo (u * w)
L328
Hypothesis H8 : SNo (x * v)
L329
Hypothesis H9 : SNo (z * v)
L330
Hypothesis H10 : SNo (u * v)
L331
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L332
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L333
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L334
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L335
Hypothesis H15 : SNo (u * v + u * v)
L336
Hypothesis H16 : SNo (u * y + z * v)
L337
Hypothesis H17 : SNo (u * w + x * v)
L338
Hypothesis H18 : SNo (z * y + u * v)
L339
Hypothesis H19 : SNo (x * w + u * v)
L340
Hypothesis H20 : SNo (u * w + z * v)
L341
Theorem. (Conj_mul_SNo_Lt__33__21)
SNo (x * y + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__33__21
Beginning of Section Conj_mul_SNo_Lt__34__7
L347
Variable x : set
(*** Conj_mul_SNo_Lt__34__7 TMYJt5rndtZh7Rk1pKGYha7EXJ7yzy66wt3 bounty of about 25 bars ***)
L348
Variable y : set
L349
Variable z : set
L350
Variable w : set
L351
Variable u : set
L352
Variable v : set
L353
Hypothesis H0 : SNo (x * y)
L354
Hypothesis H1 : SNo (z * y)
L355
Hypothesis H2 : SNo (x * w)
L356
Hypothesis H3 : SNo (z * w)
L357
Hypothesis H4 : SNo (z * y + x * w)
L358
Hypothesis H5 : SNo (x * y + z * w)
L359
Hypothesis H6 : SNo (u * y)
L360
Hypothesis H8 : SNo (x * v)
L361
Hypothesis H9 : SNo (z * v)
L362
Hypothesis H10 : SNo (u * v)
L363
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L364
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L365
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L366
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L367
Hypothesis H15 : SNo (u * v + u * v)
L368
Hypothesis H16 : SNo (u * y + z * v)
L369
Hypothesis H17 : SNo (u * w + x * v)
L370
Hypothesis H18 : SNo (z * y + u * v)
L371
Hypothesis H19 : SNo (x * w + u * v)
L372
Hypothesis H20 : SNo (u * w + z * v)
L373
Theorem. (Conj_mul_SNo_Lt__34__7)
SNo (u * y + x * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__34__7
Beginning of Section Conj_mul_SNo_Lt__35__7
L379
Variable x : set
(*** Conj_mul_SNo_Lt__35__7 TMJX18vHwEUsfnF9mNsDK9rbPzvoCZWqtu3 bounty of about 25 bars ***)
L380
Variable y : set
L381
Variable z : set
L382
Variable w : set
L383
Variable u : set
L384
Variable v : set
L385
Hypothesis H0 : SNo (x * y)
L386
Hypothesis H1 : SNo (z * y)
L387
Hypothesis H2 : SNo (x * w)
L388
Hypothesis H3 : SNo (z * w)
L389
Hypothesis H4 : SNo (z * y + x * w)
L390
Hypothesis H5 : SNo (x * y + z * w)
L391
Hypothesis H6 : SNo (u * y)
L392
Hypothesis H8 : SNo (x * v)
L393
Hypothesis H9 : SNo (z * v)
L394
Hypothesis H10 : SNo (u * v)
L395
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L396
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L397
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L398
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L399
Hypothesis H15 : SNo (u * v + u * v)
L400
Hypothesis H16 : SNo (u * y + z * v)
L401
Hypothesis H17 : SNo (u * w + x * v)
L402
Hypothesis H18 : SNo (z * y + u * v)
L403
Hypothesis H19 : SNo (x * w + u * v)
L404
Hypothesis H20 : SNo (u * w + z * v)
L405
Theorem. (Conj_mul_SNo_Lt__35__7)
SNo (x * y + x * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__35__7
Beginning of Section Conj_mul_SNo_Lt__35__18
L411
Variable x : set
(*** Conj_mul_SNo_Lt__35__18 TMK8wovVNU9kS2PZdgF6BhTCbUZPzycbTzX bounty of about 25 bars ***)
L412
Variable y : set
L413
Variable z : set
L414
Variable w : set
L415
Variable u : set
L416
Variable v : set
L417
Hypothesis H0 : SNo (x * y)
L418
Hypothesis H1 : SNo (z * y)
L419
Hypothesis H2 : SNo (x * w)
L420
Hypothesis H3 : SNo (z * w)
L421
Hypothesis H4 : SNo (z * y + x * w)
L422
Hypothesis H5 : SNo (x * y + z * w)
L423
Hypothesis H6 : SNo (u * y)
L424
Hypothesis H7 : SNo (u * w)
L425
Hypothesis H8 : SNo (x * v)
L426
Hypothesis H9 : SNo (z * v)
L427
Hypothesis H10 : SNo (u * v)
L428
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L429
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L430
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L431
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L432
Hypothesis H15 : SNo (u * v + u * v)
L433
Hypothesis H16 : SNo (u * y + z * v)
L434
Hypothesis H17 : SNo (u * w + x * v)
L435
Hypothesis H19 : SNo (x * w + u * v)
L436
Hypothesis H20 : SNo (u * w + z * v)
L437
Theorem. (Conj_mul_SNo_Lt__35__18)
SNo (x * y + x * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__35__18
Beginning of Section Conj_mul_SNo_Lt__36__19
L443
Variable x : set
(*** Conj_mul_SNo_Lt__36__19 TMPGm6jKX5nLrSVYy17sf1nwYupMDqETvxB bounty of about 25 bars ***)
L444
Variable y : set
L445
Variable z : set
L446
Variable w : set
L447
Variable u : set
L448
Variable v : set
L449
Hypothesis H0 : SNo (x * y)
L450
Hypothesis H1 : SNo (z * y)
L451
Hypothesis H2 : SNo (x * w)
L452
Hypothesis H3 : SNo (z * w)
L453
Hypothesis H4 : SNo (z * y + x * w)
L454
Hypothesis H5 : SNo (x * y + z * w)
L455
Hypothesis H6 : SNo (u * y)
L456
Hypothesis H7 : SNo (u * w)
L457
Hypothesis H8 : SNo (x * v)
L458
Hypothesis H9 : SNo (z * v)
L459
Hypothesis H10 : SNo (u * v)
L460
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L461
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L462
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L463
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L464
Hypothesis H15 : SNo (u * v + u * v)
L465
Hypothesis H16 : SNo (u * y + z * v)
L466
Hypothesis H17 : SNo (u * w + x * v)
L467
Hypothesis H18 : SNo (z * y + u * v)
L468
Theorem. (Conj_mul_SNo_Lt__36__19)
SNo (u * w + z * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__36__19
Beginning of Section Conj_mul_SNo_Lt__37__3
L474
Variable x : set
(*** Conj_mul_SNo_Lt__37__3 TMdd9s7BtiTMUjxLWLTJp2846TJHzXRToHF bounty of about 25 bars ***)
L475
Variable y : set
L476
Variable z : set
L477
Variable w : set
L478
Variable u : set
L479
Variable v : set
L480
Hypothesis H0 : SNo (x * y)
L481
Hypothesis H1 : SNo (z * y)
L482
Hypothesis H2 : SNo (x * w)
L483
Hypothesis H4 : SNo (z * y + x * w)
L484
Hypothesis H5 : SNo (x * y + z * w)
L485
Hypothesis H6 : SNo (u * y)
L486
Hypothesis H7 : SNo (u * w)
L487
Hypothesis H8 : SNo (x * v)
L488
Hypothesis H9 : SNo (z * v)
L489
Hypothesis H10 : SNo (u * v)
L490
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L491
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L492
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L493
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L494
Hypothesis H15 : SNo (u * v + u * v)
L495
Hypothesis H16 : SNo (u * y + z * v)
L496
Hypothesis H17 : SNo (u * w + x * v)
L497
Hypothesis H18 : SNo (z * y + u * v)
L498
Theorem. (Conj_mul_SNo_Lt__37__3)
SNo (x * w + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__37__3
Beginning of Section Conj_mul_SNo_Lt__37__17
L504
Variable x : set
(*** Conj_mul_SNo_Lt__37__17 TMKxcFTVDGQoSDERxzXeqPSauXeZHy9CvHp bounty of about 25 bars ***)
L505
Variable y : set
L506
Variable z : set
L507
Variable w : set
L508
Variable u : set
L509
Variable v : set
L510
Hypothesis H0 : SNo (x * y)
L511
Hypothesis H1 : SNo (z * y)
L512
Hypothesis H2 : SNo (x * w)
L513
Hypothesis H3 : SNo (z * w)
L514
Hypothesis H4 : SNo (z * y + x * w)
L515
Hypothesis H5 : SNo (x * y + z * w)
L516
Hypothesis H6 : SNo (u * y)
L517
Hypothesis H7 : SNo (u * w)
L518
Hypothesis H8 : SNo (x * v)
L519
Hypothesis H9 : SNo (z * v)
L520
Hypothesis H10 : SNo (u * v)
L521
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L522
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L523
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L524
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L525
Hypothesis H15 : SNo (u * v + u * v)
L526
Hypothesis H16 : SNo (u * y + z * v)
L527
Hypothesis H18 : SNo (z * y + u * v)
L528
Theorem. (Conj_mul_SNo_Lt__37__17)
SNo (x * w + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__37__17
Beginning of Section Conj_mul_SNo_Lt__38__15
L534
Variable x : set
(*** Conj_mul_SNo_Lt__38__15 TMTwLsdnjqoLgpRJp2v1VacStBVAPrEGyy3 bounty of about 25 bars ***)
L535
Variable y : set
L536
Variable z : set
L537
Variable w : set
L538
Variable u : set
L539
Variable v : set
L540
Hypothesis H0 : SNo (x * y)
L541
Hypothesis H1 : SNo (z * y)
L542
Hypothesis H2 : SNo (x * w)
L543
Hypothesis H3 : SNo (z * w)
L544
Hypothesis H4 : SNo (z * y + x * w)
L545
Hypothesis H5 : SNo (x * y + z * w)
L546
Hypothesis H6 : SNo (u * y)
L547
Hypothesis H7 : SNo (u * w)
L548
Hypothesis H8 : SNo (x * v)
L549
Hypothesis H9 : SNo (z * v)
L550
Hypothesis H10 : SNo (u * v)
L551
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L552
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L553
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L554
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L555
Hypothesis H16 : SNo (u * y + z * v)
L556
Hypothesis H17 : SNo (u * w + x * v)
L557
Theorem. (Conj_mul_SNo_Lt__38__15)
SNo (z * y + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__38__15
Beginning of Section Conj_mul_SNo_Lt__39__12
L563
Variable x : set
(*** Conj_mul_SNo_Lt__39__12 TMctgCSrCEZVM5vFET34N5JSrUnmWBYgtew bounty of about 25 bars ***)
L564
Variable y : set
L565
Variable z : set
L566
Variable w : set
L567
Variable u : set
L568
Variable v : set
L569
Hypothesis H0 : SNo (x * y)
L570
Hypothesis H1 : SNo (z * y)
L571
Hypothesis H2 : SNo (x * w)
L572
Hypothesis H3 : SNo (z * w)
L573
Hypothesis H4 : SNo (z * y + x * w)
L574
Hypothesis H5 : SNo (x * y + z * w)
L575
Hypothesis H6 : SNo (u * y)
L576
Hypothesis H7 : SNo (u * w)
L577
Hypothesis H8 : SNo (x * v)
L578
Hypothesis H9 : SNo (z * v)
L579
Hypothesis H10 : SNo (u * v)
L580
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L581
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L582
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L583
Hypothesis H15 : SNo (u * v + u * v)
L584
Hypothesis H16 : SNo (u * y + z * v)
L585
Theorem. (Conj_mul_SNo_Lt__39__12)
SNo (u * w + x * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__39__12
Beginning of Section Conj_mul_SNo_Lt__40__13
L591
Variable x : set
(*** Conj_mul_SNo_Lt__40__13 TMbqwNM7jKX6BcQkodHxxQjRfX5NfsgQ5yG bounty of about 25 bars ***)
L592
Variable y : set
L593
Variable z : set
L594
Variable w : set
L595
Variable u : set
L596
Variable v : set
L597
Hypothesis H0 : SNo (x * y)
L598
Hypothesis H1 : SNo (z * y)
L599
Hypothesis H2 : SNo (x * w)
L600
Hypothesis H3 : SNo (z * w)
L601
Hypothesis H4 : SNo (z * y + x * w)
L602
Hypothesis H5 : SNo (x * y + z * w)
L603
Hypothesis H6 : SNo (u * y)
L604
Hypothesis H7 : SNo (u * w)
L605
Hypothesis H8 : SNo (x * v)
L606
Hypothesis H9 : SNo (z * v)
L607
Hypothesis H10 : SNo (u * v)
L608
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L609
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L610
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L611
Hypothesis H15 : SNo (u * v + u * v)
L612
Theorem. (Conj_mul_SNo_Lt__40__13)
SNo (u * y + z * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__40__13
Beginning of Section Conj_mul_SNo_Lt__41__1
L618
Variable x : set
(*** Conj_mul_SNo_Lt__41__1 TMKm2eAorisw6JeUukkBJNer9GGzwAtMP5G bounty of about 25 bars ***)
L619
Variable y : set
L620
Variable z : set
L621
Variable w : set
L622
Variable u : set
L623
Variable v : set
L624
Hypothesis H0 : SNo (x * y)
L625
Hypothesis H2 : SNo (x * w)
L626
Hypothesis H3 : SNo (z * w)
L627
Hypothesis H4 : SNo (z * y + x * w)
L628
Hypothesis H5 : SNo (x * y + z * w)
L629
Hypothesis H6 : SNo (u * y)
L630
Hypothesis H7 : SNo (u * w)
L631
Hypothesis H8 : SNo (x * v)
L632
Hypothesis H9 : SNo (z * v)
L633
Hypothesis H10 : SNo (u * v)
L634
Hypothesis H11 : (u * y + x * v) < x * y + u * v
L635
Hypothesis H12 : (u * w + z * v) < z * w + u * v
L636
Hypothesis H13 : (x * w + u * v) < u * w + x * v
L637
Hypothesis H14 : (z * y + u * v) < u * y + z * v
L638
Theorem. (Conj_mul_SNo_Lt__41__1)
SNo (u * v + u * v)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__41__1
Beginning of Section Conj_mul_SNo_Lt__42__12
L644
Variable x : set
(*** Conj_mul_SNo_Lt__42__12 TMaV8cE235TovDCH811xBw5neyptMNXQMFH bounty of about 25 bars ***)
L645
Variable y : set
L646
Variable z : set
L647
Variable w : set
L648
Variable u : set
L649
Variable v : set
L650
Hypothesis H0 : SNo (x * y)
L651
Hypothesis H1 : SNo (z * y)
L652
Hypothesis H2 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
L653
Hypothesis H3 : SNo (x * w)
L654
Hypothesis H4 : SNo (z * w)
L655
Hypothesis H5 : SNo (z * y + x * w)
L656
Hypothesis H6 : SNo (x * y + z * w)
L657
Hypothesis H7 : u SNoR z
L658
Hypothesis H8 : SNo (u * y)
L659
Hypothesis H9 : SNo (u * w)
L660
Hypothesis H10 : v SNoL y
L661
Hypothesis H11 : SNo (x * v)
L662
Hypothesis H13 : SNo (u * v)
L663
Hypothesis H14 : (u * y + x * v) < x * y + u * v
L664
Hypothesis H15 : (u * w + z * v) < z * w + u * v
L665
Hypothesis H16 : (x * w + u * v) < u * w + x * v
L666
Theorem. (Conj_mul_SNo_Lt__42__12)
(z * y + u * v) < u * y + z * v(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__42__12
Beginning of Section Conj_mul_SNo_Lt__44__1
L672
Variable x : set
(*** Conj_mul_SNo_Lt__44__1 TMarWgHWHQkTmPy73tiKhaP9gxa2Ko2J5oq bounty of about 25 bars ***)
L673
Variable y : set
L674
Variable z : set
L675
Variable w : set
L676
Variable u : set
L677
Variable v : set
L678
Hypothesis H0 : SNo (x * y)
L679
Hypothesis H2 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
L680
Hypothesis H3 : SNo (x * w)
L681
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
L682
Hypothesis H5 : SNo (z * w)
L683
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
L684
Hypothesis H7 : SNo (z * y + x * w)
L685
Hypothesis H8 : SNo (x * y + z * w)
L686
Hypothesis H9 : u SNoL x
L687
Hypothesis H10 : u SNoR z
L688
Hypothesis H11 : SNo (u * y)
L689
Hypothesis H12 : SNo (u * w)
L690
Hypothesis H13 : v SNoL y
L691
Hypothesis H14 : v SNoR w
L692
Hypothesis H15 : SNo (x * v)
L693
Hypothesis H16 : SNo (z * v)
L694
Hypothesis H17 : SNo (u * v)
L695
Hypothesis H18 : (u * y + x * v) < x * y + u * v
L696
Theorem. (Conj_mul_SNo_Lt__44__1)
(u * w + z * v) < z * w + u * v(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__44__1
Beginning of Section Conj_mul_SNo_Lt__44__18
L702
Variable x : set
(*** Conj_mul_SNo_Lt__44__18 TMNmBfTK1kGpyEDdYvSXzy4b6eRqVLTpsCB bounty of about 25 bars ***)
L703
Variable y : set
L704
Variable z : set
L705
Variable w : set
L706
Variable u : set
L707
Variable v : set
L708
Hypothesis H0 : SNo (x * y)
L709
Hypothesis H1 : SNo (z * y)
L710
Hypothesis H2 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
L711
Hypothesis H3 : SNo (x * w)
L712
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
L713
Hypothesis H5 : SNo (z * w)
L714
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
L715
Hypothesis H7 : SNo (z * y + x * w)
L716
Hypothesis H8 : SNo (x * y + z * w)
L717
Hypothesis H9 : u SNoL x
L718
Hypothesis H10 : u SNoR z
L719
Hypothesis H11 : SNo (u * y)
L720
Hypothesis H12 : SNo (u * w)
L721
Hypothesis H13 : v SNoL y
L722
Hypothesis H14 : v SNoR w
L723
Hypothesis H15 : SNo (x * v)
L724
Hypothesis H16 : SNo (z * v)
L725
Hypothesis H17 : SNo (u * v)
L726
Theorem. (Conj_mul_SNo_Lt__44__18)
(u * w + z * v) < z * w + u * v(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__44__18
Beginning of Section Conj_mul_SNo_Lt__48__2
L732
Variable x : set
(*** Conj_mul_SNo_Lt__48__2 TMWcibTE18PVDvGppPKzfoSnT4jy1GXTFUh bounty of about 25 bars ***)
L733
Variable y : set
L734
Variable z : set
L735
Variable w : set
L736
Variable u : set
L737
Variable v : set
L738
Hypothesis H0 : SNo x
L739
Hypothesis H1 : SNo z
L740
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
L741
Hypothesis H4 : SNo (z * y)
L742
Hypothesis H5 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
L743
Hypothesis H6 : SNo (x * w)
L744
Hypothesis H7 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
L745
Hypothesis H8 : SNo (z * w)
L746
Hypothesis H9 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
L747
Hypothesis H10 : SNo (z * y + x * w)
L748
Hypothesis H11 : SNo (x * y + z * w)
L749
Hypothesis H12 : SNo u
L750
Hypothesis H13 : u SNoL x
L751
Hypothesis H14 : u SNoR z
L752
Hypothesis H15 : SNo (u * y)
L753
Hypothesis H16 : SNo (u * w)
L754
Hypothesis H17 : SNo v
L755
Hypothesis H18 : v SNoL y
L756
Hypothesis H19 : v SNoR w
L757
Theorem. (Conj_mul_SNo_Lt__48__2)
SNo (x * v)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__48__2
Beginning of Section Conj_mul_SNo_Lt__49__1
L763
Variable x : set
(*** Conj_mul_SNo_Lt__49__1 TML7tpJgU7asx354ehoVs16fvzJQRox2c4p bounty of about 25 bars ***)
L764
Variable y : set
L765
Variable z : set
L766
Variable w : set
L767
Variable u : set
L768
Variable v : set
L769
Hypothesis H0 : SNo x
L770
Hypothesis H2 : SNo w
L771
Hypothesis H3 : SNo (x * y)
L772
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
L773
Hypothesis H5 : SNo (z * y)
L774
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
L775
Hypothesis H7 : SNo (x * w)
L776
Hypothesis H8 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
L777
Hypothesis H9 : SNo (z * w)
L778
Hypothesis H10 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
L779
Hypothesis H11 : SNo (z * y + x * w)
L780
Hypothesis H12 : SNo (x * y + z * w)
L781
Hypothesis H13 : SNo u
L782
Hypothesis H14 : u SNoL x
L783
Hypothesis H15 : u SNoR z
L784
Hypothesis H16 : SNo (u * y)
L785
Hypothesis H17 : SNo (u * w)
L786
Hypothesis H18 : SNo v
L787
Hypothesis H19 : w < v
L788
Hypothesis H20 : SNoLev v SNoLev w
L789
Hypothesis H21 : v SNoL y
L790
Theorem. (Conj_mul_SNo_Lt__49__1)
v SNoR w(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__49__1
Beginning of Section Conj_mul_SNo_Lt__49__12
L796
Variable x : set
(*** Conj_mul_SNo_Lt__49__12 TMMcV8MoX6xsdnu5dKdZ1TjjTet849b8Lgv bounty of about 25 bars ***)
L797
Variable y : set
L798
Variable z : set
L799
Variable w : set
L800
Variable u : set
L801
Variable v : set
L802
Hypothesis H0 : SNo x
L803
Hypothesis H1 : SNo z
L804
Hypothesis H2 : SNo w
L805
Hypothesis H3 : SNo (x * y)
L806
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
L807
Hypothesis H5 : SNo (z * y)
L808
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
L809
Hypothesis H7 : SNo (x * w)
L810
Hypothesis H8 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
L811
Hypothesis H9 : SNo (z * w)
L812
Hypothesis H10 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
L813
Hypothesis H11 : SNo (z * y + x * w)
L814
Hypothesis H13 : SNo u
L815
Hypothesis H14 : u SNoL x
L816
Hypothesis H15 : u SNoR z
L817
Hypothesis H16 : SNo (u * y)
L818
Hypothesis H17 : SNo (u * w)
L819
Hypothesis H18 : SNo v
L820
Hypothesis H19 : w < v
L821
Hypothesis H20 : SNoLev v SNoLev w
L822
Hypothesis H21 : v SNoL y
L823
Theorem. (Conj_mul_SNo_Lt__49__12)
v SNoR w(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__49__12
Beginning of Section Conj_mul_SNo_Lt__49__20
L829
Variable x : set
(*** Conj_mul_SNo_Lt__49__20 TMWXERb8eMLqk8KUUcmNcXrFHE9UKRtaEeS bounty of about 25 bars ***)
L830
Variable y : set
L831
Variable z : set
L832
Variable w : set
L833
Variable u : set
L834
Variable v : set
L835
Hypothesis H0 : SNo x
L836
Hypothesis H1 : SNo z
L837
Hypothesis H2 : SNo w
L838
Hypothesis H3 : SNo (x * y)
L839
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
L840
Hypothesis H5 : SNo (z * y)
L841
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
L842
Hypothesis H7 : SNo (x * w)
L843
Hypothesis H8 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
L844
Hypothesis H9 : SNo (z * w)
L845
Hypothesis H10 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
L846
Hypothesis H11 : SNo (z * y + x * w)
L847
Hypothesis H12 : SNo (x * y + z * w)
L848
Hypothesis H13 : SNo u
L849
Hypothesis H14 : u SNoL x
L850
Hypothesis H15 : u SNoR z
L851
Hypothesis H16 : SNo (u * y)
L852
Hypothesis H17 : SNo (u * w)
L853
Hypothesis H18 : SNo v
L854
Hypothesis H19 : w < v
L855
Hypothesis H21 : v SNoL y
L856
Theorem. (Conj_mul_SNo_Lt__49__20)
v SNoR w(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__49__20
Beginning of Section Conj_mul_SNo_Lt__50__16
L862
Variable x : set
(*** Conj_mul_SNo_Lt__50__16 TMH9BPEh4SpP41578uqDdQa1YkUvb4kREoT bounty of about 25 bars ***)
L863
Variable y : set
L864
Variable z : set
L865
Variable w : set
L866
Variable u : set
L867
Variable v : set
L868
Hypothesis H0 : SNo x
L869
Hypothesis H1 : SNo y
L870
Hypothesis H2 : SNo z
L871
Hypothesis H3 : SNo w
L872
Hypothesis H4 : SNo (x * y)
L873
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
L874
Hypothesis H6 : SNo (z * y)
L875
Hypothesis H7 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
L876
Hypothesis H8 : SNo (x * w)
L877
Hypothesis H9 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
L878
Hypothesis H10 : SNo (z * w)
L879
Hypothesis H11 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
L880
Hypothesis H12 : SNo (z * y + x * w)
L881
Hypothesis H13 : SNo (x * y + z * w)
L882
Hypothesis H14 : SNo u
L883
Hypothesis H15 : u SNoL x
L884
Hypothesis H17 : SNo (u * y)
L885
Hypothesis H18 : SNo (u * w)
L886
Hypothesis H19 : SNo v
L887
Hypothesis H20 : w < v
L888
Hypothesis H21 : v < y
L889
Hypothesis H22 : SNoLev v SNoLev w
L890
Hypothesis H23 : SNoLev v SNoLev y
L891
Theorem. (Conj_mul_SNo_Lt__50__16)
v SNoL y(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__50__16
Beginning of Section Conj_mul_SNo_Lt__52__23
L897
Variable x : set
(*** Conj_mul_SNo_Lt__52__23 TMKr37tuCDts2pzu2unAyMSL81ffCtuaTXh bounty of about 25 bars ***)
L898
Variable y : set
L899
Variable z : set
L900
Variable w : set
L901
Variable u : set
L902
Hypothesis H0 : SNo x
L903
Hypothesis H1 : SNo y
L904
Hypothesis H2 : SNo z
L905
Hypothesis H3 : SNo w
L906
Hypothesis H4 : w < y
L907
Hypothesis H5 : SNo (x * y)
L908
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L909
Hypothesis H7 : SNo (z * y)
L910
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L911
Hypothesis H9 : SNo (x * w)
L912
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L913
Hypothesis H11 : SNo (z * w)
L914
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L915
Hypothesis H13 : SNo (z * y + x * w)
L916
Hypothesis H14 : SNo (x * y + z * w)
L917
Hypothesis H15 : SNo u
L918
Hypothesis H16 : u SNoL x
L919
Hypothesis H17 : u SNoR z
L920
Hypothesis H18 : SNo (u * y)
L921
Hypothesis H19 : SNo (u * w)
L922
Hypothesis H20 : SNo (u * y + x * w)
L923
Hypothesis H21 : SNo (u * y + z * w)
L924
Hypothesis H22 : SNo (x * y + u * w)
L925
Hypothesis H24 : SNo (z * w + u * y)
L926
Hypothesis H25 : SNo (u * w + x * y)
L927
Theorem. (Conj_mul_SNo_Lt__52__23)
SNo (x * w + u * y)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__52__23
Beginning of Section Conj_mul_SNo_Lt__53__23
L933
Variable x : set
(*** Conj_mul_SNo_Lt__53__23 TMSJjwr8ysXu9yGDAUBsonpGRxKVocKuQLs bounty of about 25 bars ***)
L934
Variable y : set
L935
Variable z : set
L936
Variable w : set
L937
Variable u : set
L938
Hypothesis H0 : SNo x
L939
Hypothesis H1 : SNo y
L940
Hypothesis H2 : SNo z
L941
Hypothesis H3 : SNo w
L942
Hypothesis H4 : w < y
L943
Hypothesis H5 : SNo (x * y)
L944
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L945
Hypothesis H7 : SNo (z * y)
L946
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L947
Hypothesis H9 : SNo (x * w)
L948
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L949
Hypothesis H11 : SNo (z * w)
L950
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L951
Hypothesis H13 : SNo (z * y + x * w)
L952
Hypothesis H14 : SNo (x * y + z * w)
L953
Hypothesis H15 : SNo u
L954
Hypothesis H16 : u SNoL x
L955
Hypothesis H17 : u SNoR z
L956
Hypothesis H18 : SNo (u * y)
L957
Hypothesis H19 : SNo (u * w)
L958
Hypothesis H20 : SNo (u * y + x * w)
L959
Hypothesis H21 : SNo (u * y + z * w)
L960
Hypothesis H22 : SNo (x * y + u * w)
L961
Hypothesis H24 : SNo (z * w + u * y)
L962
Theorem. (Conj_mul_SNo_Lt__53__23)
SNo (u * w + x * y)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__53__23
Beginning of Section Conj_mul_SNo_Lt__53__24
L968
Variable x : set
(*** Conj_mul_SNo_Lt__53__24 TMFPWZbUopHc3TdQ1J2Bes4zduTDY1dy6VZ bounty of about 25 bars ***)
L969
Variable y : set
L970
Variable z : set
L971
Variable w : set
L972
Variable u : set
L973
Hypothesis H0 : SNo x
L974
Hypothesis H1 : SNo y
L975
Hypothesis H2 : SNo z
L976
Hypothesis H3 : SNo w
L977
Hypothesis H4 : w < y
L978
Hypothesis H5 : SNo (x * y)
L979
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L980
Hypothesis H7 : SNo (z * y)
L981
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L982
Hypothesis H9 : SNo (x * w)
L983
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L984
Hypothesis H11 : SNo (z * w)
L985
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L986
Hypothesis H13 : SNo (z * y + x * w)
L987
Hypothesis H14 : SNo (x * y + z * w)
L988
Hypothesis H15 : SNo u
L989
Hypothesis H16 : u SNoL x
L990
Hypothesis H17 : u SNoR z
L991
Hypothesis H18 : SNo (u * y)
L992
Hypothesis H19 : SNo (u * w)
L993
Hypothesis H20 : SNo (u * y + x * w)
L994
Hypothesis H21 : SNo (u * y + z * w)
L995
Hypothesis H22 : SNo (x * y + u * w)
L996
Hypothesis H23 : SNo (z * y + u * w)
L997
Theorem. (Conj_mul_SNo_Lt__53__24)
SNo (u * w + x * y)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__53__24
Beginning of Section Conj_mul_SNo_Lt__54__4
L1003
Variable x : set
(*** Conj_mul_SNo_Lt__54__4 TMWq1y2gqkj9p9nmSYM5VHHb35BLt2KU4xj bounty of about 25 bars ***)
L1004
Variable y : set
L1005
Variable z : set
L1006
Variable w : set
L1007
Variable u : set
L1008
Hypothesis H0 : SNo x
L1009
Hypothesis H1 : SNo y
L1010
Hypothesis H2 : SNo z
L1011
Hypothesis H3 : SNo w
L1012
Hypothesis H5 : SNo (x * y)
L1013
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L1014
Hypothesis H7 : SNo (z * y)
L1015
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1016
Hypothesis H9 : SNo (x * w)
L1017
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1018
Hypothesis H11 : SNo (z * w)
L1019
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L1020
Hypothesis H13 : SNo (z * y + x * w)
L1021
Hypothesis H14 : SNo (x * y + z * w)
L1022
Hypothesis H15 : SNo u
L1023
Hypothesis H16 : u SNoL x
L1024
Hypothesis H17 : u SNoR z
L1025
Hypothesis H18 : SNo (u * y)
L1026
Hypothesis H19 : SNo (u * w)
L1027
Hypothesis H20 : SNo (u * y + x * w)
L1028
Hypothesis H21 : SNo (u * y + z * w)
L1029
Hypothesis H22 : SNo (x * y + u * w)
L1030
Hypothesis H23 : SNo (z * y + u * w)
L1031
Theorem. (Conj_mul_SNo_Lt__54__4)
SNo (z * w + u * y)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__54__4
Beginning of Section Conj_mul_SNo_Lt__54__22
L1037
Variable x : set
(*** Conj_mul_SNo_Lt__54__22 TMbr6WaR47XVgTBQE5PtkpyBBQHX7tY2GRZ bounty of about 25 bars ***)
L1038
Variable y : set
L1039
Variable z : set
L1040
Variable w : set
L1041
Variable u : set
L1042
Hypothesis H0 : SNo x
L1043
Hypothesis H1 : SNo y
L1044
Hypothesis H2 : SNo z
L1045
Hypothesis H3 : SNo w
L1046
Hypothesis H4 : w < y
L1047
Hypothesis H5 : SNo (x * y)
L1048
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L1049
Hypothesis H7 : SNo (z * y)
L1050
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1051
Hypothesis H9 : SNo (x * w)
L1052
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1053
Hypothesis H11 : SNo (z * w)
L1054
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L1055
Hypothesis H13 : SNo (z * y + x * w)
L1056
Hypothesis H14 : SNo (x * y + z * w)
L1057
Hypothesis H15 : SNo u
L1058
Hypothesis H16 : u SNoL x
L1059
Hypothesis H17 : u SNoR z
L1060
Hypothesis H18 : SNo (u * y)
L1061
Hypothesis H19 : SNo (u * w)
L1062
Hypothesis H20 : SNo (u * y + x * w)
L1063
Hypothesis H21 : SNo (u * y + z * w)
L1064
Hypothesis H23 : SNo (z * y + u * w)
L1065
Theorem. (Conj_mul_SNo_Lt__54__22)
SNo (z * w + u * y)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__54__22
Beginning of Section Conj_mul_SNo_Lt__55__12
L1071
Variable x : set
(*** Conj_mul_SNo_Lt__55__12 TMVLCUjfHPDRPpXfFmXJhzCxQ8KWvLxD4o4 bounty of about 25 bars ***)
L1072
Variable y : set
L1073
Variable z : set
L1074
Variable w : set
L1075
Variable u : set
L1076
Hypothesis H0 : SNo x
L1077
Hypothesis H1 : SNo y
L1078
Hypothesis H2 : SNo z
L1079
Hypothesis H3 : SNo w
L1080
Hypothesis H4 : w < y
L1081
Hypothesis H5 : SNo (x * y)
L1082
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L1083
Hypothesis H7 : SNo (z * y)
L1084
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1085
Hypothesis H9 : SNo (x * w)
L1086
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1087
Hypothesis H11 : SNo (z * w)
L1088
Hypothesis H13 : SNo (z * y + x * w)
L1089
Hypothesis H14 : SNo (x * y + z * w)
L1090
Hypothesis H15 : SNo u
L1091
Hypothesis H16 : u SNoL x
L1092
Hypothesis H17 : u SNoR z
L1093
Hypothesis H18 : SNo (u * y)
L1094
Hypothesis H19 : SNo (u * w)
L1095
Hypothesis H20 : SNo (u * y + x * w)
L1096
Hypothesis H21 : SNo (u * y + z * w)
L1097
Hypothesis H22 : SNo (x * y + u * w)
L1098
Theorem. (Conj_mul_SNo_Lt__55__12)
SNo (z * y + u * w)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__55__12
Beginning of Section Conj_mul_SNo_Lt__55__22
L1104
Variable x : set
(*** Conj_mul_SNo_Lt__55__22 TMUq9F9LLC4ufGCxfaE4goViRAVx1BpDKn1 bounty of about 25 bars ***)
L1105
Variable y : set
L1106
Variable z : set
L1107
Variable w : set
L1108
Variable u : set
L1109
Hypothesis H0 : SNo x
L1110
Hypothesis H1 : SNo y
L1111
Hypothesis H2 : SNo z
L1112
Hypothesis H3 : SNo w
L1113
Hypothesis H4 : w < y
L1114
Hypothesis H5 : SNo (x * y)
L1115
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L1116
Hypothesis H7 : SNo (z * y)
L1117
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1118
Hypothesis H9 : SNo (x * w)
L1119
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1120
Hypothesis H11 : SNo (z * w)
L1121
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L1122
Hypothesis H13 : SNo (z * y + x * w)
L1123
Hypothesis H14 : SNo (x * y + z * w)
L1124
Hypothesis H15 : SNo u
L1125
Hypothesis H16 : u SNoL x
L1126
Hypothesis H17 : u SNoR z
L1127
Hypothesis H18 : SNo (u * y)
L1128
Hypothesis H19 : SNo (u * w)
L1129
Hypothesis H20 : SNo (u * y + x * w)
L1130
Hypothesis H21 : SNo (u * y + z * w)
L1131
Theorem. (Conj_mul_SNo_Lt__55__22)
SNo (z * y + u * w)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__55__22
Beginning of Section Conj_mul_SNo_Lt__57__1
L1137
Variable x : set
(*** Conj_mul_SNo_Lt__57__1 TMUK2hs55DdmS5maVfUxrqBQAM19SLs5jZQ bounty of about 25 bars ***)
L1138
Variable y : set
L1139
Variable z : set
L1140
Variable w : set
L1141
Variable u : set
L1142
Hypothesis H0 : SNo x
L1143
Hypothesis H2 : SNo z
L1144
Hypothesis H3 : SNo w
L1145
Hypothesis H4 : w < y
L1146
Hypothesis H5 : SNo (x * y)
L1147
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L1148
Hypothesis H7 : SNo (z * y)
L1149
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1150
Hypothesis H9 : SNo (x * w)
L1151
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1152
Hypothesis H11 : SNo (z * w)
L1153
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L1154
Hypothesis H13 : SNo (z * y + x * w)
L1155
Hypothesis H14 : SNo (x * y + z * w)
L1156
Hypothesis H15 : SNo u
L1157
Hypothesis H16 : u SNoL x
L1158
Hypothesis H17 : u SNoR z
L1159
Hypothesis H18 : SNo (u * y)
L1160
Hypothesis H19 : SNo (u * w)
L1161
Hypothesis H20 : SNo (u * y + x * w)
L1162
Theorem. (Conj_mul_SNo_Lt__57__1)
SNo (u * y + z * w)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__57__1
Beginning of Section Conj_mul_SNo_Lt__57__6
L1168
Variable x : set
(*** Conj_mul_SNo_Lt__57__6 TMHzHyhJY1ERtyzVEHaaWKKsJpYDCuomeVe bounty of about 25 bars ***)
L1169
Variable y : set
L1170
Variable z : set
L1171
Variable w : set
L1172
Variable u : set
L1173
Hypothesis H0 : SNo x
L1174
Hypothesis H1 : SNo y
L1175
Hypothesis H2 : SNo z
L1176
Hypothesis H3 : SNo w
L1177
Hypothesis H4 : w < y
L1178
Hypothesis H5 : SNo (x * y)
L1179
Hypothesis H7 : SNo (z * y)
L1180
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1181
Hypothesis H9 : SNo (x * w)
L1182
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1183
Hypothesis H11 : SNo (z * w)
L1184
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L1185
Hypothesis H13 : SNo (z * y + x * w)
L1186
Hypothesis H14 : SNo (x * y + z * w)
L1187
Hypothesis H15 : SNo u
L1188
Hypothesis H16 : u SNoL x
L1189
Hypothesis H17 : u SNoR z
L1190
Hypothesis H18 : SNo (u * y)
L1191
Hypothesis H19 : SNo (u * w)
L1192
Hypothesis H20 : SNo (u * y + x * w)
L1193
Theorem. (Conj_mul_SNo_Lt__57__6)
SNo (u * y + z * w)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__57__6
Beginning of Section Conj_mul_SNo_Lt__57__11
L1199
Variable x : set
(*** Conj_mul_SNo_Lt__57__11 TMThs7inNhfhqiohqCLqCkPeEHEfYnHdNgv bounty of about 25 bars ***)
L1200
Variable y : set
L1201
Variable z : set
L1202
Variable w : set
L1203
Variable u : set
L1204
Hypothesis H0 : SNo x
L1205
Hypothesis H1 : SNo y
L1206
Hypothesis H2 : SNo z
L1207
Hypothesis H3 : SNo w
L1208
Hypothesis H4 : w < y
L1209
Hypothesis H5 : SNo (x * y)
L1210
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L1211
Hypothesis H7 : SNo (z * y)
L1212
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1213
Hypothesis H9 : SNo (x * w)
L1214
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1215
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L1216
Hypothesis H13 : SNo (z * y + x * w)
L1217
Hypothesis H14 : SNo (x * y + z * w)
L1218
Hypothesis H15 : SNo u
L1219
Hypothesis H16 : u SNoL x
L1220
Hypothesis H17 : u SNoR z
L1221
Hypothesis H18 : SNo (u * y)
L1222
Hypothesis H19 : SNo (u * w)
L1223
Hypothesis H20 : SNo (u * y + x * w)
L1224
Theorem. (Conj_mul_SNo_Lt__57__11)
SNo (u * y + z * w)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__57__11
Beginning of Section Conj_mul_SNo_Lt__60__17
L1230
Variable x : set
(*** Conj_mul_SNo_Lt__60__17 TMPBsLcpDzeBMiXX9YTdTEPQ76fkF2YTpkT bounty of about 25 bars ***)
L1231
Variable y : set
L1232
Variable z : set
L1233
Variable w : set
L1234
Variable u : set
L1235
Hypothesis H0 : SNo x
L1236
Hypothesis H1 : SNo y
L1237
Hypothesis H2 : SNo z
L1238
Hypothesis H3 : SNo w
L1239
Hypothesis H4 : w < y
L1240
Hypothesis H5 : SNo (x * y)
L1241
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L1242
Hypothesis H7 : SNo (z * y)
L1243
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1244
Hypothesis H9 : SNo (x * w)
L1245
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1246
Hypothesis H11 : SNo (z * w)
L1247
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L1248
Hypothesis H13 : SNo (z * y + x * w)
L1249
Hypothesis H14 : SNo (x * y + z * w)
L1250
Hypothesis H15 : SNo u
L1251
Hypothesis H16 : u SNoL x
L1252
Theorem. (Conj_mul_SNo_Lt__60__17)
SNo (u * y)(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__60__17
Beginning of Section Conj_mul_SNo_Lt__61__14
L1258
Variable x : set
(*** Conj_mul_SNo_Lt__61__14 TMQLYAVwfyjCuH6gKovkR8B34Sm7pz5hYXf bounty of about 25 bars ***)
L1259
Variable y : set
L1260
Variable z : set
L1261
Variable w : set
L1262
Variable u : set
L1263
Hypothesis H0 : SNo x
L1264
Hypothesis H1 : SNo y
L1265
Hypothesis H2 : SNo z
L1266
Hypothesis H3 : SNo w
L1267
Hypothesis H4 : w < y
L1268
Hypothesis H5 : SNo (x * y)
L1269
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
L1270
Hypothesis H7 : SNo (z * y)
L1271
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
L1272
Hypothesis H9 : SNo (x * w)
L1273
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
L1274
Hypothesis H11 : SNo (z * w)
L1275
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
L1276
Hypothesis H13 : SNo (z * y + x * w)
L1277
Hypothesis H15 : SNo u
L1278
Hypothesis H16 : z < u
L1279
Hypothesis H17 : SNoLev u SNoLev z
L1280
Hypothesis H18 : u SNoL x
L1281
Theorem. (Conj_mul_SNo_Lt__61__14)
u SNoR z(z * y + x * w) < x * y + z * w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_Lt__61__14
Beginning of Section Conj_mul_SNo_SNoL_interpolate__2__2
L1287
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__2__2 TMVAo5ZWMvLqFc9jZqdA3Sn5sTkpaRo1qQP bounty of about 25 bars ***)
L1288
Variable y : set
L1289
Variable z : set
L1290
Variable w : set
L1291
Variable u : set
L1292
Variable v : set
L1293
Hypothesis H0 : SNo x
L1294
Hypothesis H1 : SNo y
L1295
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR y(x2 * y + x * y2) < z + x2 * y2))
L1296
Hypothesis H4 : SNo w
L1297
Hypothesis H5 : z < w
L1298
Hypothesis H6 : u SNoR x
L1299
Hypothesis H7 : v SNoR y
L1300
Hypothesis H8 : (w + u * v)u * y + x * v
L1301
Hypothesis H9 : SNo u
L1302
Hypothesis H10 : SNo v
L1303
Hypothesis H11 : SNo (u * v)
L1304
Theorem. (Conj_mul_SNo_SNoL_interpolate__2__2)
(w + u * v) < z + u * vx * y < w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__2__2
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__1
L1310
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__3__1 TMXKNrjQJLhZVPesgSKot4VkdvEf1VcGtis bounty of about 25 bars ***)
L1311
Variable y : set
L1312
Variable z : set
L1313
Variable w : set
L1314
Variable u : set
L1315
Variable v : set
L1316
Hypothesis H0 : SNo x
L1317
Hypothesis H2 : SNo z
L1318
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR y(x2 * y + x * y2) < z + x2 * y2))
L1319
Hypothesis H4 : SNo w
L1320
Hypothesis H5 : z < w
L1321
Hypothesis H6 : u SNoR x
L1322
Hypothesis H7 : v SNoR y
L1323
Hypothesis H8 : (w + u * v)u * y + x * v
L1324
Hypothesis H9 : SNo u
L1325
Hypothesis H10 : SNo v
L1326
Theorem. (Conj_mul_SNo_SNoL_interpolate__3__1)
SNo (u * v)x * y < w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__3__1
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__2
L1332
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__3__2 TMHTnDXkxhmMZHqcTRkaPapaxQ6tAWz1kFC bounty of about 25 bars ***)
L1333
Variable y : set
L1334
Variable z : set
L1335
Variable w : set
L1336
Variable u : set
L1337
Variable v : set
L1338
Hypothesis H0 : SNo x
L1339
Hypothesis H1 : SNo y
L1340
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR y(x2 * y + x * y2) < z + x2 * y2))
L1341
Hypothesis H4 : SNo w
L1342
Hypothesis H5 : z < w
L1343
Hypothesis H6 : u SNoR x
L1344
Hypothesis H7 : v SNoR y
L1345
Hypothesis H8 : (w + u * v)u * y + x * v
L1346
Hypothesis H9 : SNo u
L1347
Hypothesis H10 : SNo v
L1348
Theorem. (Conj_mul_SNo_SNoL_interpolate__3__2)
SNo (u * v)x * y < w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__3__2
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__5
L1354
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__3__5 TMTHJ61q2mNUAPwUh9k478498hw3C9rZfAH bounty of about 25 bars ***)
L1355
Variable y : set
L1356
Variable z : set
L1357
Variable w : set
L1358
Variable u : set
L1359
Variable v : set
L1360
Hypothesis H0 : SNo x
L1361
Hypothesis H1 : SNo y
L1362
Hypothesis H2 : SNo z
L1363
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR y(x2 * y + x * y2) < z + x2 * y2))
L1364
Hypothesis H4 : SNo w
L1365
Hypothesis H6 : u SNoR x
L1366
Hypothesis H7 : v SNoR y
L1367
Hypothesis H8 : (w + u * v)u * y + x * v
L1368
Hypothesis H9 : SNo u
L1369
Hypothesis H10 : SNo v
L1370
Theorem. (Conj_mul_SNo_SNoL_interpolate__3__5)
SNo (u * v)x * y < w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__3__5
Beginning of Section Conj_mul_SNo_SNoL_interpolate__5__9
L1376
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__5__9 TMcAaTaV3H6diAjXiBbRqoCxFZTknJNeJ3F bounty of about 25 bars ***)
L1377
Variable y : set
L1378
Variable z : set
L1379
Variable w : set
L1380
Variable u : set
L1381
Variable v : set
L1382
Hypothesis H0 : SNo x
L1383
Hypothesis H1 : SNo y
L1384
Hypothesis H2 : SNo z
L1385
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < z + x2 * y2))
L1386
Hypothesis H4 : SNo w
L1387
Hypothesis H5 : z < w
L1388
Hypothesis H6 : u SNoL x
L1389
Hypothesis H7 : v SNoL y
L1390
Hypothesis H8 : (w + u * v)u * y + x * v
L1391
Hypothesis H10 : SNo v
L1392
Hypothesis H11 : SNo (u * v)
L1393
Theorem. (Conj_mul_SNo_SNoL_interpolate__5__9)
(w + u * v) < z + u * vx * y < w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__5__9
Beginning of Section Conj_mul_SNo_SNoL_interpolate__7__3
L1399
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__7__3 TMYThaUfhYWi7j8ULQjaP3WuFToo399mUmJ bounty of about 25 bars ***)
L1400
Variable y : set
L1401
Variable z : set
L1402
Variable w : set
L1403
Hypothesis H0 : SNo x
L1404
Hypothesis H1 : SNo y
L1405
Hypothesis H2 : SNo (x * y)
L1406
Hypothesis H4 : (∀u : set, u SNoS_ (SNoLev z)SNoLev u SNoLev (x * y)u < x * y(∃v : set, v SNoL x(∃x2 : set, x2 SNoL y(u + v * x2)v * y + x * x2))(∃v : set, v SNoR x(∃x2 : set, x2 SNoR y(u + v * x2)v * y + x * x2)))
L1407
Hypothesis H5 : SNoLev z SNoLev (x * y)
L1408
Hypothesis H6 : (∀u : set, u SNoL x(∀v : set, v SNoL y(u * y + x * v) < z + u * v))
L1409
Hypothesis H7 : (∀u : set, u SNoR x(∀v : set, v SNoR y(u * y + x * v) < z + u * v))
L1410
Hypothesis H8 : SNo w
L1411
Hypothesis H9 : SNoLev w SNoLev z
L1412
Hypothesis H10 : z < w
L1413
Hypothesis H11 : w < x * y
L1414
Theorem. (Conj_mul_SNo_SNoL_interpolate__7__3)
(∃u : set, u SNoL x(∃v : set, v SNoL y(w + u * v)u * y + x * v))(∃u : set, u SNoR x(∃v : set, v SNoR y(w + u * v)u * y + x * v))x * y < w
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__7__3
Beginning of Section Conj_mul_SNo_SNoL_interpolate__8__1
L1420
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__8__1 TMMLhZJbXGaEPxjZrJHX6DXHPi4oJMypbSW bounty of about 25 bars ***)
L1421
Variable y : set
L1422
Variable z : set
L1423
Hypothesis H0 : SNo x
L1424
Hypothesis H2 : SNo (x * y)
L1425
Hypothesis H3 : SNo z
L1426
Hypothesis H4 : (∀w : set, w SNoS_ (SNoLev z)SNoLev w SNoLev (x * y)w < x * y(∃u : set, u SNoL x(∃v : set, v SNoL y(w + u * v)u * y + x * v))(∃u : set, u SNoR x(∃v : set, v SNoR y(w + u * v)u * y + x * v)))
L1427
Hypothesis H5 : SNoLev z SNoLev (x * y)
L1428
Hypothesis H6 : z < x * y
L1429
Hypothesis H7 : ¬ ((∃w : set, w SNoL x(∃u : set, u SNoL y(z + w * u)w * y + x * u))(∃w : set, w SNoR x(∃u : set, u SNoR y(z + w * u)w * y + x * u)))
L1430
Hypothesis H8 : (∀w : set, w SNoL x(∀u : set, u SNoL y(w * y + x * u) < z + w * u))
L1431
Theorem. (Conj_mul_SNo_SNoL_interpolate__8__1)
¬ (∀w : set, w SNoR x(∀u : set, u SNoR y(w * y + x * u) < z + w * u))
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__8__1
Beginning of Section Conj_mul_SNo_SNoL_interpolate__9__4
L1437
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__9__4 TMYRPdKdbZhUiknHS6qmv9PKXmDTFut2jz3 bounty of about 25 bars ***)
L1438
Variable y : set
L1439
Variable z : set
L1440
Hypothesis H0 : SNo x
L1441
Hypothesis H1 : SNo y
L1442
Hypothesis H2 : SNo (x * y)
L1443
Hypothesis H3 : SNo z
L1444
Hypothesis H5 : SNoLev z SNoLev (x * y)
L1445
Hypothesis H6 : z < x * y
L1446
Hypothesis H7 : ¬ ((∃w : set, w SNoL x(∃u : set, u SNoL y(z + w * u)w * y + x * u))(∃w : set, w SNoR x(∃u : set, u SNoR y(z + w * u)w * y + x * u)))
L1447
Theorem. (Conj_mul_SNo_SNoL_interpolate__9__4)
¬ (∀w : set, w SNoL x(∀u : set, u SNoL y(w * y + x * u) < z + w * u))
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__9__4
Beginning of Section Conj_mul_SNo_SNoL_interpolate__11__0
L1453
Variable x : set
(*** Conj_mul_SNo_SNoL_interpolate__11__0 TMYpZAftBM1Y86VtuXn7zSxUkXbrXf5LFrL bounty of about 25 bars ***)
L1454
Variable y : set
L1455
Hypothesis H1 : SNo y
L1456
Theorem. (Conj_mul_SNo_SNoL_interpolate__11__0)
SNo (x * y)(∀z : set, z SNoL (x * y)(∃w : set, w SNoL x(∃u : set, u SNoL y(z + w * u)w * y + x * u))(∃w : set, w SNoR x(∃u : set, u SNoR y(z + w * u)w * y + x * u)))
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__11__0
Beginning of Section Conj_mul_SNo_SNoR_interpolate__1__3
L1462
Variable x : set
(*** Conj_mul_SNo_SNoR_interpolate__1__3 TMTW3d62qPEXJRDbjEhWrPo2VjqLBnT9wyH bounty of about 25 bars ***)
L1463
Variable y : set
L1464
Variable z : set
L1465
Variable w : set
L1466
Variable u : set
L1467
Variable v : set
L1468
Hypothesis H0 : SNo z
L1469
Hypothesis H1 : SNo w
L1470
Hypothesis H2 : w < z
L1471
Hypothesis H4 : (z + u * v) < w + u * v
L1472
Theorem. (Conj_mul_SNo_SNoR_interpolate__1__3)
z < ww < x * y
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__1__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__3__1
L1478
Variable x : set
(*** Conj_mul_SNo_SNoR_interpolate__3__1 TMGJ7YT7JCpjHMUNfiMFirSniXjTzj58jCE bounty of about 25 bars ***)
L1479
Variable y : set
L1480
Variable z : set
L1481
Variable w : set
L1482
Variable u : set
L1483
Variable v : set
L1484
Hypothesis H0 : SNo x
L1485
Hypothesis H2 : SNo z
L1486
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL y(z + x2 * y2) < x2 * y + x * y2))
L1487
Hypothesis H4 : SNo w
L1488
Hypothesis H5 : w < z
L1489
Hypothesis H6 : u SNoR x
L1490
Hypothesis H7 : v SNoL y
L1491
Hypothesis H8 : (u * y + x * v)w + u * v
L1492
Hypothesis H9 : SNo u
L1493
Hypothesis H10 : SNo v
L1494
Theorem. (Conj_mul_SNo_SNoR_interpolate__3__1)
SNo (u * v)w < x * y
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__3__1
Beginning of Section Conj_mul_SNo_SNoR_interpolate__3__8
L1500
Variable x : set
(*** Conj_mul_SNo_SNoR_interpolate__3__8 TMKCe66ZKMpabiCDcttkP56VezaV4ytgTai bounty of about 25 bars ***)
L1501
Variable y : set
L1502
Variable z : set
L1503
Variable w : set
L1504
Variable u : set
L1505
Variable v : set
L1506
Hypothesis H0 : SNo x
L1507
Hypothesis H1 : SNo y
L1508
Hypothesis H2 : SNo z
L1509
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL y(z + x2 * y2) < x2 * y + x * y2))
L1510
Hypothesis H4 : SNo w
L1511
Hypothesis H5 : w < z
L1512
Hypothesis H6 : u SNoR x
L1513
Hypothesis H7 : v SNoL y
L1514
Hypothesis H9 : SNo u
L1515
Hypothesis H10 : SNo v
L1516
Theorem. (Conj_mul_SNo_SNoR_interpolate__3__8)
SNo (u * v)w < x * y
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__3__8
Beginning of Section Conj_mul_SNo_SNoR_interpolate__4__3
L1522
Variable x : set
(*** Conj_mul_SNo_SNoR_interpolate__4__3 TMTW3d62qPEXJRDbjEhWrPo2VjqLBnT9wyH bounty of about 25 bars ***)
L1523
Variable y : set
L1524
Variable z : set
L1525
Variable w : set
L1526
Variable u : set
L1527
Variable v : set
L1528
Hypothesis H0 : SNo z
L1529
Hypothesis H1 : SNo w
L1530
Hypothesis H2 : w < z
L1531
Hypothesis H4 : (z + u * v) < w + u * v
L1532
Theorem. (Conj_mul_SNo_SNoR_interpolate__4__3)
z < ww < x * y
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__4__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__6__4
L1538
Variable x : set
(*** Conj_mul_SNo_SNoR_interpolate__6__4 TMSdXhaLYDDfeQTgWG5cbwWGmaGMp1ZvAL4 bounty of about 25 bars ***)
L1539
Variable y : set
L1540
Variable z : set
L1541
Variable w : set
L1542
Variable u : set
L1543
Variable v : set
L1544
Hypothesis H0 : SNo x
L1545
Hypothesis H1 : SNo y
L1546
Hypothesis H2 : SNo z
L1547
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR y(z + x2 * y2) < x2 * y + x * y2))
L1548
Hypothesis H5 : w < z
L1549
Hypothesis H6 : u SNoL x
L1550
Hypothesis H7 : v SNoR y
L1551
Hypothesis H8 : (u * y + x * v)w + u * v
L1552
Hypothesis H9 : SNo u
L1553
Hypothesis H10 : SNo v
L1554
Theorem. (Conj_mul_SNo_SNoR_interpolate__6__4)
SNo (u * v)w < x * y
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__6__4
Beginning of Section Conj_mul_SNo_SNoR_interpolate__7__3
L1560
Variable x : set
(*** Conj_mul_SNo_SNoR_interpolate__7__3 TMXVhXyGsXGLDb8MGn2yuenoebtuYChchYH bounty of about 25 bars ***)
L1561
Variable y : set
L1562
Variable z : set
L1563
Variable w : set
L1564
Hypothesis H0 : SNo x
L1565
Hypothesis H1 : SNo y
L1566
Hypothesis H2 : SNo (x * y)
L1567
Hypothesis H4 : (∀u : set, u SNoS_ (SNoLev z)SNoLev u SNoLev (x * y)x * y < u(∃v : set, v SNoL x(∃x2 : set, x2 SNoR y(v * y + x * x2)u + v * x2))(∃v : set, v SNoR x(∃x2 : set, x2 SNoL y(v * y + x * x2)u + v * x2)))
L1568
Hypothesis H5 : SNoLev z SNoLev (x * y)
L1569
Hypothesis H6 : (∀u : set, u SNoL x(∀v : set, v SNoR y(z + u * v) < u * y + x * v))
L1570
Hypothesis H7 : (∀u : set, u SNoR x(∀v : set, v SNoL y(z + u * v) < u * y + x * v))
L1571
Hypothesis H8 : SNo w
L1572
Hypothesis H9 : SNoLev w SNoLev z
L1573
Hypothesis H10 : w < z
L1574
Hypothesis H11 : x * y < w
L1575
Theorem. (Conj_mul_SNo_SNoR_interpolate__7__3)
(∃u : set, u SNoL x(∃v : set, v SNoR y(u * y + x * v)w + u * v))(∃u : set, u SNoR x(∃v : set, v SNoL y(u * y + x * v)w + u * v))w < x * y
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__7__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__8__2
L1581
Variable x : set
(*** Conj_mul_SNo_SNoR_interpolate__8__2 TMZeuFaoPT4P9adgbZz1UNoxhEq4Pa3WfzE bounty of about 25 bars ***)
L1582
Variable y : set
L1583
Variable z : set
L1584
Hypothesis H0 : SNo x
L1585
Hypothesis H1 : SNo y
L1586
Hypothesis H3 : SNo z
L1587
Hypothesis H4 : (∀w : set, w SNoS_ (SNoLev z)SNoLev w SNoLev (x * y)x * y < w(∃u : set, u SNoL x(∃v : set, v SNoR y(u * y + x * v)w + u * v))(∃u : set, u SNoR x(∃v : set, v SNoL y(u * y + x * v)w + u * v)))
L1588
Hypothesis H5 : SNoLev z SNoLev (x * y)
L1589
Hypothesis H6 : x * y < z
L1590
Hypothesis H7 : ¬ ((∃w : set, w SNoL x(∃u : set, u SNoR y(w * y + x * u)z + w * u))(∃w : set, w SNoR x(∃u : set, u SNoL y(w * y + x * u)z + w * u)))
L1591
Hypothesis H8 : (∀w : set, w SNoL x(∀u : set, u SNoR y(z + w * u) < w * y + x * u))
L1592
Theorem. (Conj_mul_SNo_SNoR_interpolate__8__2)
¬ (∀w : set, w SNoR x(∀u : set, u SNoL y(z + w * u) < w * y + x * u))
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__8__2
Beginning of Section Conj_mul_SNo_oneR__3__0
L1598
Variable x : set
(*** Conj_mul_SNo_oneR__3__0 TMFB5yf5a9bzsSVSHhCx8mPBPvPQkR4AvXY bounty of about 25 bars ***)
L1599
Variable y : set
L1600
Hypothesis H1 : (∀z : set, z SNoL x(∀w : set, w SNoL (ordsucc Empty)(z * ordsucc Empty + x * w) < x * ordsucc Empty + z * w))
L1601
Hypothesis H2 : Empty SNoL (ordsucc Empty)
L1602
Hypothesis H3 : y SNoL x
L1603
Hypothesis H4 : SNo y
L1604
Hypothesis H5 : y * ordsucc Empty + x * Empty = y
L1605
Theorem. (Conj_mul_SNo_oneR__3__0)
x * ordsucc Empty + y * Empty = x * ordsucc Emptyy < x * ordsucc Empty
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_oneR__3__0
Beginning of Section Conj_mul_SNo_com__1__0
L1611
Variable x : set
(*** Conj_mul_SNo_com__1__0 TMMWSnpFz5mJNhwYF4osH1UqKFrztVXEe9V bounty of about 25 bars ***)
L1612
Variable y : set
L1613
Variable z : set
L1614
Variable w : set
L1615
Variable u : set
L1616
Variable v : set
L1617
Hypothesis H1 : SNo y
L1618
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
L1619
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
L1620
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
L1621
Hypothesis H5 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
L1622
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) w))
L1623
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
L1624
Hypothesis H8 : (∀x2 : set, x2 v(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
L1625
Hypothesis H9 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
L1626
Hypothesis H10 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
L1627
Hypothesis H11 : z = u
L1628
Theorem. (Conj_mul_SNo_com__1__0)
w = vSNoCut z w = SNoCut u v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_com__1__0
Beginning of Section Conj_mul_SNo_com__2__5
L1634
Variable x : set
(*** Conj_mul_SNo_com__2__5 TMQBn2Vmh5519uKLgvALG1RLir74uKm6kNN bounty of about 25 bars ***)
L1635
Variable y : set
L1636
Variable z : set
L1637
Variable w : set
L1638
Variable u : set
L1639
Variable v : set
L1640
Hypothesis H0 : SNo x
L1641
Hypothesis H1 : SNo y
L1642
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
L1643
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
L1644
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
L1645
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) z))
L1646
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) z))
L1647
Hypothesis H8 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
L1648
Hypothesis H9 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) w))
L1649
Hypothesis H10 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
L1650
Hypothesis H11 : (∀x2 : set, x2 u(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
L1651
Hypothesis H12 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) u))
L1652
Hypothesis H13 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) u))
L1653
Hypothesis H14 : (∀x2 : set, x2 v(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
L1654
Hypothesis H15 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
L1655
Hypothesis H16 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
L1656
Theorem. (Conj_mul_SNo_com__2__5)
z = uSNoCut z w = SNoCut u v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_com__2__5
Beginning of Section Conj_mul_SNo_com__2__9
L1662
Variable x : set
(*** Conj_mul_SNo_com__2__9 TMXzBz7GFYvBMLPG62PoH8ymNGTBA1uUE5b bounty of about 25 bars ***)
L1663
Variable y : set
L1664
Variable z : set
L1665
Variable w : set
L1666
Variable u : set
L1667
Variable v : set
L1668
Hypothesis H0 : SNo x
L1669
Hypothesis H1 : SNo y
L1670
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
L1671
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
L1672
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
L1673
Hypothesis H5 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
L1674
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) z))
L1675
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) z))
L1676
Hypothesis H8 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
L1677
Hypothesis H10 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
L1678
Hypothesis H11 : (∀x2 : set, x2 u(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
L1679
Hypothesis H12 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) u))
L1680
Hypothesis H13 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) u))
L1681
Hypothesis H14 : (∀x2 : set, x2 v(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
L1682
Hypothesis H15 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
L1683
Hypothesis H16 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
L1684
Theorem. (Conj_mul_SNo_com__2__9)
z = uSNoCut z w = SNoCut u v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_com__2__9
Beginning of Section Conj_mul_SNo_com__2__11
L1690
Variable x : set
(*** Conj_mul_SNo_com__2__11 TMUdwb2A7HxFGAMvBzeMdz85SUezBqpZWx3 bounty of about 25 bars ***)
L1691
Variable y : set
L1692
Variable z : set
L1693
Variable w : set
L1694
Variable u : set
L1695
Variable v : set
L1696
Hypothesis H0 : SNo x
L1697
Hypothesis H1 : SNo y
L1698
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
L1699
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
L1700
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
L1701
Hypothesis H5 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
L1702
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) z))
L1703
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) z))
L1704
Hypothesis H8 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
L1705
Hypothesis H9 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) w))
L1706
Hypothesis H10 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
L1707
Hypothesis H12 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) u))
L1708
Hypothesis H13 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) u))
L1709
Hypothesis H14 : (∀x2 : set, x2 v(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
L1710
Hypothesis H15 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
L1711
Hypothesis H16 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
L1712
Theorem. (Conj_mul_SNo_com__2__11)
z = uSNoCut z w = SNoCut u v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_com__2__11
Beginning of Section Conj_mul_SNo_com__2__14
L1718
Variable x : set
(*** Conj_mul_SNo_com__2__14 TMW92VQFJRVgNVRwkSTXVPYCVu56UJc1hDA bounty of about 25 bars ***)
L1719
Variable y : set
L1720
Variable z : set
L1721
Variable w : set
L1722
Variable u : set
L1723
Variable v : set
L1724
Hypothesis H0 : SNo x
L1725
Hypothesis H1 : SNo y
L1726
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
L1727
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
L1728
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
L1729
Hypothesis H5 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
L1730
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) z))
L1731
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) z))
L1732
Hypothesis H8 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
L1733
Hypothesis H9 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) w))
L1734
Hypothesis H10 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
L1735
Hypothesis H11 : (∀x2 : set, x2 u(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
L1736
Hypothesis H12 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) u))
L1737
Hypothesis H13 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) u))
L1738
Hypothesis H15 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
L1739
Hypothesis H16 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
L1740
Theorem. (Conj_mul_SNo_com__2__14)
z = uSNoCut z w = SNoCut u v
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_com__2__14
Beginning of Section Conj_mul_SNo_minus_distrL__2__12
L1746
Variable x : set
(*** Conj_mul_SNo_minus_distrL__2__12 TMEuc4utY3sCFs4zY5edG8aHEUqzqmWAkNW bounty of about 25 bars ***)
L1747
Variable y : set
L1748
Variable z : set
L1749
Variable w : set
L1750
Variable u : set
L1751
Variable v : set
L1752
Hypothesis H0 : SNo x
L1753
Hypothesis H1 : SNo y
L1754
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
L1755
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
L1756
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
L1757
Hypothesis H5 : (∀x2 : set, x2 SNoL (- x)(∀y2 : set, y2 SNoR yx2 * y + - x * y2 + - (x2 * y2) z))
L1758
Hypothesis H6 : u SNoR x
L1759
Hypothesis H7 : v SNoR y
L1760
Hypothesis H8 : w = u * y + x * v + - (u * v)
L1761
Hypothesis H9 : SNo u
L1762
Hypothesis H10 : SNoLev u SNoLev x
L1763
Hypothesis H11 : x < u
L1764
Hypothesis H13 : SNo (- u)
L1765
Theorem. (Conj_mul_SNo_minus_distrL__2__12)
- u SNoL (- x)- w z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__2__12
Beginning of Section Conj_mul_SNo_minus_distrL__4__7
L1771
Variable x : set
(*** Conj_mul_SNo_minus_distrL__4__7 TMMZ866TgcntfrQnfcE1aV3fQRbFoZxXnXL bounty of about 25 bars ***)
L1772
Variable y : set
L1773
Variable z : set
L1774
Variable w : set
L1775
Variable u : set
L1776
Variable v : set
L1777
Hypothesis H0 : SNo x
L1778
Hypothesis H1 : SNo y
L1779
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
L1780
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
L1781
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
L1782
Hypothesis H5 : (∀x2 : set, x2 SNoR (- x)(∀y2 : set, y2 SNoL yx2 * y + - x * y2 + - (x2 * y2) z))
L1783
Hypothesis H6 : u SNoL x
L1784
Hypothesis H8 : w = u * y + x * v + - (u * v)
L1785
Hypothesis H9 : SNo u
L1786
Hypothesis H10 : SNo v
L1787
Hypothesis H11 : - u SNoR (- x)
L1788
Theorem. (Conj_mul_SNo_minus_distrL__4__7)
- w = - u * y + - x * v + - (- u * v)- w z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__4__7
Beginning of Section Conj_mul_SNo_minus_distrL__5__1
L1794
Variable x : set
(*** Conj_mul_SNo_minus_distrL__5__1 TMYB24ggbKYc7vT31MvKD1avEN6jGZGsgbp bounty of about 25 bars ***)
L1795
Variable y : set
L1796
Variable z : set
L1797
Variable w : set
L1798
Variable u : set
L1799
Variable v : set
L1800
Hypothesis H0 : SNo x
L1801
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
L1802
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
L1803
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
L1804
Hypothesis H5 : (∀x2 : set, x2 SNoR (- x)(∀y2 : set, y2 SNoL yx2 * y + - x * y2 + - (x2 * y2) z))
L1805
Hypothesis H6 : u SNoL x
L1806
Hypothesis H7 : v SNoL y
L1807
Hypothesis H8 : w = u * y + x * v + - (u * v)
L1808
Hypothesis H9 : SNo u
L1809
Hypothesis H10 : SNoLev u SNoLev x
L1810
Hypothesis H11 : u < x
L1811
Hypothesis H12 : SNo v
L1812
Hypothesis H13 : SNo (- u)
L1813
Theorem. (Conj_mul_SNo_minus_distrL__5__1)
- u SNoR (- x)- w z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__5__1
Beginning of Section Conj_mul_SNo_minus_distrL__9__0
L1819
Variable x : set
(*** Conj_mul_SNo_minus_distrL__9__0 TMcb5AsUczGPnddJ5Rugfq8T6dxRuzhKKs5 bounty of about 25 bars ***)
L1820
Variable y : set
L1821
Variable z : set
L1822
Variable w : set
L1823
Variable u : set
L1824
Hypothesis H1 : SNo y
L1825
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev x)- v * y = - (v * y))
L1826
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev y)- x * v = - (x * v))
L1827
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)- v * x2 = - (v * x2)))
L1828
Hypothesis H5 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL yv * y + x * x2 + - (v * x2) z))
L1829
Hypothesis H6 : u SNoL y
L1830
Hypothesis H7 : SNo w
L1831
Hypothesis H8 : SNoLev w SNoLev (- x)
L1832
Hypothesis H9 : - x < w
L1833
Hypothesis H10 : SNo u
L1834
Theorem. (Conj_mul_SNo_minus_distrL__9__0)
SNo (- w)w * y + - x * u + - (w * u) Repl z minus_SNo
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__9__0
Beginning of Section Conj_mul_SNo_minus_distrL__15__11
L1840
Variable x : set
(*** Conj_mul_SNo_minus_distrL__15__11 TMKFZcuy6dZKmXM9DjVgWxfjLXrBwU8toPP bounty of about 25 bars ***)
L1841
Variable y : set
L1842
Variable z : set
L1843
Variable w : set
L1844
Variable u : set
L1845
Variable v : set
L1846
Hypothesis H0 : SNo x
L1847
Hypothesis H1 : SNo y
L1848
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
L1849
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
L1850
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
L1851
Hypothesis H5 : (∀x2 : set, x2 SNoL (- x)(∀y2 : set, y2 SNoL yx2 * y + - x * y2 + - (x2 * y2) z))
L1852
Hypothesis H6 : u SNoR x
L1853
Hypothesis H7 : v SNoL y
L1854
Hypothesis H8 : w = u * y + x * v + - (u * v)
L1855
Hypothesis H9 : SNo u
L1856
Hypothesis H10 : SNoLev u SNoLev x
L1857
Hypothesis H12 : SNo v
L1858
Theorem. (Conj_mul_SNo_minus_distrL__15__11)
SNo (- u)- w z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__15__11
Beginning of Section Conj_mul_SNo_minus_distrL__18__8
L1864
Variable x : set
(*** Conj_mul_SNo_minus_distrL__18__8 TMQxAaFM64wyeSLR7B2RG8MhUvJvhfuGpFS bounty of about 25 bars ***)
L1865
Variable y : set
L1866
Variable z : set
L1867
Variable w : set
L1868
Variable u : set
L1869
Variable v : set
L1870
Hypothesis H0 : SNo x
L1871
Hypothesis H1 : SNo y
L1872
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
L1873
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
L1874
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
L1875
Hypothesis H5 : (∀x2 : set, x2 SNoR (- x)(∀y2 : set, y2 SNoR yx2 * y + - x * y2 + - (x2 * y2) z))
L1876
Hypothesis H6 : u SNoL x
L1877
Hypothesis H7 : v SNoR y
L1878
Hypothesis H9 : SNo u
L1879
Hypothesis H10 : SNoLev u SNoLev x
L1880
Hypothesis H11 : u < x
L1881
Hypothesis H12 : SNo v
L1882
Theorem. (Conj_mul_SNo_minus_distrL__18__8)
SNo (- u)- w z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__18__8
Beginning of Section Conj_mul_SNo_minus_distrL__18__10
L1888
Variable x : set
(*** Conj_mul_SNo_minus_distrL__18__10 TMKAHt92bfoRAcp3VWJ2TLjVhUgbaxYBJaX bounty of about 25 bars ***)
L1889
Variable y : set
L1890
Variable z : set
L1891
Variable w : set
L1892
Variable u : set
L1893
Variable v : set
L1894
Hypothesis H0 : SNo x
L1895
Hypothesis H1 : SNo y
L1896
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
L1897
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
L1898
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
L1899
Hypothesis H5 : (∀x2 : set, x2 SNoR (- x)(∀y2 : set, y2 SNoR yx2 * y + - x * y2 + - (x2 * y2) z))
L1900
Hypothesis H6 : u SNoL x
L1901
Hypothesis H7 : v SNoR y
L1902
Hypothesis H8 : w = u * y + x * v + - (u * v)
L1903
Hypothesis H9 : SNo u
L1904
Hypothesis H11 : u < x
L1905
Hypothesis H12 : SNo v
L1906
Theorem. (Conj_mul_SNo_minus_distrL__18__10)
SNo (- u)- w z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__18__10
Beginning of Section Conj_mul_SNo_minus_distrL__19__5
L1912
Variable x : set
(*** Conj_mul_SNo_minus_distrL__19__5 TMbMyDKcru4qMnGZodvvSAUZMssyJhm5Tqf bounty of about 25 bars ***)
L1913
Variable y : set
L1914
Variable z : set
L1915
Variable w : set
L1916
Variable u : set
L1917
Hypothesis H0 : SNo x
L1918
Hypothesis H1 : SNo y
L1919
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev x)- v * y = - (v * y))
L1920
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev y)- x * v = - (x * v))
L1921
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)- v * x2 = - (v * x2)))
L1922
Hypothesis H6 : u SNoR y
L1923
Hypothesis H7 : SNo w
L1924
Hypothesis H8 : SNo u
L1925
Hypothesis H9 : SNo (- w)
L1926
Hypothesis H10 : - w SNoL x
L1927
Theorem. (Conj_mul_SNo_minus_distrL__19__5)
w * y + - x * u + - (w * u) = - (- w * y + x * u + - (- w * u))w * y + - x * u + - (w * u) Repl z minus_SNo
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__19__5
Beginning of Section Conj_mul_SNo_minus_distrL__22__7
L1933
Variable x : set
(*** Conj_mul_SNo_minus_distrL__22__7 TMH8okuPDoASFJE1vY5pm2ws9K5VsGbvkbJ bounty of about 25 bars ***)
L1934
Variable y : set
L1935
Variable z : set
L1936
Variable w : set
L1937
Variable u : set
L1938
Hypothesis H0 : SNo x
L1939
Hypothesis H1 : SNo y
L1940
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev x)- v * y = - (v * y))
L1941
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev y)- x * v = - (x * v))
L1942
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)- v * x2 = - (v * x2)))
L1943
Hypothesis H5 : (∀v : set, v SNoR x(∀x2 : set, x2 SNoL yv * y + x * x2 + - (v * x2) z))
L1944
Hypothesis H6 : u SNoL y
L1945
Hypothesis H8 : SNo u
L1946
Hypothesis H9 : SNo (- w)
L1947
Hypothesis H10 : - w SNoR x
L1948
Theorem. (Conj_mul_SNo_minus_distrL__22__7)
w * y + - x * u + - (w * u) = - (- w * y + x * u + - (- w * u))w * y + - x * u + - (w * u) Repl z minus_SNo
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__22__7
Beginning of Section Conj_mul_SNo_minus_distrL__26__0
L1954
Variable x : set
(*** Conj_mul_SNo_minus_distrL__26__0 TMNdi4TQGs861uU8DhP7Da8HDTnpKXc8CZv bounty of about 25 bars ***)
L1955
Variable y : set
L1956
Hypothesis H1 : SNo y
L1957
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev x)- z * y = - (z * y))
L1958
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev y)- x * z = - (x * z))
L1959
Hypothesis H4 : (∀z : set, z SNoS_ (SNoLev x)(∀w : set, w SNoS_ (SNoLev y)- z * w = - (z * w)))
L1960
Theorem. (Conj_mul_SNo_minus_distrL__26__0)
SNo (- x)- x * y = - (x * y)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__26__0
Beginning of Section Conj_mul_SNo_distrR__1__23
L1966
Variable x : set
(*** Conj_mul_SNo_distrR__1__23 TMU94X5sAr9MxqwdNdm78WufsjbLhU6Cdjt bounty of about 25 bars ***)
L1967
Variable y : set
L1968
Variable z : set
L1969
Variable w : set
L1970
Variable u : set
L1971
Variable v : set
L1972
Hypothesis H0 : SNo x
L1973
Hypothesis H1 : SNo y
L1974
Hypothesis H2 : SNo z
L1975
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L1976
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L1977
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L1978
Hypothesis H6 : SNo (x + y)
L1979
Hypothesis H7 : SNo ((x + y) * z)
L1980
Hypothesis H8 : SNo (x * z)
L1981
Hypothesis H9 : SNo w
L1982
Hypothesis H10 : u SNoR y
L1983
Hypothesis H11 : v SNoL z
L1984
Hypothesis H12 : (u * z + y * v)w + u * v
L1985
Hypothesis H13 : SNo u
L1986
Hypothesis H14 : y < u
L1987
Hypothesis H15 : SNo v
L1988
Hypothesis H16 : v < z
L1989
Hypothesis H17 : SNo (u * v)
L1990
Hypothesis H18 : SNo (x + u)
L1991
Hypothesis H19 : SNo (w + u * v)
L1992
Hypothesis H20 : SNo ((x + y) * v)
L1993
Hypothesis H21 : SNo (u * z)
L1994
Hypothesis H22 : SNo (x * v)
L1995
Hypothesis H24 : SNo (w + x * z)
L1996
Hypothesis H25 : SNo (u * v + x * v)
L1997
Theorem. (Conj_mul_SNo_distrR__1__23)
SNo (u * z + x * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__1__23
Beginning of Section Conj_mul_SNo_distrR__2__24
L2003
Variable x : set
(*** Conj_mul_SNo_distrR__2__24 TMazBgPHPKjJzQA3vqJioPNAgeisrBBs99q bounty of about 25 bars ***)
L2004
Variable y : set
L2005
Variable z : set
L2006
Variable w : set
L2007
Variable u : set
L2008
Variable v : set
L2009
Hypothesis H0 : SNo x
L2010
Hypothesis H1 : SNo y
L2011
Hypothesis H2 : SNo z
L2012
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2013
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2014
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2015
Hypothesis H6 : SNo (x + y)
L2016
Hypothesis H7 : SNo ((x + y) * z)
L2017
Hypothesis H8 : SNo (x * z)
L2018
Hypothesis H9 : SNo w
L2019
Hypothesis H10 : u SNoR y
L2020
Hypothesis H11 : v SNoL z
L2021
Hypothesis H12 : (u * z + y * v)w + u * v
L2022
Hypothesis H13 : SNo u
L2023
Hypothesis H14 : y < u
L2024
Hypothesis H15 : SNo v
L2025
Hypothesis H16 : v < z
L2026
Hypothesis H17 : SNo (u * v)
L2027
Hypothesis H18 : SNo (x + u)
L2028
Hypothesis H19 : SNo (w + u * v)
L2029
Hypothesis H20 : SNo ((x + y) * v)
L2030
Hypothesis H21 : SNo (u * z)
L2031
Hypothesis H22 : SNo (x * v)
L2032
Hypothesis H23 : SNo (y * v)
L2033
Theorem. (Conj_mul_SNo_distrR__2__24)
SNo (u * v + x * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__2__24
Beginning of Section Conj_mul_SNo_distrR__6__9
L2039
Variable x : set
(*** Conj_mul_SNo_distrR__6__9 TMNSZr3oLFcDZDhoLhoTNCbFXyrUmHn8Gjb bounty of about 25 bars ***)
L2040
Variable y : set
L2041
Variable z : set
L2042
Variable w : set
L2043
Variable u : set
L2044
Variable v : set
L2045
Hypothesis H0 : SNo x
L2046
Hypothesis H1 : SNo y
L2047
Hypothesis H2 : SNo z
L2048
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2049
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2050
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2051
Hypothesis H6 : SNo (x + y)
L2052
Hypothesis H7 : SNo ((x + y) * z)
L2053
Hypothesis H8 : SNo (x * z)
L2054
Hypothesis H10 : u SNoR y
L2055
Hypothesis H11 : v SNoL z
L2056
Hypothesis H12 : (u * z + y * v)w + u * v
L2057
Hypothesis H13 : SNo u
L2058
Hypothesis H14 : y < u
L2059
Hypothesis H15 : SNo v
L2060
Hypothesis H16 : v < z
L2061
Hypothesis H17 : SNo (u * v)
L2062
Hypothesis H18 : SNo (x + u)
L2063
Hypothesis H19 : SNo (w + u * v)
L2064
Hypothesis H20 : SNo ((x + y) * v)
L2065
Theorem. (Conj_mul_SNo_distrR__6__9)
SNo (u * z)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__6__9
Beginning of Section Conj_mul_SNo_distrR__6__16
L2071
Variable x : set
(*** Conj_mul_SNo_distrR__6__16 TMLF1gTdLcJZPkJ1EbpYUrhXPfzyCF5hLD6 bounty of about 25 bars ***)
L2072
Variable y : set
L2073
Variable z : set
L2074
Variable w : set
L2075
Variable u : set
L2076
Variable v : set
L2077
Hypothesis H0 : SNo x
L2078
Hypothesis H1 : SNo y
L2079
Hypothesis H2 : SNo z
L2080
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2081
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2082
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2083
Hypothesis H6 : SNo (x + y)
L2084
Hypothesis H7 : SNo ((x + y) * z)
L2085
Hypothesis H8 : SNo (x * z)
L2086
Hypothesis H9 : SNo w
L2087
Hypothesis H10 : u SNoR y
L2088
Hypothesis H11 : v SNoL z
L2089
Hypothesis H12 : (u * z + y * v)w + u * v
L2090
Hypothesis H13 : SNo u
L2091
Hypothesis H14 : y < u
L2092
Hypothesis H15 : SNo v
L2093
Hypothesis H17 : SNo (u * v)
L2094
Hypothesis H18 : SNo (x + u)
L2095
Hypothesis H19 : SNo (w + u * v)
L2096
Hypothesis H20 : SNo ((x + y) * v)
L2097
Theorem. (Conj_mul_SNo_distrR__6__16)
SNo (u * z)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__6__16
Beginning of Section Conj_mul_SNo_distrR__6__19
L2103
Variable x : set
(*** Conj_mul_SNo_distrR__6__19 TMdxxHpALSLaGmxwazURBagYrm8Wg6Du7Yb bounty of about 25 bars ***)
L2104
Variable y : set
L2105
Variable z : set
L2106
Variable w : set
L2107
Variable u : set
L2108
Variable v : set
L2109
Hypothesis H0 : SNo x
L2110
Hypothesis H1 : SNo y
L2111
Hypothesis H2 : SNo z
L2112
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2113
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2114
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2115
Hypothesis H6 : SNo (x + y)
L2116
Hypothesis H7 : SNo ((x + y) * z)
L2117
Hypothesis H8 : SNo (x * z)
L2118
Hypothesis H9 : SNo w
L2119
Hypothesis H10 : u SNoR y
L2120
Hypothesis H11 : v SNoL z
L2121
Hypothesis H12 : (u * z + y * v)w + u * v
L2122
Hypothesis H13 : SNo u
L2123
Hypothesis H14 : y < u
L2124
Hypothesis H15 : SNo v
L2125
Hypothesis H16 : v < z
L2126
Hypothesis H17 : SNo (u * v)
L2127
Hypothesis H18 : SNo (x + u)
L2128
Hypothesis H20 : SNo ((x + y) * v)
L2129
Theorem. (Conj_mul_SNo_distrR__6__19)
SNo (u * z)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__6__19
Beginning of Section Conj_mul_SNo_distrR__6__20
L2135
Variable x : set
(*** Conj_mul_SNo_distrR__6__20 TMLLNWir96k4Kmo3V5RG9qHaPs6p4VpTM94 bounty of about 25 bars ***)
L2136
Variable y : set
L2137
Variable z : set
L2138
Variable w : set
L2139
Variable u : set
L2140
Variable v : set
L2141
Hypothesis H0 : SNo x
L2142
Hypothesis H1 : SNo y
L2143
Hypothesis H2 : SNo z
L2144
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2145
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2146
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2147
Hypothesis H6 : SNo (x + y)
L2148
Hypothesis H7 : SNo ((x + y) * z)
L2149
Hypothesis H8 : SNo (x * z)
L2150
Hypothesis H9 : SNo w
L2151
Hypothesis H10 : u SNoR y
L2152
Hypothesis H11 : v SNoL z
L2153
Hypothesis H12 : (u * z + y * v)w + u * v
L2154
Hypothesis H13 : SNo u
L2155
Hypothesis H14 : y < u
L2156
Hypothesis H15 : SNo v
L2157
Hypothesis H16 : v < z
L2158
Hypothesis H17 : SNo (u * v)
L2159
Hypothesis H18 : SNo (x + u)
L2160
Hypothesis H19 : SNo (w + u * v)
L2161
Theorem. (Conj_mul_SNo_distrR__6__20)
SNo (u * z)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__6__20
Beginning of Section Conj_mul_SNo_distrR__10__4
L2167
Variable x : set
(*** Conj_mul_SNo_distrR__10__4 TMVSjGET2zA9sdLvsn5y86PffrT8JuvbfDN bounty of about 25 bars ***)
L2168
Variable y : set
L2169
Variable z : set
L2170
Variable w : set
L2171
Variable u : set
L2172
Variable v : set
L2173
Hypothesis H0 : SNo x
L2174
Hypothesis H1 : SNo y
L2175
Hypothesis H2 : SNo z
L2176
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2177
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2178
Hypothesis H6 : SNo (x + y)
L2179
Hypothesis H7 : SNo ((x + y) * z)
L2180
Hypothesis H8 : SNo (x * z)
L2181
Hypothesis H9 : SNo w
L2182
Hypothesis H10 : u SNoR y
L2183
Hypothesis H11 : v SNoL z
L2184
Hypothesis H12 : (u * z + y * v)w + u * v
L2185
Hypothesis H13 : SNo u
L2186
Hypothesis H14 : y < u
L2187
Hypothesis H15 : SNo v
L2188
Hypothesis H16 : v < z
L2189
Theorem. (Conj_mul_SNo_distrR__10__4)
SNo (u * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__10__4
Beginning of Section Conj_mul_SNo_distrR__13__1
L2195
Variable x : set
(*** Conj_mul_SNo_distrR__13__1 TMTEhWgawfBdy8XFKt6VMfc7apPZs2QEu7h bounty of about 25 bars ***)
L2196
Variable y : set
L2197
Variable z : set
L2198
Variable w : set
L2199
Variable u : set
L2200
Variable v : set
L2201
Hypothesis H0 : SNo x
L2202
Hypothesis H2 : SNo z
L2203
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2204
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2205
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2206
Hypothesis H6 : SNo (x + y)
L2207
Hypothesis H7 : SNo ((x + y) * z)
L2208
Hypothesis H8 : SNo (x * z)
L2209
Hypothesis H9 : SNo w
L2210
Hypothesis H10 : u SNoL y
L2211
Hypothesis H11 : v SNoR z
L2212
Hypothesis H12 : (u * z + y * v)w + u * v
L2213
Hypothesis H13 : SNo u
L2214
Hypothesis H14 : u < y
L2215
Hypothesis H15 : SNo v
L2216
Hypothesis H16 : z < v
L2217
Hypothesis H17 : SNo (u * v)
L2218
Hypothesis H18 : SNo (x + u)
L2219
Hypothesis H19 : SNo (w + u * v)
L2220
Hypothesis H20 : SNo ((x + y) * v)
L2221
Hypothesis H21 : SNo (u * z)
L2222
Hypothesis H22 : SNo (x * v)
L2223
Theorem. (Conj_mul_SNo_distrR__13__1)
SNo (y * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__13__1
Beginning of Section Conj_mul_SNo_distrR__14__14
L2229
Variable x : set
(*** Conj_mul_SNo_distrR__14__14 TMUq3koYdevu92BHQdKyTBrY49UCyUowryc bounty of about 25 bars ***)
L2230
Variable y : set
L2231
Variable z : set
L2232
Variable w : set
L2233
Variable u : set
L2234
Variable v : set
L2235
Hypothesis H0 : SNo x
L2236
Hypothesis H1 : SNo y
L2237
Hypothesis H2 : SNo z
L2238
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2239
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2240
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2241
Hypothesis H6 : SNo (x + y)
L2242
Hypothesis H7 : SNo ((x + y) * z)
L2243
Hypothesis H8 : SNo (x * z)
L2244
Hypothesis H9 : SNo w
L2245
Hypothesis H10 : u SNoL y
L2246
Hypothesis H11 : v SNoR z
L2247
Hypothesis H12 : (u * z + y * v)w + u * v
L2248
Hypothesis H13 : SNo u
L2249
Hypothesis H15 : SNo v
L2250
Hypothesis H16 : z < v
L2251
Hypothesis H17 : SNo (u * v)
L2252
Hypothesis H18 : SNo (x + u)
L2253
Hypothesis H19 : SNo (w + u * v)
L2254
Hypothesis H20 : SNo ((x + y) * v)
L2255
Hypothesis H21 : SNo (u * z)
L2256
Theorem. (Conj_mul_SNo_distrR__14__14)
SNo (x * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__14__14
Beginning of Section Conj_mul_SNo_distrR__15__1
L2262
Variable x : set
(*** Conj_mul_SNo_distrR__15__1 TMGGJsJaGiRqTZ6wifDKMkdsnqS3WZbin1Q bounty of about 25 bars ***)
L2263
Variable y : set
L2264
Variable z : set
L2265
Variable w : set
L2266
Variable u : set
L2267
Variable v : set
L2268
Hypothesis H0 : SNo x
L2269
Hypothesis H2 : SNo z
L2270
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2271
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2272
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2273
Hypothesis H6 : SNo (x + y)
L2274
Hypothesis H7 : SNo ((x + y) * z)
L2275
Hypothesis H8 : SNo (x * z)
L2276
Hypothesis H9 : SNo w
L2277
Hypothesis H10 : u SNoL y
L2278
Hypothesis H11 : v SNoR z
L2279
Hypothesis H12 : (u * z + y * v)w + u * v
L2280
Hypothesis H13 : SNo u
L2281
Hypothesis H14 : u < y
L2282
Hypothesis H15 : SNo v
L2283
Hypothesis H16 : z < v
L2284
Hypothesis H17 : SNo (u * v)
L2285
Hypothesis H18 : SNo (x + u)
L2286
Hypothesis H19 : SNo (w + u * v)
L2287
Hypothesis H20 : SNo ((x + y) * v)
L2288
Theorem. (Conj_mul_SNo_distrR__15__1)
SNo (u * z)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__15__1
Beginning of Section Conj_mul_SNo_distrR__16__5
L2294
Variable x : set
(*** Conj_mul_SNo_distrR__16__5 TMXFv64KLyKReDZqYSUDqEygAh9yGBYAes4 bounty of about 25 bars ***)
L2295
Variable y : set
L2296
Variable z : set
L2297
Variable w : set
L2298
Variable u : set
L2299
Variable v : set
L2300
Hypothesis H0 : SNo x
L2301
Hypothesis H1 : SNo y
L2302
Hypothesis H2 : SNo z
L2303
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2304
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2305
Hypothesis H6 : SNo (x + y)
L2306
Hypothesis H7 : SNo ((x + y) * z)
L2307
Hypothesis H8 : SNo (x * z)
L2308
Hypothesis H9 : SNo w
L2309
Hypothesis H10 : u SNoL y
L2310
Hypothesis H11 : v SNoR z
L2311
Hypothesis H12 : (u * z + y * v)w + u * v
L2312
Hypothesis H13 : SNo u
L2313
Hypothesis H14 : u < y
L2314
Hypothesis H15 : SNo v
L2315
Hypothesis H16 : z < v
L2316
Hypothesis H17 : SNo (u * v)
L2317
Hypothesis H18 : SNo (x + u)
L2318
Hypothesis H19 : SNo (w + u * v)
L2319
Theorem. (Conj_mul_SNo_distrR__16__5)
SNo ((x + y) * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__16__5
Beginning of Section Conj_mul_SNo_distrR__16__14
L2325
Variable x : set
(*** Conj_mul_SNo_distrR__16__14 TMbHYN5Jyo2XmG5ayyk39C3mLQ5yx4SnMrt bounty of about 25 bars ***)
L2326
Variable y : set
L2327
Variable z : set
L2328
Variable w : set
L2329
Variable u : set
L2330
Variable v : set
L2331
Hypothesis H0 : SNo x
L2332
Hypothesis H1 : SNo y
L2333
Hypothesis H2 : SNo z
L2334
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2335
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2336
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2337
Hypothesis H6 : SNo (x + y)
L2338
Hypothesis H7 : SNo ((x + y) * z)
L2339
Hypothesis H8 : SNo (x * z)
L2340
Hypothesis H9 : SNo w
L2341
Hypothesis H10 : u SNoL y
L2342
Hypothesis H11 : v SNoR z
L2343
Hypothesis H12 : (u * z + y * v)w + u * v
L2344
Hypothesis H13 : SNo u
L2345
Hypothesis H15 : SNo v
L2346
Hypothesis H16 : z < v
L2347
Hypothesis H17 : SNo (u * v)
L2348
Hypothesis H18 : SNo (x + u)
L2349
Hypothesis H19 : SNo (w + u * v)
L2350
Theorem. (Conj_mul_SNo_distrR__16__14)
SNo ((x + y) * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__16__14
Beginning of Section Conj_mul_SNo_distrR__17__1
L2356
Variable x : set
(*** Conj_mul_SNo_distrR__17__1 TMPuETwoonChvvNss6d9kC6fwcTSjz7ypHe bounty of about 25 bars ***)
L2357
Variable y : set
L2358
Variable z : set
L2359
Variable w : set
L2360
Variable u : set
L2361
Variable v : set
L2362
Hypothesis H0 : SNo x
L2363
Hypothesis H2 : SNo z
L2364
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2365
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2366
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2367
Hypothesis H6 : SNo (x + y)
L2368
Hypothesis H7 : SNo ((x + y) * z)
L2369
Hypothesis H8 : SNo (x * z)
L2370
Hypothesis H9 : SNo w
L2371
Hypothesis H10 : u SNoL y
L2372
Hypothesis H11 : v SNoR z
L2373
Hypothesis H12 : (u * z + y * v)w + u * v
L2374
Hypothesis H13 : SNo u
L2375
Hypothesis H14 : u < y
L2376
Hypothesis H15 : SNo v
L2377
Hypothesis H16 : z < v
L2378
Hypothesis H17 : SNo (u * v)
L2379
Hypothesis H18 : SNo (x + u)
L2380
Theorem. (Conj_mul_SNo_distrR__17__1)
SNo (w + u * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__17__1
Beginning of Section Conj_mul_SNo_distrR__17__2
L2386
Variable x : set
(*** Conj_mul_SNo_distrR__17__2 TMdLKZsNUGogTgW6KRAyLXttmcRqbKHwvE7 bounty of about 25 bars ***)
L2387
Variable y : set
L2388
Variable z : set
L2389
Variable w : set
L2390
Variable u : set
L2391
Variable v : set
L2392
Hypothesis H0 : SNo x
L2393
Hypothesis H1 : SNo y
L2394
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2395
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2396
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2397
Hypothesis H6 : SNo (x + y)
L2398
Hypothesis H7 : SNo ((x + y) * z)
L2399
Hypothesis H8 : SNo (x * z)
L2400
Hypothesis H9 : SNo w
L2401
Hypothesis H10 : u SNoL y
L2402
Hypothesis H11 : v SNoR z
L2403
Hypothesis H12 : (u * z + y * v)w + u * v
L2404
Hypothesis H13 : SNo u
L2405
Hypothesis H14 : u < y
L2406
Hypothesis H15 : SNo v
L2407
Hypothesis H16 : z < v
L2408
Hypothesis H17 : SNo (u * v)
L2409
Hypothesis H18 : SNo (x + u)
L2410
Theorem. (Conj_mul_SNo_distrR__17__2)
SNo (w + u * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__17__2
Beginning of Section Conj_mul_SNo_distrR__17__11
L2416
Variable x : set
(*** Conj_mul_SNo_distrR__17__11 TMVze8iNfeViJfn7XUDSgPbCFnLZoiPXyzt bounty of about 25 bars ***)
L2417
Variable y : set
L2418
Variable z : set
L2419
Variable w : set
L2420
Variable u : set
L2421
Variable v : set
L2422
Hypothesis H0 : SNo x
L2423
Hypothesis H1 : SNo y
L2424
Hypothesis H2 : SNo z
L2425
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L2426
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2427
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L2428
Hypothesis H6 : SNo (x + y)
L2429
Hypothesis H7 : SNo ((x + y) * z)
L2430
Hypothesis H8 : SNo (x * z)
L2431
Hypothesis H9 : SNo w
L2432
Hypothesis H10 : u SNoL y
L2433
Hypothesis H12 : (u * z + y * v)w + u * v
L2434
Hypothesis H13 : SNo u
L2435
Hypothesis H14 : u < y
L2436
Hypothesis H15 : SNo v
L2437
Hypothesis H16 : z < v
L2438
Hypothesis H17 : SNo (u * v)
L2439
Hypothesis H18 : SNo (x + u)
L2440
Theorem. (Conj_mul_SNo_distrR__17__11)
SNo (w + u * v)(x + y) * z < w + x * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__17__11
Beginning of Section Conj_mul_SNo_distrR__20__1
L2446
Variable x : set
(*** Conj_mul_SNo_distrR__20__1 TMdYru46QWaaihpFFYaDqdod8143ZaBkFhY bounty of about 25 bars ***)
L2447
Variable y : set
L2448
Variable z : set
L2449
Variable w : set
L2450
Variable u : set
L2451
Variable v : set
L2452
Hypothesis H0 : SNo x
L2453
Hypothesis H2 : SNo z
L2454
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2455
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2456
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2457
Hypothesis H6 : SNo (x + y)
L2458
Hypothesis H7 : SNo ((x + y) * z)
L2459
Hypothesis H8 : SNo (y * z)
L2460
Hypothesis H9 : SNo w
L2461
Hypothesis H10 : u SNoR x
L2462
Hypothesis H11 : v SNoL z
L2463
Hypothesis H12 : (u * z + x * v)w + u * v
L2464
Hypothesis H13 : SNo u
L2465
Hypothesis H14 : x < u
L2466
Hypothesis H15 : SNo v
L2467
Hypothesis H16 : v < z
L2468
Hypothesis H17 : SNo (u * v)
L2469
Hypothesis H18 : SNo (u + y)
L2470
Hypothesis H19 : SNo (w + u * v)
L2471
Hypothesis H20 : SNo ((x + y) * v)
L2472
Hypothesis H21 : SNo (u * z)
L2473
Hypothesis H22 : SNo (x * v)
L2474
Hypothesis H23 : SNo (y * v)
L2475
Hypothesis H24 : SNo (w + y * z)
L2476
Theorem. (Conj_mul_SNo_distrR__20__1)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__20__1
Beginning of Section Conj_mul_SNo_distrR__20__2
L2482
Variable x : set
(*** Conj_mul_SNo_distrR__20__2 TMLRWDXYDhEao3t4zgcFWBKsNTmeQUPTCYp bounty of about 25 bars ***)
L2483
Variable y : set
L2484
Variable z : set
L2485
Variable w : set
L2486
Variable u : set
L2487
Variable v : set
L2488
Hypothesis H0 : SNo x
L2489
Hypothesis H1 : SNo y
L2490
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2491
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2492
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2493
Hypothesis H6 : SNo (x + y)
L2494
Hypothesis H7 : SNo ((x + y) * z)
L2495
Hypothesis H8 : SNo (y * z)
L2496
Hypothesis H9 : SNo w
L2497
Hypothesis H10 : u SNoR x
L2498
Hypothesis H11 : v SNoL z
L2499
Hypothesis H12 : (u * z + x * v)w + u * v
L2500
Hypothesis H13 : SNo u
L2501
Hypothesis H14 : x < u
L2502
Hypothesis H15 : SNo v
L2503
Hypothesis H16 : v < z
L2504
Hypothesis H17 : SNo (u * v)
L2505
Hypothesis H18 : SNo (u + y)
L2506
Hypothesis H19 : SNo (w + u * v)
L2507
Hypothesis H20 : SNo ((x + y) * v)
L2508
Hypothesis H21 : SNo (u * z)
L2509
Hypothesis H22 : SNo (x * v)
L2510
Hypothesis H23 : SNo (y * v)
L2511
Hypothesis H24 : SNo (w + y * z)
L2512
Theorem. (Conj_mul_SNo_distrR__20__2)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__20__2
Beginning of Section Conj_mul_SNo_distrR__20__6
L2518
Variable x : set
(*** Conj_mul_SNo_distrR__20__6 TMXQrkec7a2mNMJsBS6wbQz7s35Y21L1PUv bounty of about 25 bars ***)
L2519
Variable y : set
L2520
Variable z : set
L2521
Variable w : set
L2522
Variable u : set
L2523
Variable v : set
L2524
Hypothesis H0 : SNo x
L2525
Hypothesis H1 : SNo y
L2526
Hypothesis H2 : SNo z
L2527
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2528
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2529
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2530
Hypothesis H7 : SNo ((x + y) * z)
L2531
Hypothesis H8 : SNo (y * z)
L2532
Hypothesis H9 : SNo w
L2533
Hypothesis H10 : u SNoR x
L2534
Hypothesis H11 : v SNoL z
L2535
Hypothesis H12 : (u * z + x * v)w + u * v
L2536
Hypothesis H13 : SNo u
L2537
Hypothesis H14 : x < u
L2538
Hypothesis H15 : SNo v
L2539
Hypothesis H16 : v < z
L2540
Hypothesis H17 : SNo (u * v)
L2541
Hypothesis H18 : SNo (u + y)
L2542
Hypothesis H19 : SNo (w + u * v)
L2543
Hypothesis H20 : SNo ((x + y) * v)
L2544
Hypothesis H21 : SNo (u * z)
L2545
Hypothesis H22 : SNo (x * v)
L2546
Hypothesis H23 : SNo (y * v)
L2547
Hypothesis H24 : SNo (w + y * z)
L2548
Theorem. (Conj_mul_SNo_distrR__20__6)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__20__6
Beginning of Section Conj_mul_SNo_distrR__20__20
L2554
Variable x : set
(*** Conj_mul_SNo_distrR__20__20 TMTgvx3t4CMs73L8K3uzWULzs6SS4HYMWCy bounty of about 25 bars ***)
L2555
Variable y : set
L2556
Variable z : set
L2557
Variable w : set
L2558
Variable u : set
L2559
Variable v : set
L2560
Hypothesis H0 : SNo x
L2561
Hypothesis H1 : SNo y
L2562
Hypothesis H2 : SNo z
L2563
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2564
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2565
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2566
Hypothesis H6 : SNo (x + y)
L2567
Hypothesis H7 : SNo ((x + y) * z)
L2568
Hypothesis H8 : SNo (y * z)
L2569
Hypothesis H9 : SNo w
L2570
Hypothesis H10 : u SNoR x
L2571
Hypothesis H11 : v SNoL z
L2572
Hypothesis H12 : (u * z + x * v)w + u * v
L2573
Hypothesis H13 : SNo u
L2574
Hypothesis H14 : x < u
L2575
Hypothesis H15 : SNo v
L2576
Hypothesis H16 : v < z
L2577
Hypothesis H17 : SNo (u * v)
L2578
Hypothesis H18 : SNo (u + y)
L2579
Hypothesis H19 : SNo (w + u * v)
L2580
Hypothesis H21 : SNo (u * z)
L2581
Hypothesis H22 : SNo (x * v)
L2582
Hypothesis H23 : SNo (y * v)
L2583
Hypothesis H24 : SNo (w + y * z)
L2584
Theorem. (Conj_mul_SNo_distrR__20__20)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__20__20
Beginning of Section Conj_mul_SNo_distrR__25__5
L2590
Variable x : set
(*** Conj_mul_SNo_distrR__25__5 TMHjsjSLG3qcx6wNuMp7VRxUdWLqpmYjoYV bounty of about 25 bars ***)
L2591
Variable y : set
L2592
Variable z : set
L2593
Variable w : set
L2594
Variable u : set
L2595
Variable v : set
L2596
Hypothesis H0 : SNo x
L2597
Hypothesis H1 : SNo y
L2598
Hypothesis H2 : SNo z
L2599
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2600
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2601
Hypothesis H6 : SNo (x + y)
L2602
Hypothesis H7 : SNo ((x + y) * z)
L2603
Hypothesis H8 : SNo (y * z)
L2604
Hypothesis H9 : SNo w
L2605
Hypothesis H10 : u SNoR x
L2606
Hypothesis H11 : v SNoL z
L2607
Hypothesis H12 : (u * z + x * v)w + u * v
L2608
Hypothesis H13 : SNo u
L2609
Hypothesis H14 : x < u
L2610
Hypothesis H15 : SNo v
L2611
Hypothesis H16 : v < z
L2612
Hypothesis H17 : SNo (u * v)
L2613
Hypothesis H18 : SNo (u + y)
L2614
Hypothesis H19 : SNo (w + u * v)
L2615
Theorem. (Conj_mul_SNo_distrR__25__5)
SNo ((x + y) * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__25__5
Beginning of Section Conj_mul_SNo_distrR__27__13
L2621
Variable x : set
(*** Conj_mul_SNo_distrR__27__13 TMJBVG5EHRU5e6vemxeuy2J8D5bHuxYobns bounty of about 25 bars ***)
L2622
Variable y : set
L2623
Variable z : set
L2624
Variable w : set
L2625
Variable u : set
L2626
Variable v : set
L2627
Hypothesis H0 : SNo x
L2628
Hypothesis H1 : SNo y
L2629
Hypothesis H2 : SNo z
L2630
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2631
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2632
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2633
Hypothesis H6 : SNo (x + y)
L2634
Hypothesis H7 : SNo ((x + y) * z)
L2635
Hypothesis H8 : SNo (y * z)
L2636
Hypothesis H9 : SNo w
L2637
Hypothesis H10 : u SNoR x
L2638
Hypothesis H11 : v SNoL z
L2639
Hypothesis H12 : (u * z + x * v)w + u * v
L2640
Hypothesis H14 : x < u
L2641
Hypothesis H15 : SNo v
L2642
Hypothesis H16 : v < z
L2643
Hypothesis H17 : SNo (u * v)
L2644
Theorem. (Conj_mul_SNo_distrR__27__13)
SNo (u + y)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__27__13
Beginning of Section Conj_mul_SNo_distrR__27__16
L2650
Variable x : set
(*** Conj_mul_SNo_distrR__27__16 TMb3G8kqeGB5A4xTUwNvQtAsyhpDPi3Z7Va bounty of about 25 bars ***)
L2651
Variable y : set
L2652
Variable z : set
L2653
Variable w : set
L2654
Variable u : set
L2655
Variable v : set
L2656
Hypothesis H0 : SNo x
L2657
Hypothesis H1 : SNo y
L2658
Hypothesis H2 : SNo z
L2659
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2660
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2661
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2662
Hypothesis H6 : SNo (x + y)
L2663
Hypothesis H7 : SNo ((x + y) * z)
L2664
Hypothesis H8 : SNo (y * z)
L2665
Hypothesis H9 : SNo w
L2666
Hypothesis H10 : u SNoR x
L2667
Hypothesis H11 : v SNoL z
L2668
Hypothesis H12 : (u * z + x * v)w + u * v
L2669
Hypothesis H13 : SNo u
L2670
Hypothesis H14 : x < u
L2671
Hypothesis H15 : SNo v
L2672
Hypothesis H17 : SNo (u * v)
L2673
Theorem. (Conj_mul_SNo_distrR__27__16)
SNo (u + y)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__27__16
Beginning of Section Conj_mul_SNo_distrR__29__11
L2679
Variable x : set
(*** Conj_mul_SNo_distrR__29__11 TMQsqQRVLYSr2WFnLC5ASCoxyckBKaMzWQC bounty of about 25 bars ***)
L2680
Variable y : set
L2681
Variable z : set
L2682
Variable w : set
L2683
Variable u : set
L2684
Variable v : set
L2685
Hypothesis H0 : SNo x
L2686
Hypothesis H1 : SNo y
L2687
Hypothesis H2 : SNo z
L2688
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2689
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2690
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2691
Hypothesis H6 : SNo (x + y)
L2692
Hypothesis H7 : SNo ((x + y) * z)
L2693
Hypothesis H8 : SNo (y * z)
L2694
Hypothesis H9 : SNo w
L2695
Hypothesis H10 : u SNoL x
L2696
Hypothesis H12 : (u * z + x * v)w + u * v
L2697
Hypothesis H13 : SNo u
L2698
Hypothesis H14 : u < x
L2699
Hypothesis H15 : SNo v
L2700
Hypothesis H16 : z < v
L2701
Hypothesis H17 : SNo (u * v)
L2702
Hypothesis H18 : SNo (u + y)
L2703
Hypothesis H19 : SNo (w + u * v)
L2704
Hypothesis H20 : SNo ((x + y) * v)
L2705
Hypothesis H21 : SNo (u * z)
L2706
Hypothesis H22 : SNo (x * v)
L2707
Hypothesis H23 : SNo (y * v)
L2708
Hypothesis H24 : SNo (w + y * z)
L2709
Hypothesis H25 : SNo (u * v + y * v)
L2710
Theorem. (Conj_mul_SNo_distrR__29__11)
SNo (u * z + x * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__29__11
Beginning of Section Conj_mul_SNo_distrR__30__18
L2716
Variable x : set
(*** Conj_mul_SNo_distrR__30__18 TMK2jdeA3NkuqpWLuEZFmRPtpKycPqS79mL bounty of about 25 bars ***)
L2717
Variable y : set
L2718
Variable z : set
L2719
Variable w : set
L2720
Variable u : set
L2721
Variable v : set
L2722
Hypothesis H0 : SNo x
L2723
Hypothesis H1 : SNo y
L2724
Hypothesis H2 : SNo z
L2725
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2726
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2727
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2728
Hypothesis H6 : SNo (x + y)
L2729
Hypothesis H7 : SNo ((x + y) * z)
L2730
Hypothesis H8 : SNo (y * z)
L2731
Hypothesis H9 : SNo w
L2732
Hypothesis H10 : u SNoL x
L2733
Hypothesis H11 : v SNoR z
L2734
Hypothesis H12 : (u * z + x * v)w + u * v
L2735
Hypothesis H13 : SNo u
L2736
Hypothesis H14 : u < x
L2737
Hypothesis H15 : SNo v
L2738
Hypothesis H16 : z < v
L2739
Hypothesis H17 : SNo (u * v)
L2740
Hypothesis H19 : SNo (w + u * v)
L2741
Hypothesis H20 : SNo ((x + y) * v)
L2742
Hypothesis H21 : SNo (u * z)
L2743
Hypothesis H22 : SNo (x * v)
L2744
Hypothesis H23 : SNo (y * v)
L2745
Hypothesis H24 : SNo (w + y * z)
L2746
Theorem. (Conj_mul_SNo_distrR__30__18)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__30__18
Beginning of Section Conj_mul_SNo_distrR__31__15
L2752
Variable x : set
(*** Conj_mul_SNo_distrR__31__15 TMLPm7nvQmkx7oyDa8wbSdqZToJpQaT2VUo bounty of about 25 bars ***)
L2753
Variable y : set
L2754
Variable z : set
L2755
Variable w : set
L2756
Variable u : set
L2757
Variable v : set
L2758
Hypothesis H0 : SNo x
L2759
Hypothesis H1 : SNo y
L2760
Hypothesis H2 : SNo z
L2761
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2762
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2763
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2764
Hypothesis H6 : SNo (x + y)
L2765
Hypothesis H7 : SNo ((x + y) * z)
L2766
Hypothesis H8 : SNo (y * z)
L2767
Hypothesis H9 : SNo w
L2768
Hypothesis H10 : u SNoL x
L2769
Hypothesis H11 : v SNoR z
L2770
Hypothesis H12 : (u * z + x * v)w + u * v
L2771
Hypothesis H13 : SNo u
L2772
Hypothesis H14 : u < x
L2773
Hypothesis H16 : z < v
L2774
Hypothesis H17 : SNo (u * v)
L2775
Hypothesis H18 : SNo (u + y)
L2776
Hypothesis H19 : SNo (w + u * v)
L2777
Hypothesis H20 : SNo ((x + y) * v)
L2778
Hypothesis H21 : SNo (u * z)
L2779
Hypothesis H22 : SNo (x * v)
L2780
Hypothesis H23 : SNo (y * v)
L2781
Theorem. (Conj_mul_SNo_distrR__31__15)
SNo (w + y * z)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__31__15
Beginning of Section Conj_mul_SNo_distrR__31__19
L2787
Variable x : set
(*** Conj_mul_SNo_distrR__31__19 TMUNHnKt24Q6oTQFXL3RDHCupi4sJZD1MwG bounty of about 25 bars ***)
L2788
Variable y : set
L2789
Variable z : set
L2790
Variable w : set
L2791
Variable u : set
L2792
Variable v : set
L2793
Hypothesis H0 : SNo x
L2794
Hypothesis H1 : SNo y
L2795
Hypothesis H2 : SNo z
L2796
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2797
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2798
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2799
Hypothesis H6 : SNo (x + y)
L2800
Hypothesis H7 : SNo ((x + y) * z)
L2801
Hypothesis H8 : SNo (y * z)
L2802
Hypothesis H9 : SNo w
L2803
Hypothesis H10 : u SNoL x
L2804
Hypothesis H11 : v SNoR z
L2805
Hypothesis H12 : (u * z + x * v)w + u * v
L2806
Hypothesis H13 : SNo u
L2807
Hypothesis H14 : u < x
L2808
Hypothesis H15 : SNo v
L2809
Hypothesis H16 : z < v
L2810
Hypothesis H17 : SNo (u * v)
L2811
Hypothesis H18 : SNo (u + y)
L2812
Hypothesis H20 : SNo ((x + y) * v)
L2813
Hypothesis H21 : SNo (u * z)
L2814
Hypothesis H22 : SNo (x * v)
L2815
Hypothesis H23 : SNo (y * v)
L2816
Theorem. (Conj_mul_SNo_distrR__31__19)
SNo (w + y * z)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__31__19
Beginning of Section Conj_mul_SNo_distrR__32__11
L2822
Variable x : set
(*** Conj_mul_SNo_distrR__32__11 TMNRNpskpRrbKUGfXvaTQsZKjyqsxogtBuP bounty of about 25 bars ***)
L2823
Variable y : set
L2824
Variable z : set
L2825
Variable w : set
L2826
Variable u : set
L2827
Variable v : set
L2828
Hypothesis H0 : SNo x
L2829
Hypothesis H1 : SNo y
L2830
Hypothesis H2 : SNo z
L2831
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2832
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2833
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2834
Hypothesis H6 : SNo (x + y)
L2835
Hypothesis H7 : SNo ((x + y) * z)
L2836
Hypothesis H8 : SNo (y * z)
L2837
Hypothesis H9 : SNo w
L2838
Hypothesis H10 : u SNoL x
L2839
Hypothesis H12 : (u * z + x * v)w + u * v
L2840
Hypothesis H13 : SNo u
L2841
Hypothesis H14 : u < x
L2842
Hypothesis H15 : SNo v
L2843
Hypothesis H16 : z < v
L2844
Hypothesis H17 : SNo (u * v)
L2845
Hypothesis H18 : SNo (u + y)
L2846
Hypothesis H19 : SNo (w + u * v)
L2847
Hypothesis H20 : SNo ((x + y) * v)
L2848
Hypothesis H21 : SNo (u * z)
L2849
Hypothesis H22 : SNo (x * v)
L2850
Theorem. (Conj_mul_SNo_distrR__32__11)
SNo (y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__32__11
Beginning of Section Conj_mul_SNo_distrR__32__14
L2856
Variable x : set
(*** Conj_mul_SNo_distrR__32__14 TMRfuofqd6iKhka1dWPu3pU7P1bkiE3pQNL bounty of about 25 bars ***)
L2857
Variable y : set
L2858
Variable z : set
L2859
Variable w : set
L2860
Variable u : set
L2861
Variable v : set
L2862
Hypothesis H0 : SNo x
L2863
Hypothesis H1 : SNo y
L2864
Hypothesis H2 : SNo z
L2865
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2866
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2867
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2868
Hypothesis H6 : SNo (x + y)
L2869
Hypothesis H7 : SNo ((x + y) * z)
L2870
Hypothesis H8 : SNo (y * z)
L2871
Hypothesis H9 : SNo w
L2872
Hypothesis H10 : u SNoL x
L2873
Hypothesis H11 : v SNoR z
L2874
Hypothesis H12 : (u * z + x * v)w + u * v
L2875
Hypothesis H13 : SNo u
L2876
Hypothesis H15 : SNo v
L2877
Hypothesis H16 : z < v
L2878
Hypothesis H17 : SNo (u * v)
L2879
Hypothesis H18 : SNo (u + y)
L2880
Hypothesis H19 : SNo (w + u * v)
L2881
Hypothesis H20 : SNo ((x + y) * v)
L2882
Hypothesis H21 : SNo (u * z)
L2883
Hypothesis H22 : SNo (x * v)
L2884
Theorem. (Conj_mul_SNo_distrR__32__14)
SNo (y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__32__14
Beginning of Section Conj_mul_SNo_distrR__32__16
L2890
Variable x : set
(*** Conj_mul_SNo_distrR__32__16 TMReDWJ14kaVXeicSxzY37Tv1r4vQ4VERa7 bounty of about 25 bars ***)
L2891
Variable y : set
L2892
Variable z : set
L2893
Variable w : set
L2894
Variable u : set
L2895
Variable v : set
L2896
Hypothesis H0 : SNo x
L2897
Hypothesis H1 : SNo y
L2898
Hypothesis H2 : SNo z
L2899
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2900
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2901
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2902
Hypothesis H6 : SNo (x + y)
L2903
Hypothesis H7 : SNo ((x + y) * z)
L2904
Hypothesis H8 : SNo (y * z)
L2905
Hypothesis H9 : SNo w
L2906
Hypothesis H10 : u SNoL x
L2907
Hypothesis H11 : v SNoR z
L2908
Hypothesis H12 : (u * z + x * v)w + u * v
L2909
Hypothesis H13 : SNo u
L2910
Hypothesis H14 : u < x
L2911
Hypothesis H15 : SNo v
L2912
Hypothesis H17 : SNo (u * v)
L2913
Hypothesis H18 : SNo (u + y)
L2914
Hypothesis H19 : SNo (w + u * v)
L2915
Hypothesis H20 : SNo ((x + y) * v)
L2916
Hypothesis H21 : SNo (u * z)
L2917
Hypothesis H22 : SNo (x * v)
L2918
Theorem. (Conj_mul_SNo_distrR__32__16)
SNo (y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__32__16
Beginning of Section Conj_mul_SNo_distrR__32__22
L2924
Variable x : set
(*** Conj_mul_SNo_distrR__32__22 TMKqvFAR6LgY8ChXr3EykqYgMKehVFoSAG4 bounty of about 25 bars ***)
L2925
Variable y : set
L2926
Variable z : set
L2927
Variable w : set
L2928
Variable u : set
L2929
Variable v : set
L2930
Hypothesis H0 : SNo x
L2931
Hypothesis H1 : SNo y
L2932
Hypothesis H2 : SNo z
L2933
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2934
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2935
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2936
Hypothesis H6 : SNo (x + y)
L2937
Hypothesis H7 : SNo ((x + y) * z)
L2938
Hypothesis H8 : SNo (y * z)
L2939
Hypothesis H9 : SNo w
L2940
Hypothesis H10 : u SNoL x
L2941
Hypothesis H11 : v SNoR z
L2942
Hypothesis H12 : (u * z + x * v)w + u * v
L2943
Hypothesis H13 : SNo u
L2944
Hypothesis H14 : u < x
L2945
Hypothesis H15 : SNo v
L2946
Hypothesis H16 : z < v
L2947
Hypothesis H17 : SNo (u * v)
L2948
Hypothesis H18 : SNo (u + y)
L2949
Hypothesis H19 : SNo (w + u * v)
L2950
Hypothesis H20 : SNo ((x + y) * v)
L2951
Hypothesis H21 : SNo (u * z)
L2952
Theorem. (Conj_mul_SNo_distrR__32__22)
SNo (y * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__32__22
Beginning of Section Conj_mul_SNo_distrR__33__1
L2958
Variable x : set
(*** Conj_mul_SNo_distrR__33__1 TMYCzbanTRopFqWvkPR1SC6UgRwXDcAv3WX bounty of about 25 bars ***)
L2959
Variable y : set
L2960
Variable z : set
L2961
Variable w : set
L2962
Variable u : set
L2963
Variable v : set
L2964
Hypothesis H0 : SNo x
L2965
Hypothesis H2 : SNo z
L2966
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L2967
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L2968
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L2969
Hypothesis H6 : SNo (x + y)
L2970
Hypothesis H7 : SNo ((x + y) * z)
L2971
Hypothesis H8 : SNo (y * z)
L2972
Hypothesis H9 : SNo w
L2973
Hypothesis H10 : u SNoL x
L2974
Hypothesis H11 : v SNoR z
L2975
Hypothesis H12 : (u * z + x * v)w + u * v
L2976
Hypothesis H13 : SNo u
L2977
Hypothesis H14 : u < x
L2978
Hypothesis H15 : SNo v
L2979
Hypothesis H16 : z < v
L2980
Hypothesis H17 : SNo (u * v)
L2981
Hypothesis H18 : SNo (u + y)
L2982
Hypothesis H19 : SNo (w + u * v)
L2983
Hypothesis H20 : SNo ((x + y) * v)
L2984
Hypothesis H21 : SNo (u * z)
L2985
Theorem. (Conj_mul_SNo_distrR__33__1)
SNo (x * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__33__1
Beginning of Section Conj_mul_SNo_distrR__33__10
L2991
Variable x : set
(*** Conj_mul_SNo_distrR__33__10 TMUb2jKZW6uy4A84fu72PmAsbpEco692EgM bounty of about 25 bars ***)
L2992
Variable y : set
L2993
Variable z : set
L2994
Variable w : set
L2995
Variable u : set
L2996
Variable v : set
L2997
Hypothesis H0 : SNo x
L2998
Hypothesis H1 : SNo y
L2999
Hypothesis H2 : SNo z
L3000
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3001
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3002
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3003
Hypothesis H6 : SNo (x + y)
L3004
Hypothesis H7 : SNo ((x + y) * z)
L3005
Hypothesis H8 : SNo (y * z)
L3006
Hypothesis H9 : SNo w
L3007
Hypothesis H11 : v SNoR z
L3008
Hypothesis H12 : (u * z + x * v)w + u * v
L3009
Hypothesis H13 : SNo u
L3010
Hypothesis H14 : u < x
L3011
Hypothesis H15 : SNo v
L3012
Hypothesis H16 : z < v
L3013
Hypothesis H17 : SNo (u * v)
L3014
Hypothesis H18 : SNo (u + y)
L3015
Hypothesis H19 : SNo (w + u * v)
L3016
Hypothesis H20 : SNo ((x + y) * v)
L3017
Hypothesis H21 : SNo (u * z)
L3018
Theorem. (Conj_mul_SNo_distrR__33__10)
SNo (x * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__33__10
Beginning of Section Conj_mul_SNo_distrR__33__11
L3024
Variable x : set
(*** Conj_mul_SNo_distrR__33__11 TMWM3tmXyTq2VqGo2nuvKKqwaViUMeFpfcH bounty of about 25 bars ***)
L3025
Variable y : set
L3026
Variable z : set
L3027
Variable w : set
L3028
Variable u : set
L3029
Variable v : set
L3030
Hypothesis H0 : SNo x
L3031
Hypothesis H1 : SNo y
L3032
Hypothesis H2 : SNo z
L3033
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3034
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3035
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3036
Hypothesis H6 : SNo (x + y)
L3037
Hypothesis H7 : SNo ((x + y) * z)
L3038
Hypothesis H8 : SNo (y * z)
L3039
Hypothesis H9 : SNo w
L3040
Hypothesis H10 : u SNoL x
L3041
Hypothesis H12 : (u * z + x * v)w + u * v
L3042
Hypothesis H13 : SNo u
L3043
Hypothesis H14 : u < x
L3044
Hypothesis H15 : SNo v
L3045
Hypothesis H16 : z < v
L3046
Hypothesis H17 : SNo (u * v)
L3047
Hypothesis H18 : SNo (u + y)
L3048
Hypothesis H19 : SNo (w + u * v)
L3049
Hypothesis H20 : SNo ((x + y) * v)
L3050
Hypothesis H21 : SNo (u * z)
L3051
Theorem. (Conj_mul_SNo_distrR__33__11)
SNo (x * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__33__11
Beginning of Section Conj_mul_SNo_distrR__34__15
L3057
Variable x : set
(*** Conj_mul_SNo_distrR__34__15 TMbuqEmUYukwC6DNGFGx2BiyFoXmdneaFda bounty of about 25 bars ***)
L3058
Variable y : set
L3059
Variable z : set
L3060
Variable w : set
L3061
Variable u : set
L3062
Variable v : set
L3063
Hypothesis H0 : SNo x
L3064
Hypothesis H1 : SNo y
L3065
Hypothesis H2 : SNo z
L3066
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3067
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3068
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3069
Hypothesis H6 : SNo (x + y)
L3070
Hypothesis H7 : SNo ((x + y) * z)
L3071
Hypothesis H8 : SNo (y * z)
L3072
Hypothesis H9 : SNo w
L3073
Hypothesis H10 : u SNoL x
L3074
Hypothesis H11 : v SNoR z
L3075
Hypothesis H12 : (u * z + x * v)w + u * v
L3076
Hypothesis H13 : SNo u
L3077
Hypothesis H14 : u < x
L3078
Hypothesis H16 : z < v
L3079
Hypothesis H17 : SNo (u * v)
L3080
Hypothesis H18 : SNo (u + y)
L3081
Hypothesis H19 : SNo (w + u * v)
L3082
Hypothesis H20 : SNo ((x + y) * v)
L3083
Theorem. (Conj_mul_SNo_distrR__34__15)
SNo (u * z)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__34__15
Beginning of Section Conj_mul_SNo_distrR__35__17
L3089
Variable x : set
(*** Conj_mul_SNo_distrR__35__17 TMRYkZvQTioECxVCcJCbkbeF2GpbtG2pQ5g bounty of about 25 bars ***)
L3090
Variable y : set
L3091
Variable z : set
L3092
Variable w : set
L3093
Variable u : set
L3094
Variable v : set
L3095
Hypothesis H0 : SNo x
L3096
Hypothesis H1 : SNo y
L3097
Hypothesis H2 : SNo z
L3098
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3099
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3100
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3101
Hypothesis H6 : SNo (x + y)
L3102
Hypothesis H7 : SNo ((x + y) * z)
L3103
Hypothesis H8 : SNo (y * z)
L3104
Hypothesis H9 : SNo w
L3105
Hypothesis H10 : u SNoL x
L3106
Hypothesis H11 : v SNoR z
L3107
Hypothesis H12 : (u * z + x * v)w + u * v
L3108
Hypothesis H13 : SNo u
L3109
Hypothesis H14 : u < x
L3110
Hypothesis H15 : SNo v
L3111
Hypothesis H16 : z < v
L3112
Hypothesis H18 : SNo (u + y)
L3113
Hypothesis H19 : SNo (w + u * v)
L3114
Theorem. (Conj_mul_SNo_distrR__35__17)
SNo ((x + y) * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__35__17
Beginning of Section Conj_mul_SNo_distrR__36__16
L3120
Variable x : set
(*** Conj_mul_SNo_distrR__36__16 TMdYXjeNRGtQVG4koBEXz4mu1iWomVAQ1jC bounty of about 25 bars ***)
L3121
Variable y : set
L3122
Variable z : set
L3123
Variable w : set
L3124
Variable u : set
L3125
Variable v : set
L3126
Hypothesis H0 : SNo x
L3127
Hypothesis H1 : SNo y
L3128
Hypothesis H2 : SNo z
L3129
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3130
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3131
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3132
Hypothesis H6 : SNo (x + y)
L3133
Hypothesis H7 : SNo ((x + y) * z)
L3134
Hypothesis H8 : SNo (y * z)
L3135
Hypothesis H9 : SNo w
L3136
Hypothesis H10 : u SNoL x
L3137
Hypothesis H11 : v SNoR z
L3138
Hypothesis H12 : (u * z + x * v)w + u * v
L3139
Hypothesis H13 : SNo u
L3140
Hypothesis H14 : u < x
L3141
Hypothesis H15 : SNo v
L3142
Hypothesis H17 : SNo (u * v)
L3143
Hypothesis H18 : SNo (u + y)
L3144
Theorem. (Conj_mul_SNo_distrR__36__16)
SNo (w + u * v)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__36__16
Beginning of Section Conj_mul_SNo_distrR__37__12
L3150
Variable x : set
(*** Conj_mul_SNo_distrR__37__12 TMdvk5o3ry4bBYeevH9yHHVot9tnzYbgVn2 bounty of about 25 bars ***)
L3151
Variable y : set
L3152
Variable z : set
L3153
Variable w : set
L3154
Variable u : set
L3155
Variable v : set
L3156
Hypothesis H0 : SNo x
L3157
Hypothesis H1 : SNo y
L3158
Hypothesis H2 : SNo z
L3159
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3160
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3161
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3162
Hypothesis H6 : SNo (x + y)
L3163
Hypothesis H7 : SNo ((x + y) * z)
L3164
Hypothesis H8 : SNo (y * z)
L3165
Hypothesis H9 : SNo w
L3166
Hypothesis H10 : u SNoL x
L3167
Hypothesis H11 : v SNoR z
L3168
Hypothesis H13 : SNo u
L3169
Hypothesis H14 : u < x
L3170
Hypothesis H15 : SNo v
L3171
Hypothesis H16 : z < v
L3172
Hypothesis H17 : SNo (u * v)
L3173
Theorem. (Conj_mul_SNo_distrR__37__12)
SNo (u + y)(x + y) * z < w + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__37__12
Beginning of Section Conj_mul_SNo_distrR__39__5
L3179
Variable x : set
(*** Conj_mul_SNo_distrR__39__5 TMR3nD8zMeFFXiKFfhBkF6jm1hsSYepHH8y bounty of about 25 bars ***)
L3180
Variable y : set
L3181
Variable z : set
L3182
Variable w : set
L3183
Variable u : set
L3184
Variable v : set
L3185
Hypothesis H0 : SNo x
L3186
Hypothesis H1 : SNo y
L3187
Hypothesis H2 : SNo z
L3188
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3189
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3190
Hypothesis H6 : SNo (x + y)
L3191
Hypothesis H7 : SNo ((x + y) * z)
L3192
Hypothesis H8 : SNo (x * z)
L3193
Hypothesis H9 : SNo w
L3194
Hypothesis H10 : u SNoR y
L3195
Hypothesis H11 : v SNoR z
L3196
Hypothesis H12 : (w + u * v)u * z + y * v
L3197
Hypothesis H13 : SNo u
L3198
Hypothesis H14 : y < u
L3199
Hypothesis H15 : SNo v
L3200
Hypothesis H16 : z < v
L3201
Hypothesis H17 : SNo (u * v)
L3202
Hypothesis H18 : SNo (x + u)
L3203
Hypothesis H19 : SNo (w + u * v)
L3204
Hypothesis H20 : SNo ((x + y) * v)
L3205
Hypothesis H21 : SNo (u * z)
L3206
Hypothesis H22 : SNo (x * v)
L3207
Hypothesis H23 : SNo (y * v)
L3208
Hypothesis H24 : SNo (w + x * z)
L3209
Hypothesis H25 : SNo (u * v + x * v)
L3210
Theorem. (Conj_mul_SNo_distrR__39__5)
SNo (u * z + x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__39__5
Beginning of Section Conj_mul_SNo_distrR__40__1
L3216
Variable x : set
(*** Conj_mul_SNo_distrR__40__1 TMQUCDYK85o3twi18wq9L4DgUKi6gZtcPFC bounty of about 25 bars ***)
L3217
Variable y : set
L3218
Variable z : set
L3219
Variable w : set
L3220
Variable u : set
L3221
Variable v : set
L3222
Hypothesis H0 : SNo x
L3223
Hypothesis H2 : SNo z
L3224
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3225
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3226
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3227
Hypothesis H6 : SNo (x + y)
L3228
Hypothesis H7 : SNo ((x + y) * z)
L3229
Hypothesis H8 : SNo (x * z)
L3230
Hypothesis H9 : SNo w
L3231
Hypothesis H10 : u SNoR y
L3232
Hypothesis H11 : v SNoR z
L3233
Hypothesis H12 : (w + u * v)u * z + y * v
L3234
Hypothesis H13 : SNo u
L3235
Hypothesis H14 : y < u
L3236
Hypothesis H15 : SNo v
L3237
Hypothesis H16 : z < v
L3238
Hypothesis H17 : SNo (u * v)
L3239
Hypothesis H18 : SNo (x + u)
L3240
Hypothesis H19 : SNo (w + u * v)
L3241
Hypothesis H20 : SNo ((x + y) * v)
L3242
Hypothesis H21 : SNo (u * z)
L3243
Hypothesis H22 : SNo (x * v)
L3244
Hypothesis H23 : SNo (y * v)
L3245
Hypothesis H24 : SNo (w + x * z)
L3246
Theorem. (Conj_mul_SNo_distrR__40__1)
SNo (u * v + x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__40__1
Beginning of Section Conj_mul_SNo_distrR__40__24
L3252
Variable x : set
(*** Conj_mul_SNo_distrR__40__24 TMS113RJw2iS1i5P74KVdgMNtYan1Ctuefb bounty of about 25 bars ***)
L3253
Variable y : set
L3254
Variable z : set
L3255
Variable w : set
L3256
Variable u : set
L3257
Variable v : set
L3258
Hypothesis H0 : SNo x
L3259
Hypothesis H1 : SNo y
L3260
Hypothesis H2 : SNo z
L3261
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3262
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3263
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3264
Hypothesis H6 : SNo (x + y)
L3265
Hypothesis H7 : SNo ((x + y) * z)
L3266
Hypothesis H8 : SNo (x * z)
L3267
Hypothesis H9 : SNo w
L3268
Hypothesis H10 : u SNoR y
L3269
Hypothesis H11 : v SNoR z
L3270
Hypothesis H12 : (w + u * v)u * z + y * v
L3271
Hypothesis H13 : SNo u
L3272
Hypothesis H14 : y < u
L3273
Hypothesis H15 : SNo v
L3274
Hypothesis H16 : z < v
L3275
Hypothesis H17 : SNo (u * v)
L3276
Hypothesis H18 : SNo (x + u)
L3277
Hypothesis H19 : SNo (w + u * v)
L3278
Hypothesis H20 : SNo ((x + y) * v)
L3279
Hypothesis H21 : SNo (u * z)
L3280
Hypothesis H22 : SNo (x * v)
L3281
Hypothesis H23 : SNo (y * v)
L3282
Theorem. (Conj_mul_SNo_distrR__40__24)
SNo (u * v + x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__40__24
Beginning of Section Conj_mul_SNo_distrR__41__10
L3288
Variable x : set
(*** Conj_mul_SNo_distrR__41__10 TMZSG48dCkEuxXB7kbpaTTkfrJ6v9Tzwwf6 bounty of about 25 bars ***)
L3289
Variable y : set
L3290
Variable z : set
L3291
Variable w : set
L3292
Variable u : set
L3293
Variable v : set
L3294
Hypothesis H0 : SNo x
L3295
Hypothesis H1 : SNo y
L3296
Hypothesis H2 : SNo z
L3297
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3298
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3299
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3300
Hypothesis H6 : SNo (x + y)
L3301
Hypothesis H7 : SNo ((x + y) * z)
L3302
Hypothesis H8 : SNo (x * z)
L3303
Hypothesis H9 : SNo w
L3304
Hypothesis H11 : v SNoR z
L3305
Hypothesis H12 : (w + u * v)u * z + y * v
L3306
Hypothesis H13 : SNo u
L3307
Hypothesis H14 : y < u
L3308
Hypothesis H15 : SNo v
L3309
Hypothesis H16 : z < v
L3310
Hypothesis H17 : SNo (u * v)
L3311
Hypothesis H18 : SNo (x + u)
L3312
Hypothesis H19 : SNo (w + u * v)
L3313
Hypothesis H20 : SNo ((x + y) * v)
L3314
Hypothesis H21 : SNo (u * z)
L3315
Hypothesis H22 : SNo (x * v)
L3316
Hypothesis H23 : SNo (y * v)
L3317
Theorem. (Conj_mul_SNo_distrR__41__10)
SNo (w + x * z)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__41__10
Beginning of Section Conj_mul_SNo_distrR__41__14
L3323
Variable x : set
(*** Conj_mul_SNo_distrR__41__14 TMP6fgSW1qTQHd72h7CoGo9ofvcUCXpgxT8 bounty of about 25 bars ***)
L3324
Variable y : set
L3325
Variable z : set
L3326
Variable w : set
L3327
Variable u : set
L3328
Variable v : set
L3329
Hypothesis H0 : SNo x
L3330
Hypothesis H1 : SNo y
L3331
Hypothesis H2 : SNo z
L3332
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3333
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3334
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3335
Hypothesis H6 : SNo (x + y)
L3336
Hypothesis H7 : SNo ((x + y) * z)
L3337
Hypothesis H8 : SNo (x * z)
L3338
Hypothesis H9 : SNo w
L3339
Hypothesis H10 : u SNoR y
L3340
Hypothesis H11 : v SNoR z
L3341
Hypothesis H12 : (w + u * v)u * z + y * v
L3342
Hypothesis H13 : SNo u
L3343
Hypothesis H15 : SNo v
L3344
Hypothesis H16 : z < v
L3345
Hypothesis H17 : SNo (u * v)
L3346
Hypothesis H18 : SNo (x + u)
L3347
Hypothesis H19 : SNo (w + u * v)
L3348
Hypothesis H20 : SNo ((x + y) * v)
L3349
Hypothesis H21 : SNo (u * z)
L3350
Hypothesis H22 : SNo (x * v)
L3351
Hypothesis H23 : SNo (y * v)
L3352
Theorem. (Conj_mul_SNo_distrR__41__14)
SNo (w + x * z)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__41__14
Beginning of Section Conj_mul_SNo_distrR__42__19
L3358
Variable x : set
(*** Conj_mul_SNo_distrR__42__19 TMLKqQ65FXqBmdoWQZ9DgixHHUSAswkCeF4 bounty of about 25 bars ***)
L3359
Variable y : set
L3360
Variable z : set
L3361
Variable w : set
L3362
Variable u : set
L3363
Variable v : set
L3364
Hypothesis H0 : SNo x
L3365
Hypothesis H1 : SNo y
L3366
Hypothesis H2 : SNo z
L3367
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3368
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3369
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3370
Hypothesis H6 : SNo (x + y)
L3371
Hypothesis H7 : SNo ((x + y) * z)
L3372
Hypothesis H8 : SNo (x * z)
L3373
Hypothesis H9 : SNo w
L3374
Hypothesis H10 : u SNoR y
L3375
Hypothesis H11 : v SNoR z
L3376
Hypothesis H12 : (w + u * v)u * z + y * v
L3377
Hypothesis H13 : SNo u
L3378
Hypothesis H14 : y < u
L3379
Hypothesis H15 : SNo v
L3380
Hypothesis H16 : z < v
L3381
Hypothesis H17 : SNo (u * v)
L3382
Hypothesis H18 : SNo (x + u)
L3383
Hypothesis H20 : SNo ((x + y) * v)
L3384
Hypothesis H21 : SNo (u * z)
L3385
Hypothesis H22 : SNo (x * v)
L3386
Theorem. (Conj_mul_SNo_distrR__42__19)
SNo (y * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__42__19
Beginning of Section Conj_mul_SNo_distrR__44__4
L3392
Variable x : set
(*** Conj_mul_SNo_distrR__44__4 TMWGfq1LbAeFx4bHjLqm8ZoG7pBgJ5V3C3U bounty of about 25 bars ***)
L3393
Variable y : set
L3394
Variable z : set
L3395
Variable w : set
L3396
Variable u : set
L3397
Variable v : set
L3398
Hypothesis H0 : SNo x
L3399
Hypothesis H1 : SNo y
L3400
Hypothesis H2 : SNo z
L3401
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3402
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3403
Hypothesis H6 : SNo (x + y)
L3404
Hypothesis H7 : SNo ((x + y) * z)
L3405
Hypothesis H8 : SNo (x * z)
L3406
Hypothesis H9 : SNo w
L3407
Hypothesis H10 : u SNoR y
L3408
Hypothesis H11 : v SNoR z
L3409
Hypothesis H12 : (w + u * v)u * z + y * v
L3410
Hypothesis H13 : SNo u
L3411
Hypothesis H14 : y < u
L3412
Hypothesis H15 : SNo v
L3413
Hypothesis H16 : z < v
L3414
Hypothesis H17 : SNo (u * v)
L3415
Hypothesis H18 : SNo (x + u)
L3416
Hypothesis H19 : SNo (w + u * v)
L3417
Hypothesis H20 : SNo ((x + y) * v)
L3418
Theorem. (Conj_mul_SNo_distrR__44__4)
SNo (u * z)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__44__4
Beginning of Section Conj_mul_SNo_distrR__45__16
L3424
Variable x : set
(*** Conj_mul_SNo_distrR__45__16 TMHLPJx6ynfxXTkzoWH5ofFdiHmgsPVqsbW bounty of about 25 bars ***)
L3425
Variable y : set
L3426
Variable z : set
L3427
Variable w : set
L3428
Variable u : set
L3429
Variable v : set
L3430
Hypothesis H0 : SNo x
L3431
Hypothesis H1 : SNo y
L3432
Hypothesis H2 : SNo z
L3433
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3434
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3435
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3436
Hypothesis H6 : SNo (x + y)
L3437
Hypothesis H7 : SNo ((x + y) * z)
L3438
Hypothesis H8 : SNo (x * z)
L3439
Hypothesis H9 : SNo w
L3440
Hypothesis H10 : u SNoR y
L3441
Hypothesis H11 : v SNoR z
L3442
Hypothesis H12 : (w + u * v)u * z + y * v
L3443
Hypothesis H13 : SNo u
L3444
Hypothesis H14 : y < u
L3445
Hypothesis H15 : SNo v
L3446
Hypothesis H17 : SNo (u * v)
L3447
Hypothesis H18 : SNo (x + u)
L3448
Hypothesis H19 : SNo (w + u * v)
L3449
Theorem. (Conj_mul_SNo_distrR__45__16)
SNo ((x + y) * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__45__16
Beginning of Section Conj_mul_SNo_distrR__47__17
L3455
Variable x : set
(*** Conj_mul_SNo_distrR__47__17 TMUyuaVyLYpWZ59z93sbXEMjs98kpWpanp7 bounty of about 25 bars ***)
L3456
Variable y : set
L3457
Variable z : set
L3458
Variable w : set
L3459
Variable u : set
L3460
Variable v : set
L3461
Hypothesis H0 : SNo x
L3462
Hypothesis H1 : SNo y
L3463
Hypothesis H2 : SNo z
L3464
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3465
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3466
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3467
Hypothesis H6 : SNo (x + y)
L3468
Hypothesis H7 : SNo ((x + y) * z)
L3469
Hypothesis H8 : SNo (x * z)
L3470
Hypothesis H9 : SNo w
L3471
Hypothesis H10 : u SNoR y
L3472
Hypothesis H11 : v SNoR z
L3473
Hypothesis H12 : (w + u * v)u * z + y * v
L3474
Hypothesis H13 : SNo u
L3475
Hypothesis H14 : y < u
L3476
Hypothesis H15 : SNo v
L3477
Hypothesis H16 : z < v
L3478
Theorem. (Conj_mul_SNo_distrR__47__17)
SNo (x + u)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__47__17
Beginning of Section Conj_mul_SNo_distrR__48__11
L3484
Variable x : set
(*** Conj_mul_SNo_distrR__48__11 TMaz44LnE1pb9RaEGi5AGLx4g1WG1f1bptq bounty of about 25 bars ***)
L3485
Variable y : set
L3486
Variable z : set
L3487
Variable w : set
L3488
Variable u : set
L3489
Variable v : set
L3490
Hypothesis H0 : SNo x
L3491
Hypothesis H1 : SNo y
L3492
Hypothesis H2 : SNo z
L3493
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3494
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3495
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3496
Hypothesis H6 : SNo (x + y)
L3497
Hypothesis H7 : SNo ((x + y) * z)
L3498
Hypothesis H8 : SNo (x * z)
L3499
Hypothesis H9 : SNo w
L3500
Hypothesis H10 : u SNoR y
L3501
Hypothesis H12 : (w + u * v)u * z + y * v
L3502
Hypothesis H13 : SNo u
L3503
Hypothesis H14 : y < u
L3504
Hypothesis H15 : SNo v
L3505
Hypothesis H16 : z < v
L3506
Theorem. (Conj_mul_SNo_distrR__48__11)
SNo (u * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__48__11
Beginning of Section Conj_mul_SNo_distrR__48__15
L3512
Variable x : set
(*** Conj_mul_SNo_distrR__48__15 TMU4ADx8d4eAtmHruNTko9Anu4MrwNHFJpJ bounty of about 25 bars ***)
L3513
Variable y : set
L3514
Variable z : set
L3515
Variable w : set
L3516
Variable u : set
L3517
Variable v : set
L3518
Hypothesis H0 : SNo x
L3519
Hypothesis H1 : SNo y
L3520
Hypothesis H2 : SNo z
L3521
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3522
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3523
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3524
Hypothesis H6 : SNo (x + y)
L3525
Hypothesis H7 : SNo ((x + y) * z)
L3526
Hypothesis H8 : SNo (x * z)
L3527
Hypothesis H9 : SNo w
L3528
Hypothesis H10 : u SNoR y
L3529
Hypothesis H11 : v SNoR z
L3530
Hypothesis H12 : (w + u * v)u * z + y * v
L3531
Hypothesis H13 : SNo u
L3532
Hypothesis H14 : y < u
L3533
Hypothesis H16 : z < v
L3534
Theorem. (Conj_mul_SNo_distrR__48__15)
SNo (u * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__48__15
Beginning of Section Conj_mul_SNo_distrR__49__2
L3540
Variable x : set
(*** Conj_mul_SNo_distrR__49__2 TMTZVPBF5BsrRLPKKBJc3dLpAvUitc2kwpP bounty of about 25 bars ***)
L3541
Variable y : set
L3542
Variable z : set
L3543
Variable w : set
L3544
Variable u : set
L3545
Variable v : set
L3546
Hypothesis H0 : SNo x
L3547
Hypothesis H1 : SNo y
L3548
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3549
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3550
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3551
Hypothesis H6 : SNo (x + y)
L3552
Hypothesis H7 : SNo ((x + y) * z)
L3553
Hypothesis H8 : SNo (x * z)
L3554
Hypothesis H9 : SNo w
L3555
Hypothesis H10 : u SNoL y
L3556
Hypothesis H11 : v SNoL z
L3557
Hypothesis H12 : (w + u * v)u * z + y * v
L3558
Hypothesis H13 : SNo u
L3559
Hypothesis H14 : u < y
L3560
Hypothesis H15 : SNo v
L3561
Hypothesis H16 : v < z
L3562
Hypothesis H17 : SNo (u * v)
L3563
Hypothesis H18 : SNo (x + u)
L3564
Hypothesis H19 : SNo (w + u * v)
L3565
Hypothesis H20 : SNo ((x + y) * v)
L3566
Hypothesis H21 : SNo (u * z)
L3567
Hypothesis H22 : SNo (x * v)
L3568
Hypothesis H23 : SNo (y * v)
L3569
Hypothesis H24 : SNo (w + x * z)
L3570
Theorem. (Conj_mul_SNo_distrR__49__2)
SNo (u * v + x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__49__2
Beginning of Section Conj_mul_SNo_distrR__52__2
L3576
Variable x : set
(*** Conj_mul_SNo_distrR__52__2 TMKdWbsrJMU2vPPzCWXTApXppKARV7Gt41R bounty of about 25 bars ***)
L3577
Variable y : set
L3578
Variable z : set
L3579
Variable w : set
L3580
Variable u : set
L3581
Variable v : set
L3582
Hypothesis H0 : SNo x
L3583
Hypothesis H1 : SNo y
L3584
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3585
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3586
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3587
Hypothesis H6 : SNo (x + y)
L3588
Hypothesis H7 : SNo ((x + y) * z)
L3589
Hypothesis H8 : SNo (x * z)
L3590
Hypothesis H9 : SNo w
L3591
Hypothesis H10 : u SNoL y
L3592
Hypothesis H11 : v SNoL z
L3593
Hypothesis H12 : (w + u * v)u * z + y * v
L3594
Hypothesis H13 : SNo u
L3595
Hypothesis H14 : u < y
L3596
Hypothesis H15 : SNo v
L3597
Hypothesis H16 : v < z
L3598
Hypothesis H17 : SNo (u * v)
L3599
Hypothesis H18 : SNo (x + u)
L3600
Hypothesis H19 : SNo (w + u * v)
L3601
Hypothesis H20 : SNo ((x + y) * v)
L3602
Hypothesis H21 : SNo (u * z)
L3603
Theorem. (Conj_mul_SNo_distrR__52__2)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__2
Beginning of Section Conj_mul_SNo_distrR__52__9
L3609
Variable x : set
(*** Conj_mul_SNo_distrR__52__9 TMPnsZYKio5eknaCWc5sX8S74DsM9etm4gw bounty of about 25 bars ***)
L3610
Variable y : set
L3611
Variable z : set
L3612
Variable w : set
L3613
Variable u : set
L3614
Variable v : set
L3615
Hypothesis H0 : SNo x
L3616
Hypothesis H1 : SNo y
L3617
Hypothesis H2 : SNo z
L3618
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3619
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3620
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3621
Hypothesis H6 : SNo (x + y)
L3622
Hypothesis H7 : SNo ((x + y) * z)
L3623
Hypothesis H8 : SNo (x * z)
L3624
Hypothesis H10 : u SNoL y
L3625
Hypothesis H11 : v SNoL z
L3626
Hypothesis H12 : (w + u * v)u * z + y * v
L3627
Hypothesis H13 : SNo u
L3628
Hypothesis H14 : u < y
L3629
Hypothesis H15 : SNo v
L3630
Hypothesis H16 : v < z
L3631
Hypothesis H17 : SNo (u * v)
L3632
Hypothesis H18 : SNo (x + u)
L3633
Hypothesis H19 : SNo (w + u * v)
L3634
Hypothesis H20 : SNo ((x + y) * v)
L3635
Hypothesis H21 : SNo (u * z)
L3636
Theorem. (Conj_mul_SNo_distrR__52__9)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__9
Beginning of Section Conj_mul_SNo_distrR__52__13
L3642
Variable x : set
(*** Conj_mul_SNo_distrR__52__13 TMWAuogoqYeNYe8ePKXTF4LnMBFCnR1FLyY bounty of about 25 bars ***)
L3643
Variable y : set
L3644
Variable z : set
L3645
Variable w : set
L3646
Variable u : set
L3647
Variable v : set
L3648
Hypothesis H0 : SNo x
L3649
Hypothesis H1 : SNo y
L3650
Hypothesis H2 : SNo z
L3651
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3652
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3653
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3654
Hypothesis H6 : SNo (x + y)
L3655
Hypothesis H7 : SNo ((x + y) * z)
L3656
Hypothesis H8 : SNo (x * z)
L3657
Hypothesis H9 : SNo w
L3658
Hypothesis H10 : u SNoL y
L3659
Hypothesis H11 : v SNoL z
L3660
Hypothesis H12 : (w + u * v)u * z + y * v
L3661
Hypothesis H14 : u < y
L3662
Hypothesis H15 : SNo v
L3663
Hypothesis H16 : v < z
L3664
Hypothesis H17 : SNo (u * v)
L3665
Hypothesis H18 : SNo (x + u)
L3666
Hypothesis H19 : SNo (w + u * v)
L3667
Hypothesis H20 : SNo ((x + y) * v)
L3668
Hypothesis H21 : SNo (u * z)
L3669
Theorem. (Conj_mul_SNo_distrR__52__13)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__13
Beginning of Section Conj_mul_SNo_distrR__52__19
L3675
Variable x : set
(*** Conj_mul_SNo_distrR__52__19 TMH7wgEZFjYczdFvAs18ukb8d9fewfFrnbu bounty of about 25 bars ***)
L3676
Variable y : set
L3677
Variable z : set
L3678
Variable w : set
L3679
Variable u : set
L3680
Variable v : set
L3681
Hypothesis H0 : SNo x
L3682
Hypothesis H1 : SNo y
L3683
Hypothesis H2 : SNo z
L3684
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3685
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3686
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3687
Hypothesis H6 : SNo (x + y)
L3688
Hypothesis H7 : SNo ((x + y) * z)
L3689
Hypothesis H8 : SNo (x * z)
L3690
Hypothesis H9 : SNo w
L3691
Hypothesis H10 : u SNoL y
L3692
Hypothesis H11 : v SNoL z
L3693
Hypothesis H12 : (w + u * v)u * z + y * v
L3694
Hypothesis H13 : SNo u
L3695
Hypothesis H14 : u < y
L3696
Hypothesis H15 : SNo v
L3697
Hypothesis H16 : v < z
L3698
Hypothesis H17 : SNo (u * v)
L3699
Hypothesis H18 : SNo (x + u)
L3700
Hypothesis H20 : SNo ((x + y) * v)
L3701
Hypothesis H21 : SNo (u * z)
L3702
Theorem. (Conj_mul_SNo_distrR__52__19)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__19
Beginning of Section Conj_mul_SNo_distrR__52__21
L3708
Variable x : set
(*** Conj_mul_SNo_distrR__52__21 TMVjuCjVmizyaEigPLu548NFq3eRivbhoyA bounty of about 25 bars ***)
L3709
Variable y : set
L3710
Variable z : set
L3711
Variable w : set
L3712
Variable u : set
L3713
Variable v : set
L3714
Hypothesis H0 : SNo x
L3715
Hypothesis H1 : SNo y
L3716
Hypothesis H2 : SNo z
L3717
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3718
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3719
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3720
Hypothesis H6 : SNo (x + y)
L3721
Hypothesis H7 : SNo ((x + y) * z)
L3722
Hypothesis H8 : SNo (x * z)
L3723
Hypothesis H9 : SNo w
L3724
Hypothesis H10 : u SNoL y
L3725
Hypothesis H11 : v SNoL z
L3726
Hypothesis H12 : (w + u * v)u * z + y * v
L3727
Hypothesis H13 : SNo u
L3728
Hypothesis H14 : u < y
L3729
Hypothesis H15 : SNo v
L3730
Hypothesis H16 : v < z
L3731
Hypothesis H17 : SNo (u * v)
L3732
Hypothesis H18 : SNo (x + u)
L3733
Hypothesis H19 : SNo (w + u * v)
L3734
Hypothesis H20 : SNo ((x + y) * v)
L3735
Theorem. (Conj_mul_SNo_distrR__52__21)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__21
Beginning of Section Conj_mul_SNo_distrR__53__19
L3741
Variable x : set
(*** Conj_mul_SNo_distrR__53__19 TMd77WxRGj57fcLRo7Y4VnN2wJ9VieG9fgp bounty of about 25 bars ***)
L3742
Variable y : set
L3743
Variable z : set
L3744
Variable w : set
L3745
Variable u : set
L3746
Variable v : set
L3747
Hypothesis H0 : SNo x
L3748
Hypothesis H1 : SNo y
L3749
Hypothesis H2 : SNo z
L3750
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3751
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3752
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3753
Hypothesis H6 : SNo (x + y)
L3754
Hypothesis H7 : SNo ((x + y) * z)
L3755
Hypothesis H8 : SNo (x * z)
L3756
Hypothesis H9 : SNo w
L3757
Hypothesis H10 : u SNoL y
L3758
Hypothesis H11 : v SNoL z
L3759
Hypothesis H12 : (w + u * v)u * z + y * v
L3760
Hypothesis H13 : SNo u
L3761
Hypothesis H14 : u < y
L3762
Hypothesis H15 : SNo v
L3763
Hypothesis H16 : v < z
L3764
Hypothesis H17 : SNo (u * v)
L3765
Hypothesis H18 : SNo (x + u)
L3766
Hypothesis H20 : SNo ((x + y) * v)
L3767
Theorem. (Conj_mul_SNo_distrR__53__19)
SNo (u * z)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__53__19
Beginning of Section Conj_mul_SNo_distrR__56__5
L3773
Variable x : set
(*** Conj_mul_SNo_distrR__56__5 TMWNj5NmkZjvpuQVcHCKriFEUNdBjUs21Pi bounty of about 25 bars ***)
L3774
Variable y : set
L3775
Variable z : set
L3776
Variable w : set
L3777
Variable u : set
L3778
Variable v : set
L3779
Hypothesis H0 : SNo x
L3780
Hypothesis H1 : SNo y
L3781
Hypothesis H2 : SNo z
L3782
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3783
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3784
Hypothesis H6 : SNo (x + y)
L3785
Hypothesis H7 : SNo ((x + y) * z)
L3786
Hypothesis H8 : SNo (x * z)
L3787
Hypothesis H9 : SNo w
L3788
Hypothesis H10 : u SNoL y
L3789
Hypothesis H11 : v SNoL z
L3790
Hypothesis H12 : (w + u * v)u * z + y * v
L3791
Hypothesis H13 : SNo u
L3792
Hypothesis H14 : u < y
L3793
Hypothesis H15 : SNo v
L3794
Hypothesis H16 : v < z
L3795
Hypothesis H17 : SNo (u * v)
L3796
Theorem. (Conj_mul_SNo_distrR__56__5)
SNo (x + u)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__56__5
Beginning of Section Conj_mul_SNo_distrR__56__15
L3802
Variable x : set
(*** Conj_mul_SNo_distrR__56__15 TMNftAcP2idEbztxAk7iNGPiwNKpKjBEgUA bounty of about 25 bars ***)
L3803
Variable y : set
L3804
Variable z : set
L3805
Variable w : set
L3806
Variable u : set
L3807
Variable v : set
L3808
Hypothesis H0 : SNo x
L3809
Hypothesis H1 : SNo y
L3810
Hypothesis H2 : SNo z
L3811
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3812
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3813
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3814
Hypothesis H6 : SNo (x + y)
L3815
Hypothesis H7 : SNo ((x + y) * z)
L3816
Hypothesis H8 : SNo (x * z)
L3817
Hypothesis H9 : SNo w
L3818
Hypothesis H10 : u SNoL y
L3819
Hypothesis H11 : v SNoL z
L3820
Hypothesis H12 : (w + u * v)u * z + y * v
L3821
Hypothesis H13 : SNo u
L3822
Hypothesis H14 : u < y
L3823
Hypothesis H16 : v < z
L3824
Hypothesis H17 : SNo (u * v)
L3825
Theorem. (Conj_mul_SNo_distrR__56__15)
SNo (x + u)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__56__15
Beginning of Section Conj_mul_SNo_distrR__57__7
L3831
Variable x : set
(*** Conj_mul_SNo_distrR__57__7 TMWMo5S4S8uA1Xa94wAmho8QYLMQfGa6B11 bounty of about 25 bars ***)
L3832
Variable y : set
L3833
Variable z : set
L3834
Variable w : set
L3835
Variable u : set
L3836
Variable v : set
L3837
Hypothesis H0 : SNo x
L3838
Hypothesis H1 : SNo y
L3839
Hypothesis H2 : SNo z
L3840
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L3841
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3842
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L3843
Hypothesis H6 : SNo (x + y)
L3844
Hypothesis H8 : SNo (x * z)
L3845
Hypothesis H9 : SNo w
L3846
Hypothesis H10 : u SNoL y
L3847
Hypothesis H11 : v SNoL z
L3848
Hypothesis H12 : (w + u * v)u * z + y * v
L3849
Hypothesis H13 : SNo u
L3850
Hypothesis H14 : u < y
L3851
Hypothesis H15 : SNo v
L3852
Hypothesis H16 : v < z
L3853
Theorem. (Conj_mul_SNo_distrR__57__7)
SNo (u * v)(w + x * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__57__7
Beginning of Section Conj_mul_SNo_distrR__58__19
L3859
Variable x : set
(*** Conj_mul_SNo_distrR__58__19 TMGmFgPdFVZjvtefrPUoLPyy22zcyMf92Co bounty of about 25 bars ***)
L3860
Variable y : set
L3861
Variable z : set
L3862
Variable w : set
L3863
Variable u : set
L3864
Variable v : set
L3865
Hypothesis H0 : SNo x
L3866
Hypothesis H1 : SNo y
L3867
Hypothesis H2 : SNo z
L3868
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3869
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3870
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3871
Hypothesis H6 : SNo (x + y)
L3872
Hypothesis H7 : SNo ((x + y) * z)
L3873
Hypothesis H8 : SNo (y * z)
L3874
Hypothesis H9 : SNo w
L3875
Hypothesis H10 : u SNoR x
L3876
Hypothesis H11 : v SNoR z
L3877
Hypothesis H12 : (w + u * v)u * z + x * v
L3878
Hypothesis H13 : SNo u
L3879
Hypothesis H14 : x < u
L3880
Hypothesis H15 : SNo v
L3881
Hypothesis H16 : z < v
L3882
Hypothesis H17 : SNo (u * v)
L3883
Hypothesis H18 : SNo (u + y)
L3884
Hypothesis H20 : SNo ((x + y) * v)
L3885
Hypothesis H21 : SNo (u * z)
L3886
Hypothesis H22 : SNo (x * v)
L3887
Hypothesis H23 : SNo (y * v)
L3888
Hypothesis H24 : SNo (w + y * z)
L3889
Theorem. (Conj_mul_SNo_distrR__58__19)
SNo (u * v + y * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__58__19
Beginning of Section Conj_mul_SNo_distrR__60__18
L3895
Variable x : set
(*** Conj_mul_SNo_distrR__60__18 TMcF7xxLge6MoZsEJSwT7UVmBTX3GSaMVv9 bounty of about 25 bars ***)
L3896
Variable y : set
L3897
Variable z : set
L3898
Variable w : set
L3899
Variable u : set
L3900
Variable v : set
L3901
Hypothesis H0 : SNo x
L3902
Hypothesis H1 : SNo y
L3903
Hypothesis H2 : SNo z
L3904
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3905
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3906
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3907
Hypothesis H6 : SNo (x + y)
L3908
Hypothesis H7 : SNo ((x + y) * z)
L3909
Hypothesis H8 : SNo (y * z)
L3910
Hypothesis H9 : SNo w
L3911
Hypothesis H10 : u SNoR x
L3912
Hypothesis H11 : v SNoR z
L3913
Hypothesis H12 : (w + u * v)u * z + x * v
L3914
Hypothesis H13 : SNo u
L3915
Hypothesis H14 : x < u
L3916
Hypothesis H15 : SNo v
L3917
Hypothesis H16 : z < v
L3918
Hypothesis H17 : SNo (u * v)
L3919
Hypothesis H19 : SNo (w + u * v)
L3920
Hypothesis H20 : SNo ((x + y) * v)
L3921
Hypothesis H21 : SNo (u * z)
L3922
Hypothesis H22 : SNo (x * v)
L3923
Theorem. (Conj_mul_SNo_distrR__60__18)
SNo (y * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__60__18
Beginning of Section Conj_mul_SNo_distrR__61__21
L3929
Variable x : set
(*** Conj_mul_SNo_distrR__61__21 TMdTGbgS4zY9qMjAkJnny7Kr8AtS28Se6UQ bounty of about 25 bars ***)
L3930
Variable y : set
L3931
Variable z : set
L3932
Variable w : set
L3933
Variable u : set
L3934
Variable v : set
L3935
Hypothesis H0 : SNo x
L3936
Hypothesis H1 : SNo y
L3937
Hypothesis H2 : SNo z
L3938
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3939
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3940
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3941
Hypothesis H6 : SNo (x + y)
L3942
Hypothesis H7 : SNo ((x + y) * z)
L3943
Hypothesis H8 : SNo (y * z)
L3944
Hypothesis H9 : SNo w
L3945
Hypothesis H10 : u SNoR x
L3946
Hypothesis H11 : v SNoR z
L3947
Hypothesis H12 : (w + u * v)u * z + x * v
L3948
Hypothesis H13 : SNo u
L3949
Hypothesis H14 : x < u
L3950
Hypothesis H15 : SNo v
L3951
Hypothesis H16 : z < v
L3952
Hypothesis H17 : SNo (u * v)
L3953
Hypothesis H18 : SNo (u + y)
L3954
Hypothesis H19 : SNo (w + u * v)
L3955
Hypothesis H20 : SNo ((x + y) * v)
L3956
Theorem. (Conj_mul_SNo_distrR__61__21)
SNo (x * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__61__21
Beginning of Section Conj_mul_SNo_distrR__63__2
L3962
Variable x : set
(*** Conj_mul_SNo_distrR__63__2 TMW6MBPjUnTqFXsPGtfWJDU57Nc6qMuKgww bounty of about 25 bars ***)
L3963
Variable y : set
L3964
Variable z : set
L3965
Variable w : set
L3966
Variable u : set
L3967
Variable v : set
L3968
Hypothesis H0 : SNo x
L3969
Hypothesis H1 : SNo y
L3970
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L3971
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L3972
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L3973
Hypothesis H6 : SNo (x + y)
L3974
Hypothesis H7 : SNo ((x + y) * z)
L3975
Hypothesis H8 : SNo (y * z)
L3976
Hypothesis H9 : SNo w
L3977
Hypothesis H10 : u SNoR x
L3978
Hypothesis H11 : v SNoR z
L3979
Hypothesis H12 : (w + u * v)u * z + x * v
L3980
Hypothesis H13 : SNo u
L3981
Hypothesis H14 : x < u
L3982
Hypothesis H15 : SNo v
L3983
Hypothesis H16 : z < v
L3984
Hypothesis H17 : SNo (u * v)
L3985
Hypothesis H18 : SNo (u + y)
L3986
Hypothesis H19 : SNo (w + u * v)
L3987
Theorem. (Conj_mul_SNo_distrR__63__2)
SNo ((x + y) * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__63__2
Beginning of Section Conj_mul_SNo_distrR__64__17
L3993
Variable x : set
(*** Conj_mul_SNo_distrR__64__17 TMRzoL3Y9GrmMz2XoGinfT43U4ZMX4Q1n9H bounty of about 25 bars ***)
L3994
Variable y : set
L3995
Variable z : set
L3996
Variable w : set
L3997
Variable u : set
L3998
Variable v : set
L3999
Hypothesis H0 : SNo x
L4000
Hypothesis H1 : SNo y
L4001
Hypothesis H2 : SNo z
L4002
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4003
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4004
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4005
Hypothesis H6 : SNo (x + y)
L4006
Hypothesis H7 : SNo ((x + y) * z)
L4007
Hypothesis H8 : SNo (y * z)
L4008
Hypothesis H9 : SNo w
L4009
Hypothesis H10 : u SNoR x
L4010
Hypothesis H11 : v SNoR z
L4011
Hypothesis H12 : (w + u * v)u * z + x * v
L4012
Hypothesis H13 : SNo u
L4013
Hypothesis H14 : x < u
L4014
Hypothesis H15 : SNo v
L4015
Hypothesis H16 : z < v
L4016
Hypothesis H18 : SNo (u + y)
L4017
Theorem. (Conj_mul_SNo_distrR__64__17)
SNo (w + u * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__64__17
Beginning of Section Conj_mul_SNo_distrR__67__6
L4023
Variable x : set
(*** Conj_mul_SNo_distrR__67__6 TMKwPK1NSKTXSxa7P25qsYB1E4QvXkDxWdx bounty of about 25 bars ***)
L4024
Variable y : set
L4025
Variable z : set
L4026
Variable w : set
L4027
Variable u : set
L4028
Variable v : set
L4029
Hypothesis H0 : SNo x
L4030
Hypothesis H1 : SNo y
L4031
Hypothesis H2 : SNo z
L4032
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4033
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4034
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4035
Hypothesis H7 : SNo ((x + y) * z)
L4036
Hypothesis H8 : SNo (y * z)
L4037
Hypothesis H9 : SNo w
L4038
Hypothesis H10 : u SNoL x
L4039
Hypothesis H11 : v SNoL z
L4040
Hypothesis H12 : (w + u * v)u * z + x * v
L4041
Hypothesis H13 : SNo u
L4042
Hypothesis H14 : u < x
L4043
Hypothesis H15 : SNo v
L4044
Hypothesis H16 : v < z
L4045
Hypothesis H17 : SNo (u * v)
L4046
Hypothesis H18 : SNo (u + y)
L4047
Hypothesis H19 : SNo (w + u * v)
L4048
Hypothesis H20 : SNo ((x + y) * v)
L4049
Hypothesis H21 : SNo (u * z)
L4050
Hypothesis H22 : SNo (x * v)
L4051
Hypothesis H23 : SNo (y * v)
L4052
Hypothesis H24 : SNo (w + y * z)
L4053
Hypothesis H25 : SNo (u * v + y * v)
L4054
Theorem. (Conj_mul_SNo_distrR__67__6)
SNo (u * z + x * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__67__6
Beginning of Section Conj_mul_SNo_distrR__67__23
L4060
Variable x : set
(*** Conj_mul_SNo_distrR__67__23 TMUHGWg6EDJfHSmJCUtPgpQogEQWeZ4vYgJ bounty of about 25 bars ***)
L4061
Variable y : set
L4062
Variable z : set
L4063
Variable w : set
L4064
Variable u : set
L4065
Variable v : set
L4066
Hypothesis H0 : SNo x
L4067
Hypothesis H1 : SNo y
L4068
Hypothesis H2 : SNo z
L4069
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4070
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4071
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4072
Hypothesis H6 : SNo (x + y)
L4073
Hypothesis H7 : SNo ((x + y) * z)
L4074
Hypothesis H8 : SNo (y * z)
L4075
Hypothesis H9 : SNo w
L4076
Hypothesis H10 : u SNoL x
L4077
Hypothesis H11 : v SNoL z
L4078
Hypothesis H12 : (w + u * v)u * z + x * v
L4079
Hypothesis H13 : SNo u
L4080
Hypothesis H14 : u < x
L4081
Hypothesis H15 : SNo v
L4082
Hypothesis H16 : v < z
L4083
Hypothesis H17 : SNo (u * v)
L4084
Hypothesis H18 : SNo (u + y)
L4085
Hypothesis H19 : SNo (w + u * v)
L4086
Hypothesis H20 : SNo ((x + y) * v)
L4087
Hypothesis H21 : SNo (u * z)
L4088
Hypothesis H22 : SNo (x * v)
L4089
Hypothesis H24 : SNo (w + y * z)
L4090
Hypothesis H25 : SNo (u * v + y * v)
L4091
Theorem. (Conj_mul_SNo_distrR__67__23)
SNo (u * z + x * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__67__23
Beginning of Section Conj_mul_SNo_distrR__68__11
L4097
Variable x : set
(*** Conj_mul_SNo_distrR__68__11 TMdn7oyQpfHuXPmUTHiRmP4yinV5WrvXEEy bounty of about 25 bars ***)
L4098
Variable y : set
L4099
Variable z : set
L4100
Variable w : set
L4101
Variable u : set
L4102
Variable v : set
L4103
Hypothesis H0 : SNo x
L4104
Hypothesis H1 : SNo y
L4105
Hypothesis H2 : SNo z
L4106
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4107
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4108
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4109
Hypothesis H6 : SNo (x + y)
L4110
Hypothesis H7 : SNo ((x + y) * z)
L4111
Hypothesis H8 : SNo (y * z)
L4112
Hypothesis H9 : SNo w
L4113
Hypothesis H10 : u SNoL x
L4114
Hypothesis H12 : (w + u * v)u * z + x * v
L4115
Hypothesis H13 : SNo u
L4116
Hypothesis H14 : u < x
L4117
Hypothesis H15 : SNo v
L4118
Hypothesis H16 : v < z
L4119
Hypothesis H17 : SNo (u * v)
L4120
Hypothesis H18 : SNo (u + y)
L4121
Hypothesis H19 : SNo (w + u * v)
L4122
Hypothesis H20 : SNo ((x + y) * v)
L4123
Hypothesis H21 : SNo (u * z)
L4124
Hypothesis H22 : SNo (x * v)
L4125
Hypothesis H23 : SNo (y * v)
L4126
Hypothesis H24 : SNo (w + y * z)
L4127
Theorem. (Conj_mul_SNo_distrR__68__11)
SNo (u * v + y * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__68__11
Beginning of Section Conj_mul_SNo_distrR__68__13
L4133
Variable x : set
(*** Conj_mul_SNo_distrR__68__13 TMJtgS4CUtwWszuK7bu6TJrMqQAQRyJB8J7 bounty of about 25 bars ***)
L4134
Variable y : set
L4135
Variable z : set
L4136
Variable w : set
L4137
Variable u : set
L4138
Variable v : set
L4139
Hypothesis H0 : SNo x
L4140
Hypothesis H1 : SNo y
L4141
Hypothesis H2 : SNo z
L4142
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4143
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4144
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4145
Hypothesis H6 : SNo (x + y)
L4146
Hypothesis H7 : SNo ((x + y) * z)
L4147
Hypothesis H8 : SNo (y * z)
L4148
Hypothesis H9 : SNo w
L4149
Hypothesis H10 : u SNoL x
L4150
Hypothesis H11 : v SNoL z
L4151
Hypothesis H12 : (w + u * v)u * z + x * v
L4152
Hypothesis H14 : u < x
L4153
Hypothesis H15 : SNo v
L4154
Hypothesis H16 : v < z
L4155
Hypothesis H17 : SNo (u * v)
L4156
Hypothesis H18 : SNo (u + y)
L4157
Hypothesis H19 : SNo (w + u * v)
L4158
Hypothesis H20 : SNo ((x + y) * v)
L4159
Hypothesis H21 : SNo (u * z)
L4160
Hypothesis H22 : SNo (x * v)
L4161
Hypothesis H23 : SNo (y * v)
L4162
Hypothesis H24 : SNo (w + y * z)
L4163
Theorem. (Conj_mul_SNo_distrR__68__13)
SNo (u * v + y * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__68__13
Beginning of Section Conj_mul_SNo_distrR__69__4
L4169
Variable x : set
(*** Conj_mul_SNo_distrR__69__4 TMbPgDJvxqmUnqd3yJGY5Fz6Q9SUUijkwE9 bounty of about 25 bars ***)
L4170
Variable y : set
L4171
Variable z : set
L4172
Variable w : set
L4173
Variable u : set
L4174
Variable v : set
L4175
Hypothesis H0 : SNo x
L4176
Hypothesis H1 : SNo y
L4177
Hypothesis H2 : SNo z
L4178
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4179
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4180
Hypothesis H6 : SNo (x + y)
L4181
Hypothesis H7 : SNo ((x + y) * z)
L4182
Hypothesis H8 : SNo (y * z)
L4183
Hypothesis H9 : SNo w
L4184
Hypothesis H10 : u SNoL x
L4185
Hypothesis H11 : v SNoL z
L4186
Hypothesis H12 : (w + u * v)u * z + x * v
L4187
Hypothesis H13 : SNo u
L4188
Hypothesis H14 : u < x
L4189
Hypothesis H15 : SNo v
L4190
Hypothesis H16 : v < z
L4191
Hypothesis H17 : SNo (u * v)
L4192
Hypothesis H18 : SNo (u + y)
L4193
Hypothesis H19 : SNo (w + u * v)
L4194
Hypothesis H20 : SNo ((x + y) * v)
L4195
Hypothesis H21 : SNo (u * z)
L4196
Hypothesis H22 : SNo (x * v)
L4197
Hypothesis H23 : SNo (y * v)
L4198
Theorem. (Conj_mul_SNo_distrR__69__4)
SNo (w + y * z)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__69__4
Beginning of Section Conj_mul_SNo_distrR__69__8
L4204
Variable x : set
(*** Conj_mul_SNo_distrR__69__8 TMTis28vThZDvEsUqvr9uVLaW9X6o5a9o45 bounty of about 25 bars ***)
L4205
Variable y : set
L4206
Variable z : set
L4207
Variable w : set
L4208
Variable u : set
L4209
Variable v : set
L4210
Hypothesis H0 : SNo x
L4211
Hypothesis H1 : SNo y
L4212
Hypothesis H2 : SNo z
L4213
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4214
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4215
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4216
Hypothesis H6 : SNo (x + y)
L4217
Hypothesis H7 : SNo ((x + y) * z)
L4218
Hypothesis H9 : SNo w
L4219
Hypothesis H10 : u SNoL x
L4220
Hypothesis H11 : v SNoL z
L4221
Hypothesis H12 : (w + u * v)u * z + x * v
L4222
Hypothesis H13 : SNo u
L4223
Hypothesis H14 : u < x
L4224
Hypothesis H15 : SNo v
L4225
Hypothesis H16 : v < z
L4226
Hypothesis H17 : SNo (u * v)
L4227
Hypothesis H18 : SNo (u + y)
L4228
Hypothesis H19 : SNo (w + u * v)
L4229
Hypothesis H20 : SNo ((x + y) * v)
L4230
Hypothesis H21 : SNo (u * z)
L4231
Hypothesis H22 : SNo (x * v)
L4232
Hypothesis H23 : SNo (y * v)
L4233
Theorem. (Conj_mul_SNo_distrR__69__8)
SNo (w + y * z)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__69__8
Beginning of Section Conj_mul_SNo_distrR__70__19
L4239
Variable x : set
(*** Conj_mul_SNo_distrR__70__19 TMR8eFinNYkj2hZx9erM3aK81RvujHiRvCu bounty of about 25 bars ***)
L4240
Variable y : set
L4241
Variable z : set
L4242
Variable w : set
L4243
Variable u : set
L4244
Variable v : set
L4245
Hypothesis H0 : SNo x
L4246
Hypothesis H1 : SNo y
L4247
Hypothesis H2 : SNo z
L4248
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4249
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4250
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4251
Hypothesis H6 : SNo (x + y)
L4252
Hypothesis H7 : SNo ((x + y) * z)
L4253
Hypothesis H8 : SNo (y * z)
L4254
Hypothesis H9 : SNo w
L4255
Hypothesis H10 : u SNoL x
L4256
Hypothesis H11 : v SNoL z
L4257
Hypothesis H12 : (w + u * v)u * z + x * v
L4258
Hypothesis H13 : SNo u
L4259
Hypothesis H14 : u < x
L4260
Hypothesis H15 : SNo v
L4261
Hypothesis H16 : v < z
L4262
Hypothesis H17 : SNo (u * v)
L4263
Hypothesis H18 : SNo (u + y)
L4264
Hypothesis H20 : SNo ((x + y) * v)
L4265
Hypothesis H21 : SNo (u * z)
L4266
Hypothesis H22 : SNo (x * v)
L4267
Theorem. (Conj_mul_SNo_distrR__70__19)
SNo (y * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__70__19
Beginning of Section Conj_mul_SNo_distrR__70__20
L4273
Variable x : set
(*** Conj_mul_SNo_distrR__70__20 TMJpqoHR8tBDSavGk9sD6458zGvBEjWadCa bounty of about 25 bars ***)
L4274
Variable y : set
L4275
Variable z : set
L4276
Variable w : set
L4277
Variable u : set
L4278
Variable v : set
L4279
Hypothesis H0 : SNo x
L4280
Hypothesis H1 : SNo y
L4281
Hypothesis H2 : SNo z
L4282
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4283
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4284
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4285
Hypothesis H6 : SNo (x + y)
L4286
Hypothesis H7 : SNo ((x + y) * z)
L4287
Hypothesis H8 : SNo (y * z)
L4288
Hypothesis H9 : SNo w
L4289
Hypothesis H10 : u SNoL x
L4290
Hypothesis H11 : v SNoL z
L4291
Hypothesis H12 : (w + u * v)u * z + x * v
L4292
Hypothesis H13 : SNo u
L4293
Hypothesis H14 : u < x
L4294
Hypothesis H15 : SNo v
L4295
Hypothesis H16 : v < z
L4296
Hypothesis H17 : SNo (u * v)
L4297
Hypothesis H18 : SNo (u + y)
L4298
Hypothesis H19 : SNo (w + u * v)
L4299
Hypothesis H21 : SNo (u * z)
L4300
Hypothesis H22 : SNo (x * v)
L4301
Theorem. (Conj_mul_SNo_distrR__70__20)
SNo (y * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__70__20
Beginning of Section Conj_mul_SNo_distrR__71__13
L4307
Variable x : set
(*** Conj_mul_SNo_distrR__71__13 TMXnnCKVRhppcUsZGLjAjc6m3y19kqViVrG bounty of about 25 bars ***)
L4308
Variable y : set
L4309
Variable z : set
L4310
Variable w : set
L4311
Variable u : set
L4312
Variable v : set
L4313
Hypothesis H0 : SNo x
L4314
Hypothesis H1 : SNo y
L4315
Hypothesis H2 : SNo z
L4316
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4317
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4318
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4319
Hypothesis H6 : SNo (x + y)
L4320
Hypothesis H7 : SNo ((x + y) * z)
L4321
Hypothesis H8 : SNo (y * z)
L4322
Hypothesis H9 : SNo w
L4323
Hypothesis H10 : u SNoL x
L4324
Hypothesis H11 : v SNoL z
L4325
Hypothesis H12 : (w + u * v)u * z + x * v
L4326
Hypothesis H14 : u < x
L4327
Hypothesis H15 : SNo v
L4328
Hypothesis H16 : v < z
L4329
Hypothesis H17 : SNo (u * v)
L4330
Hypothesis H18 : SNo (u + y)
L4331
Hypothesis H19 : SNo (w + u * v)
L4332
Hypothesis H20 : SNo ((x + y) * v)
L4333
Hypothesis H21 : SNo (u * z)
L4334
Theorem. (Conj_mul_SNo_distrR__71__13)
SNo (x * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__71__13
Beginning of Section Conj_mul_SNo_distrR__73__19
L4340
Variable x : set
(*** Conj_mul_SNo_distrR__73__19 TMRCkYVw8S41KhsMLC4Wq8bHrBLU3rrK7Ht bounty of about 25 bars ***)
L4341
Variable y : set
L4342
Variable z : set
L4343
Variable w : set
L4344
Variable u : set
L4345
Variable v : set
L4346
Hypothesis H0 : SNo x
L4347
Hypothesis H1 : SNo y
L4348
Hypothesis H2 : SNo z
L4349
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4350
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4351
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4352
Hypothesis H6 : SNo (x + y)
L4353
Hypothesis H7 : SNo ((x + y) * z)
L4354
Hypothesis H8 : SNo (y * z)
L4355
Hypothesis H9 : SNo w
L4356
Hypothesis H10 : u SNoL x
L4357
Hypothesis H11 : v SNoL z
L4358
Hypothesis H12 : (w + u * v)u * z + x * v
L4359
Hypothesis H13 : SNo u
L4360
Hypothesis H14 : u < x
L4361
Hypothesis H15 : SNo v
L4362
Hypothesis H16 : v < z
L4363
Hypothesis H17 : SNo (u * v)
L4364
Hypothesis H18 : SNo (u + y)
L4365
Theorem. (Conj_mul_SNo_distrR__73__19)
SNo ((x + y) * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__73__19
Beginning of Section Conj_mul_SNo_distrR__74__5
L4371
Variable x : set
(*** Conj_mul_SNo_distrR__74__5 TMUPB9pzygmuQUd64T2mbg9We8K7Sx8S84r bounty of about 25 bars ***)
L4372
Variable y : set
L4373
Variable z : set
L4374
Variable w : set
L4375
Variable u : set
L4376
Variable v : set
L4377
Hypothesis H0 : SNo x
L4378
Hypothesis H1 : SNo y
L4379
Hypothesis H2 : SNo z
L4380
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4381
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4382
Hypothesis H6 : SNo (x + y)
L4383
Hypothesis H7 : SNo ((x + y) * z)
L4384
Hypothesis H8 : SNo (y * z)
L4385
Hypothesis H9 : SNo w
L4386
Hypothesis H10 : u SNoL x
L4387
Hypothesis H11 : v SNoL z
L4388
Hypothesis H12 : (w + u * v)u * z + x * v
L4389
Hypothesis H13 : SNo u
L4390
Hypothesis H14 : u < x
L4391
Hypothesis H15 : SNo v
L4392
Hypothesis H16 : v < z
L4393
Hypothesis H17 : SNo (u * v)
L4394
Hypothesis H18 : SNo (u + y)
L4395
Theorem. (Conj_mul_SNo_distrR__74__5)
SNo (w + u * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__74__5
Beginning of Section Conj_mul_SNo_distrR__75__5
L4401
Variable x : set
(*** Conj_mul_SNo_distrR__75__5 TMTkW6kKiGcqjymbaJ4m2zpKnt97V3XRjj5 bounty of about 25 bars ***)
L4402
Variable y : set
L4403
Variable z : set
L4404
Variable w : set
L4405
Variable u : set
L4406
Variable v : set
L4407
Hypothesis H0 : SNo x
L4408
Hypothesis H1 : SNo y
L4409
Hypothesis H2 : SNo z
L4410
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4411
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4412
Hypothesis H6 : SNo (x + y)
L4413
Hypothesis H7 : SNo ((x + y) * z)
L4414
Hypothesis H8 : SNo (y * z)
L4415
Hypothesis H9 : SNo w
L4416
Hypothesis H10 : u SNoL x
L4417
Hypothesis H11 : v SNoL z
L4418
Hypothesis H12 : (w + u * v)u * z + x * v
L4419
Hypothesis H13 : SNo u
L4420
Hypothesis H14 : u < x
L4421
Hypothesis H15 : SNo v
L4422
Hypothesis H16 : v < z
L4423
Hypothesis H17 : SNo (u * v)
L4424
Theorem. (Conj_mul_SNo_distrR__75__5)
SNo (u + y)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__75__5
Beginning of Section Conj_mul_SNo_distrR__76__12
L4430
Variable x : set
(*** Conj_mul_SNo_distrR__76__12 TMYAEiux2ftJmL7dYKfKyomf2jQH1YeQ5M9 bounty of about 25 bars ***)
L4431
Variable y : set
L4432
Variable z : set
L4433
Variable w : set
L4434
Variable u : set
L4435
Variable v : set
L4436
Hypothesis H0 : SNo x
L4437
Hypothesis H1 : SNo y
L4438
Hypothesis H2 : SNo z
L4439
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4440
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
L4441
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4442
Hypothesis H6 : SNo (x + y)
L4443
Hypothesis H7 : SNo ((x + y) * z)
L4444
Hypothesis H8 : SNo (y * z)
L4445
Hypothesis H9 : SNo w
L4446
Hypothesis H10 : u SNoL x
L4447
Hypothesis H11 : v SNoL z
L4448
Hypothesis H13 : SNo u
L4449
Hypothesis H14 : u < x
L4450
Hypothesis H15 : SNo v
L4451
Hypothesis H16 : v < z
L4452
Theorem. (Conj_mul_SNo_distrR__76__12)
SNo (u * v)(w + y * z) < (x + y) * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__76__12
Beginning of Section Conj_mul_SNo_distrR__77__2
L4458
Variable x : set
(*** Conj_mul_SNo_distrR__77__2 TMdugbRqF1AudSCUMjJidHjDUPf77W8phGT bounty of about 25 bars ***)
L4459
Variable y : set
L4460
Variable z : set
L4461
Variable w : set
L4462
Variable u : set
L4463
Variable v : set
L4464
Hypothesis H0 : SNo x
L4465
Hypothesis H1 : SNo y
L4466
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L4467
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L4468
Hypothesis H5 : SNo (x * z)
L4469
Hypothesis H6 : SNo (y * z)
L4470
Hypothesis H7 : u SNoL z
L4471
Hypothesis H8 : SNo w
L4472
Hypothesis H9 : SNo u
L4473
Hypothesis H10 : u < z
L4474
Hypothesis H11 : SNo (x * u)
L4475
Hypothesis H12 : SNo (y * u)
L4476
Hypothesis H13 : SNo (w * z)
L4477
Hypothesis H14 : SNo (w * u)
L4478
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4479
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4480
Hypothesis H17 : v SNoR y
L4481
Hypothesis H18 : (x + v)w
L4482
Hypothesis H19 : SNo v
L4483
Hypothesis H20 : y < v
L4484
Hypothesis H21 : SNo (v * u)
L4485
Hypothesis H22 : SNo (v * z)
L4486
Theorem. (Conj_mul_SNo_distrR__77__2)
SNo (x + v)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__77__2
Beginning of Section Conj_mul_SNo_distrR__77__13
L4492
Variable x : set
(*** Conj_mul_SNo_distrR__77__13 TMWkauJuAqaYcbJRnnZxFpaneBQ73EunD8T bounty of about 25 bars ***)
L4493
Variable y : set
L4494
Variable z : set
L4495
Variable w : set
L4496
Variable u : set
L4497
Variable v : set
L4498
Hypothesis H0 : SNo x
L4499
Hypothesis H1 : SNo y
L4500
Hypothesis H2 : SNo z
L4501
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L4502
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L4503
Hypothesis H5 : SNo (x * z)
L4504
Hypothesis H6 : SNo (y * z)
L4505
Hypothesis H7 : u SNoL z
L4506
Hypothesis H8 : SNo w
L4507
Hypothesis H9 : SNo u
L4508
Hypothesis H10 : u < z
L4509
Hypothesis H11 : SNo (x * u)
L4510
Hypothesis H12 : SNo (y * u)
L4511
Hypothesis H14 : SNo (w * u)
L4512
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4513
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4514
Hypothesis H17 : v SNoR y
L4515
Hypothesis H18 : (x + v)w
L4516
Hypothesis H19 : SNo v
L4517
Hypothesis H20 : y < v
L4518
Hypothesis H21 : SNo (v * u)
L4519
Hypothesis H22 : SNo (v * z)
L4520
Theorem. (Conj_mul_SNo_distrR__77__13)
SNo (x + v)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__77__13
Beginning of Section Conj_mul_SNo_distrR__78__18
L4526
Variable x : set
(*** Conj_mul_SNo_distrR__78__18 TMVLi79f5ooai9sgjMPsN3EdCczK5LExmT7 bounty of about 25 bars ***)
L4527
Variable y : set
L4528
Variable z : set
L4529
Variable w : set
L4530
Variable u : set
L4531
Variable v : set
L4532
Hypothesis H0 : SNo x
L4533
Hypothesis H1 : SNo y
L4534
Hypothesis H2 : SNo z
L4535
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L4536
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L4537
Hypothesis H5 : SNo (x * z)
L4538
Hypothesis H6 : SNo (y * z)
L4539
Hypothesis H7 : u SNoL z
L4540
Hypothesis H8 : SNo w
L4541
Hypothesis H9 : SNo u
L4542
Hypothesis H10 : u < z
L4543
Hypothesis H11 : SNo (x * u)
L4544
Hypothesis H12 : SNo (y * u)
L4545
Hypothesis H13 : SNo (w * z)
L4546
Hypothesis H14 : SNo (w * u)
L4547
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4548
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4549
Hypothesis H17 : v SNoR y
L4550
Hypothesis H19 : SNo v
L4551
Hypothesis H20 : y < v
L4552
Hypothesis H21 : SNo (v * u)
L4553
Theorem. (Conj_mul_SNo_distrR__78__18)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__78__18
Beginning of Section Conj_mul_SNo_distrR__80__0
L4559
Variable x : set
(*** Conj_mul_SNo_distrR__80__0 TMR57Nz5WAEUXE817U3ugbZ9v8kRLbVgnEH bounty of about 25 bars ***)
L4560
Variable y : set
L4561
Variable z : set
L4562
Variable w : set
L4563
Variable u : set
L4564
Variable v : set
L4565
Hypothesis H1 : SNo y
L4566
Hypothesis H2 : SNo z
L4567
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4568
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4569
Hypothesis H5 : SNo (x * z)
L4570
Hypothesis H6 : SNo (y * z)
L4571
Hypothesis H7 : u SNoL z
L4572
Hypothesis H8 : SNo w
L4573
Hypothesis H9 : SNo u
L4574
Hypothesis H10 : u < z
L4575
Hypothesis H11 : SNo (x * u)
L4576
Hypothesis H12 : SNo (y * u)
L4577
Hypothesis H13 : SNo (w * z)
L4578
Hypothesis H14 : SNo (w * u)
L4579
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4580
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4581
Hypothesis H17 : v SNoR x
L4582
Hypothesis H18 : (v + y)w
L4583
Hypothesis H19 : SNo v
L4584
Hypothesis H20 : x < v
L4585
Hypothesis H21 : SNo (v * u)
L4586
Hypothesis H22 : SNo (v * z)
L4587
Theorem. (Conj_mul_SNo_distrR__80__0)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__80__0
Beginning of Section Conj_mul_SNo_distrR__80__7
L4593
Variable x : set
(*** Conj_mul_SNo_distrR__80__7 TMT8JVYbXfJ92euamdyePXNdrjYuu9gqm4z bounty of about 25 bars ***)
L4594
Variable y : set
L4595
Variable z : set
L4596
Variable w : set
L4597
Variable u : set
L4598
Variable v : set
L4599
Hypothesis H0 : SNo x
L4600
Hypothesis H1 : SNo y
L4601
Hypothesis H2 : SNo z
L4602
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4603
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4604
Hypothesis H5 : SNo (x * z)
L4605
Hypothesis H6 : SNo (y * z)
L4606
Hypothesis H8 : SNo w
L4607
Hypothesis H9 : SNo u
L4608
Hypothesis H10 : u < z
L4609
Hypothesis H11 : SNo (x * u)
L4610
Hypothesis H12 : SNo (y * u)
L4611
Hypothesis H13 : SNo (w * z)
L4612
Hypothesis H14 : SNo (w * u)
L4613
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4614
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4615
Hypothesis H17 : v SNoR x
L4616
Hypothesis H18 : (v + y)w
L4617
Hypothesis H19 : SNo v
L4618
Hypothesis H20 : x < v
L4619
Hypothesis H21 : SNo (v * u)
L4620
Hypothesis H22 : SNo (v * z)
L4621
Theorem. (Conj_mul_SNo_distrR__80__7)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__80__7
Beginning of Section Conj_mul_SNo_distrR__80__13
L4627
Variable x : set
(*** Conj_mul_SNo_distrR__80__13 TMJ7u36B2TPRL7SyeEphjUU4sA5AmYomqG1 bounty of about 25 bars ***)
L4628
Variable y : set
L4629
Variable z : set
L4630
Variable w : set
L4631
Variable u : set
L4632
Variable v : set
L4633
Hypothesis H0 : SNo x
L4634
Hypothesis H1 : SNo y
L4635
Hypothesis H2 : SNo z
L4636
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4637
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4638
Hypothesis H5 : SNo (x * z)
L4639
Hypothesis H6 : SNo (y * z)
L4640
Hypothesis H7 : u SNoL z
L4641
Hypothesis H8 : SNo w
L4642
Hypothesis H9 : SNo u
L4643
Hypothesis H10 : u < z
L4644
Hypothesis H11 : SNo (x * u)
L4645
Hypothesis H12 : SNo (y * u)
L4646
Hypothesis H14 : SNo (w * u)
L4647
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4648
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4649
Hypothesis H17 : v SNoR x
L4650
Hypothesis H18 : (v + y)w
L4651
Hypothesis H19 : SNo v
L4652
Hypothesis H20 : x < v
L4653
Hypothesis H21 : SNo (v * u)
L4654
Hypothesis H22 : SNo (v * z)
L4655
Theorem. (Conj_mul_SNo_distrR__80__13)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__80__13
Beginning of Section Conj_mul_SNo_distrR__80__16
L4661
Variable x : set
(*** Conj_mul_SNo_distrR__80__16 TMGgbV6t1hxLQCKqyRuWqRAx58k3ngxZifK bounty of about 25 bars ***)
L4662
Variable y : set
L4663
Variable z : set
L4664
Variable w : set
L4665
Variable u : set
L4666
Variable v : set
L4667
Hypothesis H0 : SNo x
L4668
Hypothesis H1 : SNo y
L4669
Hypothesis H2 : SNo z
L4670
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4671
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4672
Hypothesis H5 : SNo (x * z)
L4673
Hypothesis H6 : SNo (y * z)
L4674
Hypothesis H7 : u SNoL z
L4675
Hypothesis H8 : SNo w
L4676
Hypothesis H9 : SNo u
L4677
Hypothesis H10 : u < z
L4678
Hypothesis H11 : SNo (x * u)
L4679
Hypothesis H12 : SNo (y * u)
L4680
Hypothesis H13 : SNo (w * z)
L4681
Hypothesis H14 : SNo (w * u)
L4682
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4683
Hypothesis H17 : v SNoR x
L4684
Hypothesis H18 : (v + y)w
L4685
Hypothesis H19 : SNo v
L4686
Hypothesis H20 : x < v
L4687
Hypothesis H21 : SNo (v * u)
L4688
Hypothesis H22 : SNo (v * z)
L4689
Theorem. (Conj_mul_SNo_distrR__80__16)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__80__16
Beginning of Section Conj_mul_SNo_distrR__81__7
L4695
Variable x : set
(*** Conj_mul_SNo_distrR__81__7 TMY3Cs5bDWCjKrHiSaH5ii4RqFKFQ2VyHvh bounty of about 25 bars ***)
L4696
Variable y : set
L4697
Variable z : set
L4698
Variable w : set
L4699
Variable u : set
L4700
Variable v : set
L4701
Hypothesis H0 : SNo x
L4702
Hypothesis H1 : SNo y
L4703
Hypothesis H2 : SNo z
L4704
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4705
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4706
Hypothesis H5 : SNo (x * z)
L4707
Hypothesis H6 : SNo (y * z)
L4708
Hypothesis H8 : SNo w
L4709
Hypothesis H9 : SNo u
L4710
Hypothesis H10 : u < z
L4711
Hypothesis H11 : SNo (x * u)
L4712
Hypothesis H12 : SNo (y * u)
L4713
Hypothesis H13 : SNo (w * z)
L4714
Hypothesis H14 : SNo (w * u)
L4715
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4716
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4717
Hypothesis H17 : v SNoR x
L4718
Hypothesis H18 : (v + y)w
L4719
Hypothesis H19 : SNo v
L4720
Hypothesis H20 : x < v
L4721
Hypothesis H21 : SNo (v * u)
L4722
Theorem. (Conj_mul_SNo_distrR__81__7)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__81__7
Beginning of Section Conj_mul_SNo_distrR__81__9
L4728
Variable x : set
(*** Conj_mul_SNo_distrR__81__9 TMNaP1cQ9ixnsnbZvwm1g5yFAY7SaNddXc5 bounty of about 25 bars ***)
L4729
Variable y : set
L4730
Variable z : set
L4731
Variable w : set
L4732
Variable u : set
L4733
Variable v : set
L4734
Hypothesis H0 : SNo x
L4735
Hypothesis H1 : SNo y
L4736
Hypothesis H2 : SNo z
L4737
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4738
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4739
Hypothesis H5 : SNo (x * z)
L4740
Hypothesis H6 : SNo (y * z)
L4741
Hypothesis H7 : u SNoL z
L4742
Hypothesis H8 : SNo w
L4743
Hypothesis H10 : u < z
L4744
Hypothesis H11 : SNo (x * u)
L4745
Hypothesis H12 : SNo (y * u)
L4746
Hypothesis H13 : SNo (w * z)
L4747
Hypothesis H14 : SNo (w * u)
L4748
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4749
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4750
Hypothesis H17 : v SNoR x
L4751
Hypothesis H18 : (v + y)w
L4752
Hypothesis H19 : SNo v
L4753
Hypothesis H20 : x < v
L4754
Hypothesis H21 : SNo (v * u)
L4755
Theorem. (Conj_mul_SNo_distrR__81__9)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__81__9
Beginning of Section Conj_mul_SNo_distrR__81__10
L4761
Variable x : set
(*** Conj_mul_SNo_distrR__81__10 TMShdL6GozWZ1axGsoLsssjmXpiE7nbxhnQ bounty of about 25 bars ***)
L4762
Variable y : set
L4763
Variable z : set
L4764
Variable w : set
L4765
Variable u : set
L4766
Variable v : set
L4767
Hypothesis H0 : SNo x
L4768
Hypothesis H1 : SNo y
L4769
Hypothesis H2 : SNo z
L4770
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4771
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4772
Hypothesis H5 : SNo (x * z)
L4773
Hypothesis H6 : SNo (y * z)
L4774
Hypothesis H7 : u SNoL z
L4775
Hypothesis H8 : SNo w
L4776
Hypothesis H9 : SNo u
L4777
Hypothesis H11 : SNo (x * u)
L4778
Hypothesis H12 : SNo (y * u)
L4779
Hypothesis H13 : SNo (w * z)
L4780
Hypothesis H14 : SNo (w * u)
L4781
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4782
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4783
Hypothesis H17 : v SNoR x
L4784
Hypothesis H18 : (v + y)w
L4785
Hypothesis H19 : SNo v
L4786
Hypothesis H20 : x < v
L4787
Hypothesis H21 : SNo (v * u)
L4788
Theorem. (Conj_mul_SNo_distrR__81__10)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__81__10
Beginning of Section Conj_mul_SNo_distrR__81__19
L4794
Variable x : set
(*** Conj_mul_SNo_distrR__81__19 TMJh7xa5c7G9F29UBVvcWDGrnT43zspkkHL bounty of about 25 bars ***)
L4795
Variable y : set
L4796
Variable z : set
L4797
Variable w : set
L4798
Variable u : set
L4799
Variable v : set
L4800
Hypothesis H0 : SNo x
L4801
Hypothesis H1 : SNo y
L4802
Hypothesis H2 : SNo z
L4803
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4804
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4805
Hypothesis H5 : SNo (x * z)
L4806
Hypothesis H6 : SNo (y * z)
L4807
Hypothesis H7 : u SNoL z
L4808
Hypothesis H8 : SNo w
L4809
Hypothesis H9 : SNo u
L4810
Hypothesis H10 : u < z
L4811
Hypothesis H11 : SNo (x * u)
L4812
Hypothesis H12 : SNo (y * u)
L4813
Hypothesis H13 : SNo (w * z)
L4814
Hypothesis H14 : SNo (w * u)
L4815
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4816
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4817
Hypothesis H17 : v SNoR x
L4818
Hypothesis H18 : (v + y)w
L4819
Hypothesis H20 : x < v
L4820
Hypothesis H21 : SNo (v * u)
L4821
Theorem. (Conj_mul_SNo_distrR__81__19)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__81__19
Beginning of Section Conj_mul_SNo_distrR__82__13
L4827
Variable x : set
(*** Conj_mul_SNo_distrR__82__13 TMbmp3VPbw8DP8kVyEkDGEWq37HxkvmKF7v bounty of about 25 bars ***)
L4828
Variable y : set
L4829
Variable z : set
L4830
Variable w : set
L4831
Variable u : set
L4832
Variable v : set
L4833
Hypothesis H0 : SNo x
L4834
Hypothesis H1 : SNo y
L4835
Hypothesis H2 : SNo z
L4836
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L4837
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L4838
Hypothesis H5 : SNo (x * z)
L4839
Hypothesis H6 : SNo (y * z)
L4840
Hypothesis H7 : u SNoL z
L4841
Hypothesis H8 : SNo w
L4842
Hypothesis H9 : SNo u
L4843
Hypothesis H10 : u < z
L4844
Hypothesis H11 : SNo (x * u)
L4845
Hypothesis H12 : SNo (y * u)
L4846
Hypothesis H14 : SNo (w * u)
L4847
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4848
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4849
Hypothesis H17 : v SNoR x
L4850
Hypothesis H18 : (v + y)w
L4851
Hypothesis H19 : SNo v
L4852
Hypothesis H20 : x < v
L4853
Theorem. (Conj_mul_SNo_distrR__82__13)
SNo (v * u)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__82__13
Beginning of Section Conj_mul_SNo_distrR__83__8
L4859
Variable x : set
(*** Conj_mul_SNo_distrR__83__8 TMGvJMkcjaxY8pSmEjav1UrPSUHkPV9CHrp bounty of about 25 bars ***)
L4860
Variable y : set
L4861
Variable z : set
L4862
Variable w : set
L4863
Variable u : set
L4864
Hypothesis H0 : SNo x
L4865
Hypothesis H1 : SNo y
L4866
Hypothesis H2 : SNo z
L4867
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L4868
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L4869
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L4870
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L4871
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L4872
Hypothesis H9 : SNo (y * z)
L4873
Hypothesis H10 : SNo (x * z + y * z)
L4874
Hypothesis H11 : w SNoR (x + y)
L4875
Hypothesis H12 : u SNoL z
L4876
Hypothesis H13 : SNo w
L4877
Hypothesis H14 : SNo u
L4878
Hypothesis H15 : u < z
L4879
Hypothesis H16 : SNo (x * u)
L4880
Hypothesis H17 : SNo (y * u)
L4881
Hypothesis H18 : SNo (w * z)
L4882
Hypothesis H19 : SNo ((x + y) * u)
L4883
Hypothesis H20 : SNo (w * u)
L4884
Hypothesis H21 : SNo (w * z + x * u + y * u)
L4885
Theorem. (Conj_mul_SNo_distrR__83__8)
SNo (x * z + y * z + w * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__83__8
Beginning of Section Conj_mul_SNo_distrR__85__18
L4891
Variable x : set
(*** Conj_mul_SNo_distrR__85__18 TMPU9rb2gCEPYzveAHTBZntzdbVWWGxPREr bounty of about 25 bars ***)
L4892
Variable y : set
L4893
Variable z : set
L4894
Variable w : set
L4895
Variable u : set
L4896
Hypothesis H0 : SNo x
L4897
Hypothesis H1 : SNo y
L4898
Hypothesis H2 : SNo z
L4899
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L4900
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L4901
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L4902
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L4903
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L4904
Hypothesis H8 : SNo (x * z)
L4905
Hypothesis H9 : SNo (y * z)
L4906
Hypothesis H10 : SNo (x * z + y * z)
L4907
Hypothesis H11 : w SNoR (x + y)
L4908
Hypothesis H12 : u SNoL z
L4909
Hypothesis H13 : SNo w
L4910
Hypothesis H14 : SNo u
L4911
Hypothesis H15 : u < z
L4912
Hypothesis H16 : SNo (x * u)
L4913
Hypothesis H17 : SNo (y * u)
L4914
Hypothesis H19 : SNo ((x + y) * u)
L4915
Theorem. (Conj_mul_SNo_distrR__85__18)
SNo (w * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__85__18
Beginning of Section Conj_mul_SNo_distrR__90__15
L4921
Variable x : set
(*** Conj_mul_SNo_distrR__90__15 TMVZSi6EwpMF7T395XzsM67rQ2ufThh2r4E bounty of about 25 bars ***)
L4922
Variable y : set
L4923
Variable z : set
L4924
Variable w : set
L4925
Variable u : set
L4926
Hypothesis H0 : SNo x
L4927
Hypothesis H1 : SNo y
L4928
Hypothesis H2 : SNo z
L4929
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L4930
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L4931
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L4932
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L4933
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L4934
Hypothesis H8 : SNo (x + y)
L4935
Hypothesis H9 : SNo (x * z)
L4936
Hypothesis H10 : SNo (y * z)
L4937
Hypothesis H11 : SNo (x * z + y * z)
L4938
Hypothesis H12 : w SNoR (x + y)
L4939
Hypothesis H13 : u SNoL z
L4940
Hypothesis H14 : SNo w
L4941
Hypothesis H16 : u < z
L4942
Theorem. (Conj_mul_SNo_distrR__90__15)
SNo (x * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__90__15
Beginning of Section Conj_mul_SNo_distrR__92__5
L4948
Variable x : set
(*** Conj_mul_SNo_distrR__92__5 TMZJ3ghx23sYEWD8VhXCqKwaY6PXbhLzC4N bounty of about 25 bars ***)
L4949
Variable y : set
L4950
Variable z : set
L4951
Variable w : set
L4952
Variable u : set
L4953
Variable v : set
L4954
Hypothesis H0 : SNo x
L4955
Hypothesis H1 : SNo y
L4956
Hypothesis H2 : SNo z
L4957
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L4958
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L4959
Hypothesis H6 : SNo (y * z)
L4960
Hypothesis H7 : u SNoR z
L4961
Hypothesis H8 : SNo w
L4962
Hypothesis H9 : SNo u
L4963
Hypothesis H10 : z < u
L4964
Hypothesis H11 : SNo (x * u)
L4965
Hypothesis H12 : SNo (y * u)
L4966
Hypothesis H13 : SNo (w * z)
L4967
Hypothesis H14 : SNo (w * u)
L4968
Hypothesis H15 : SNo (w * z + x * u + y * u)
L4969
Hypothesis H16 : SNo (x * z + y * z + w * u)
L4970
Hypothesis H17 : v SNoL y
L4971
Hypothesis H18 : wx + v
L4972
Hypothesis H19 : SNo v
L4973
Hypothesis H20 : v < y
L4974
Hypothesis H21 : SNo (v * u)
L4975
Theorem. (Conj_mul_SNo_distrR__92__5)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__92__5
Beginning of Section Conj_mul_SNo_distrR__92__16
L4981
Variable x : set
(*** Conj_mul_SNo_distrR__92__16 TMYd1RPzXPRBXSo7U5KAEoDNf1UdDXteTnq bounty of about 25 bars ***)
L4982
Variable y : set
L4983
Variable z : set
L4984
Variable w : set
L4985
Variable u : set
L4986
Variable v : set
L4987
Hypothesis H0 : SNo x
L4988
Hypothesis H1 : SNo y
L4989
Hypothesis H2 : SNo z
L4990
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L4991
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L4992
Hypothesis H5 : SNo (x * z)
L4993
Hypothesis H6 : SNo (y * z)
L4994
Hypothesis H7 : u SNoR z
L4995
Hypothesis H8 : SNo w
L4996
Hypothesis H9 : SNo u
L4997
Hypothesis H10 : z < u
L4998
Hypothesis H11 : SNo (x * u)
L4999
Hypothesis H12 : SNo (y * u)
L5000
Hypothesis H13 : SNo (w * z)
L5001
Hypothesis H14 : SNo (w * u)
L5002
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5003
Hypothesis H17 : v SNoL y
L5004
Hypothesis H18 : wx + v
L5005
Hypothesis H19 : SNo v
L5006
Hypothesis H20 : v < y
L5007
Hypothesis H21 : SNo (v * u)
L5008
Theorem. (Conj_mul_SNo_distrR__92__16)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__92__16
Beginning of Section Conj_mul_SNo_distrR__93__0
L5014
Variable x : set
(*** Conj_mul_SNo_distrR__93__0 TMV3sKQA4Sh62SQtRQFqUh2RYFXKpksXJdv bounty of about 25 bars ***)
L5015
Variable y : set
L5016
Variable z : set
L5017
Variable w : set
L5018
Variable u : set
L5019
Variable v : set
L5020
Hypothesis H1 : SNo y
L5021
Hypothesis H2 : SNo z
L5022
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L5023
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L5024
Hypothesis H5 : SNo (x * z)
L5025
Hypothesis H6 : SNo (y * z)
L5026
Hypothesis H7 : u SNoR z
L5027
Hypothesis H8 : SNo w
L5028
Hypothesis H9 : SNo u
L5029
Hypothesis H10 : z < u
L5030
Hypothesis H11 : SNo (x * u)
L5031
Hypothesis H12 : SNo (y * u)
L5032
Hypothesis H13 : SNo (w * z)
L5033
Hypothesis H14 : SNo (w * u)
L5034
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5035
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5036
Hypothesis H17 : v SNoL y
L5037
Hypothesis H18 : wx + v
L5038
Hypothesis H19 : SNo v
L5039
Hypothesis H20 : v < y
L5040
Theorem. (Conj_mul_SNo_distrR__93__0)
SNo (v * u)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__93__0
Beginning of Section Conj_mul_SNo_distrR__94__0
L5046
Variable x : set
(*** Conj_mul_SNo_distrR__94__0 TMW5J1p6ri2h3XpxHqA7qdGhqoN4rd1Wmyx bounty of about 25 bars ***)
L5047
Variable y : set
L5048
Variable z : set
L5049
Variable w : set
L5050
Variable u : set
L5051
Variable v : set
L5052
Hypothesis H1 : SNo y
L5053
Hypothesis H2 : SNo z
L5054
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5055
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5056
Hypothesis H5 : SNo (x * z)
L5057
Hypothesis H6 : SNo (y * z)
L5058
Hypothesis H7 : u SNoR z
L5059
Hypothesis H8 : SNo w
L5060
Hypothesis H9 : SNo u
L5061
Hypothesis H10 : z < u
L5062
Hypothesis H11 : SNo (x * u)
L5063
Hypothesis H12 : SNo (y * u)
L5064
Hypothesis H13 : SNo (w * z)
L5065
Hypothesis H14 : SNo (w * u)
L5066
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5067
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5068
Hypothesis H17 : v SNoL x
L5069
Hypothesis H18 : wv + y
L5070
Hypothesis H19 : SNo v
L5071
Hypothesis H20 : v < x
L5072
Hypothesis H21 : SNo (v * u)
L5073
Hypothesis H22 : SNo (v * z)
L5074
Theorem. (Conj_mul_SNo_distrR__94__0)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__94__0
Beginning of Section Conj_mul_SNo_distrR__94__22
L5080
Variable x : set
(*** Conj_mul_SNo_distrR__94__22 TMGVpJbjSZw11rfp9Q8v3zkAbYkVECD3HjL bounty of about 25 bars ***)
L5081
Variable y : set
L5082
Variable z : set
L5083
Variable w : set
L5084
Variable u : set
L5085
Variable v : set
L5086
Hypothesis H0 : SNo x
L5087
Hypothesis H1 : SNo y
L5088
Hypothesis H2 : SNo z
L5089
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5090
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5091
Hypothesis H5 : SNo (x * z)
L5092
Hypothesis H6 : SNo (y * z)
L5093
Hypothesis H7 : u SNoR z
L5094
Hypothesis H8 : SNo w
L5095
Hypothesis H9 : SNo u
L5096
Hypothesis H10 : z < u
L5097
Hypothesis H11 : SNo (x * u)
L5098
Hypothesis H12 : SNo (y * u)
L5099
Hypothesis H13 : SNo (w * z)
L5100
Hypothesis H14 : SNo (w * u)
L5101
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5102
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5103
Hypothesis H17 : v SNoL x
L5104
Hypothesis H18 : wv + y
L5105
Hypothesis H19 : SNo v
L5106
Hypothesis H20 : v < x
L5107
Hypothesis H21 : SNo (v * u)
L5108
Theorem. (Conj_mul_SNo_distrR__94__22)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__94__22
Beginning of Section Conj_mul_SNo_distrR__95__12
L5114
Variable x : set
(*** Conj_mul_SNo_distrR__95__12 TMTjcbr4qgJB2j2bzwH3jJDPw7HLTc5kjzi bounty of about 25 bars ***)
L5115
Variable y : set
L5116
Variable z : set
L5117
Variable w : set
L5118
Variable u : set
L5119
Variable v : set
L5120
Hypothesis H0 : SNo x
L5121
Hypothesis H1 : SNo y
L5122
Hypothesis H2 : SNo z
L5123
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5124
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5125
Hypothesis H5 : SNo (x * z)
L5126
Hypothesis H6 : SNo (y * z)
L5127
Hypothesis H7 : u SNoR z
L5128
Hypothesis H8 : SNo w
L5129
Hypothesis H9 : SNo u
L5130
Hypothesis H10 : z < u
L5131
Hypothesis H11 : SNo (x * u)
L5132
Hypothesis H13 : SNo (w * z)
L5133
Hypothesis H14 : SNo (w * u)
L5134
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5135
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5136
Hypothesis H17 : v SNoL x
L5137
Hypothesis H18 : wv + y
L5138
Hypothesis H19 : SNo v
L5139
Hypothesis H20 : v < x
L5140
Hypothesis H21 : SNo (v * u)
L5141
Theorem. (Conj_mul_SNo_distrR__95__12)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__95__12
Beginning of Section Conj_mul_SNo_distrR__97__18
L5147
Variable x : set
(*** Conj_mul_SNo_distrR__97__18 TMYJy1GcCAhUHPjV5HDcGoCAwdrxkaMjvcm bounty of about 25 bars ***)
L5148
Variable y : set
L5149
Variable z : set
L5150
Variable w : set
L5151
Variable u : set
L5152
Hypothesis H0 : SNo x
L5153
Hypothesis H1 : SNo y
L5154
Hypothesis H2 : SNo z
L5155
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5156
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5157
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5158
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5159
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5160
Hypothesis H8 : SNo (x * z)
L5161
Hypothesis H9 : SNo (y * z)
L5162
Hypothesis H10 : SNo (x * z + y * z)
L5163
Hypothesis H11 : w SNoL (x + y)
L5164
Hypothesis H12 : u SNoR z
L5165
Hypothesis H13 : SNo w
L5166
Hypothesis H14 : SNo u
L5167
Hypothesis H15 : z < u
L5168
Hypothesis H16 : SNo (x * u)
L5169
Hypothesis H17 : SNo (y * u)
L5170
Hypothesis H19 : SNo ((x + y) * u)
L5171
Hypothesis H20 : SNo (w * u)
L5172
Hypothesis H21 : SNo (w * z + x * u + y * u)
L5173
Theorem. (Conj_mul_SNo_distrR__97__18)
SNo (x * z + y * z + w * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__97__18
Beginning of Section Conj_mul_SNo_distrR__98__10
L5179
Variable x : set
(*** Conj_mul_SNo_distrR__98__10 TMT8cWBkCkTEcypsJn99yRjGXYLVgeCN3Cn bounty of about 25 bars ***)
L5180
Variable y : set
L5181
Variable z : set
L5182
Variable w : set
L5183
Variable u : set
L5184
Hypothesis H0 : SNo x
L5185
Hypothesis H1 : SNo y
L5186
Hypothesis H2 : SNo z
L5187
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5188
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5189
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5190
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5191
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5192
Hypothesis H8 : SNo (x * z)
L5193
Hypothesis H9 : SNo (y * z)
L5194
Hypothesis H11 : w SNoL (x + y)
L5195
Hypothesis H12 : u SNoR z
L5196
Hypothesis H13 : SNo w
L5197
Hypothesis H14 : SNo u
L5198
Hypothesis H15 : z < u
L5199
Hypothesis H16 : SNo (x * u)
L5200
Hypothesis H17 : SNo (y * u)
L5201
Hypothesis H18 : SNo (w * z)
L5202
Hypothesis H19 : SNo ((x + y) * u)
L5203
Hypothesis H20 : SNo (w * u)
L5204
Theorem. (Conj_mul_SNo_distrR__98__10)
SNo (w * z + x * u + y * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__98__10
Beginning of Section Conj_mul_SNo_distrR__100__6
L5210
Variable x : set
(*** Conj_mul_SNo_distrR__100__6 TMYakRNoEJbjsTqCp4RqMrptQvBkJwwJpf1 bounty of about 25 bars ***)
L5211
Variable y : set
L5212
Variable z : set
L5213
Variable w : set
L5214
Variable u : set
L5215
Hypothesis H0 : SNo x
L5216
Hypothesis H1 : SNo y
L5217
Hypothesis H2 : SNo z
L5218
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5219
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5220
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5221
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5222
Hypothesis H8 : SNo (x * z)
L5223
Hypothesis H9 : SNo (y * z)
L5224
Hypothesis H10 : SNo (x * z + y * z)
L5225
Hypothesis H11 : w SNoL (x + y)
L5226
Hypothesis H12 : u SNoR z
L5227
Hypothesis H13 : SNo w
L5228
Hypothesis H14 : SNo u
L5229
Hypothesis H15 : z < u
L5230
Hypothesis H16 : SNo (x * u)
L5231
Hypothesis H17 : SNo (y * u)
L5232
Hypothesis H18 : SNo (w * z)
L5233
Hypothesis H19 : SNo ((x + y) * u)
L5234
Theorem. (Conj_mul_SNo_distrR__100__6)
SNo (x * u + y * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__100__6
Beginning of Section Conj_mul_SNo_distrR__100__13
L5240
Variable x : set
(*** Conj_mul_SNo_distrR__100__13 TMaqP72VD68s2zKHcaCDzWNCPhxoeC5Ukct bounty of about 25 bars ***)
L5241
Variable y : set
L5242
Variable z : set
L5243
Variable w : set
L5244
Variable u : set
L5245
Hypothesis H0 : SNo x
L5246
Hypothesis H1 : SNo y
L5247
Hypothesis H2 : SNo z
L5248
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5249
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5250
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5251
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5252
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5253
Hypothesis H8 : SNo (x * z)
L5254
Hypothesis H9 : SNo (y * z)
L5255
Hypothesis H10 : SNo (x * z + y * z)
L5256
Hypothesis H11 : w SNoL (x + y)
L5257
Hypothesis H12 : u SNoR z
L5258
Hypothesis H14 : SNo u
L5259
Hypothesis H15 : z < u
L5260
Hypothesis H16 : SNo (x * u)
L5261
Hypothesis H17 : SNo (y * u)
L5262
Hypothesis H18 : SNo (w * z)
L5263
Hypothesis H19 : SNo ((x + y) * u)
L5264
Theorem. (Conj_mul_SNo_distrR__100__13)
SNo (x * u + y * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__100__13
Beginning of Section Conj_mul_SNo_distrR__101__14
L5270
Variable x : set
(*** Conj_mul_SNo_distrR__101__14 TMH8JteUWPM6shMFTW2Db98abzc3HtqCKnr bounty of about 25 bars ***)
L5271
Variable y : set
L5272
Variable z : set
L5273
Variable w : set
L5274
Variable u : set
L5275
Hypothesis H0 : SNo x
L5276
Hypothesis H1 : SNo y
L5277
Hypothesis H2 : SNo z
L5278
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5279
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5280
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5281
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5282
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5283
Hypothesis H8 : SNo (x + y)
L5284
Hypothesis H9 : SNo (x * z)
L5285
Hypothesis H10 : SNo (y * z)
L5286
Hypothesis H11 : SNo (x * z + y * z)
L5287
Hypothesis H12 : w SNoL (x + y)
L5288
Hypothesis H13 : u SNoR z
L5289
Hypothesis H15 : SNo u
L5290
Hypothesis H16 : z < u
L5291
Hypothesis H17 : SNo (x * u)
L5292
Hypothesis H18 : SNo (y * u)
L5293
Hypothesis H19 : SNo (w * z)
L5294
Theorem. (Conj_mul_SNo_distrR__101__14)
SNo ((x + y) * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__101__14
Beginning of Section Conj_mul_SNo_distrR__104__2
L5300
Variable x : set
(*** Conj_mul_SNo_distrR__104__2 TMRrzkzxBWvj9eKcFmJAryE4BHsoL9JWxZ3 bounty of about 25 bars ***)
L5301
Variable y : set
L5302
Variable z : set
L5303
Variable w : set
L5304
Variable u : set
L5305
Hypothesis H0 : SNo x
L5306
Hypothesis H1 : SNo y
L5307
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5308
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5309
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5310
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5311
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5312
Hypothesis H8 : SNo (x + y)
L5313
Hypothesis H9 : SNo (x * z)
L5314
Hypothesis H10 : SNo (y * z)
L5315
Hypothesis H11 : SNo (x * z + y * z)
L5316
Hypothesis H12 : w SNoL (x + y)
L5317
Hypothesis H13 : u SNoR z
L5318
Hypothesis H14 : SNo w
L5319
Hypothesis H15 : SNo u
L5320
Hypothesis H16 : z < u
L5321
Theorem. (Conj_mul_SNo_distrR__104__2)
SNo (x * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__104__2
Beginning of Section Conj_mul_SNo_distrR__105__19
L5327
Variable x : set
(*** Conj_mul_SNo_distrR__105__19 TMKSAH3dGmGsGNcFrm78y4Ft8chzCFwgCjN bounty of about 25 bars ***)
L5328
Variable y : set
L5329
Variable z : set
L5330
Variable w : set
L5331
Variable u : set
L5332
Variable v : set
L5333
Hypothesis H0 : SNo x
L5334
Hypothesis H1 : SNo y
L5335
Hypothesis H2 : SNo z
L5336
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L5337
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L5338
Hypothesis H5 : SNo (x * z)
L5339
Hypothesis H6 : SNo (y * z)
L5340
Hypothesis H7 : u SNoR z
L5341
Hypothesis H8 : SNo w
L5342
Hypothesis H9 : SNo u
L5343
Hypothesis H10 : z < u
L5344
Hypothesis H11 : SNo (x * u)
L5345
Hypothesis H12 : SNo (y * u)
L5346
Hypothesis H13 : SNo (w * z)
L5347
Hypothesis H14 : SNo (w * u)
L5348
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5349
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5350
Hypothesis H17 : v SNoR y
L5351
Hypothesis H18 : (x + v)w
L5352
Hypothesis H20 : y < v
L5353
Hypothesis H21 : SNo (v * u)
L5354
Hypothesis H22 : SNo (v * z)
L5355
Theorem. (Conj_mul_SNo_distrR__105__19)
SNo (x + v)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__105__19
Beginning of Section Conj_mul_SNo_distrR__107__18
L5361
Variable x : set
(*** Conj_mul_SNo_distrR__107__18 TMKmKcNTBSArFcrocLmff7btcAhdN8iBE8e bounty of about 25 bars ***)
L5362
Variable y : set
L5363
Variable z : set
L5364
Variable w : set
L5365
Variable u : set
L5366
Variable v : set
L5367
Hypothesis H0 : SNo x
L5368
Hypothesis H1 : SNo y
L5369
Hypothesis H2 : SNo z
L5370
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L5371
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L5372
Hypothesis H5 : SNo (x * z)
L5373
Hypothesis H6 : SNo (y * z)
L5374
Hypothesis H7 : u SNoR z
L5375
Hypothesis H8 : SNo w
L5376
Hypothesis H9 : SNo u
L5377
Hypothesis H10 : z < u
L5378
Hypothesis H11 : SNo (x * u)
L5379
Hypothesis H12 : SNo (y * u)
L5380
Hypothesis H13 : SNo (w * z)
L5381
Hypothesis H14 : SNo (w * u)
L5382
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5383
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5384
Hypothesis H17 : v SNoR y
L5385
Hypothesis H19 : SNo v
L5386
Hypothesis H20 : y < v
L5387
Theorem. (Conj_mul_SNo_distrR__107__18)
SNo (v * u)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__107__18
Beginning of Section Conj_mul_SNo_distrR__108__2
L5393
Variable x : set
(*** Conj_mul_SNo_distrR__108__2 TMbxGoSFTWK8QHKDvsfq6e7TMu7eKLQpbpb bounty of about 25 bars ***)
L5394
Variable y : set
L5395
Variable z : set
L5396
Variable w : set
L5397
Variable u : set
L5398
Variable v : set
L5399
Hypothesis H0 : SNo x
L5400
Hypothesis H1 : SNo y
L5401
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5402
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5403
Hypothesis H5 : SNo (x * z)
L5404
Hypothesis H6 : SNo (y * z)
L5405
Hypothesis H7 : u SNoR z
L5406
Hypothesis H8 : SNo w
L5407
Hypothesis H9 : SNo u
L5408
Hypothesis H10 : z < u
L5409
Hypothesis H11 : SNo (x * u)
L5410
Hypothesis H12 : SNo (y * u)
L5411
Hypothesis H13 : SNo (w * z)
L5412
Hypothesis H14 : SNo (w * u)
L5413
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5414
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5415
Hypothesis H17 : v SNoR x
L5416
Hypothesis H18 : (v + y)w
L5417
Hypothesis H19 : SNo v
L5418
Hypothesis H20 : x < v
L5419
Hypothesis H21 : SNo (v * u)
L5420
Hypothesis H22 : SNo (v * z)
L5421
Theorem. (Conj_mul_SNo_distrR__108__2)
SNo (v + y)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__108__2
Beginning of Section Conj_mul_SNo_distrR__108__9
L5427
Variable x : set
(*** Conj_mul_SNo_distrR__108__9 TMct4mbr4YRkQEBrCxTtpC9uLWg5k3AkBst bounty of about 25 bars ***)
L5428
Variable y : set
L5429
Variable z : set
L5430
Variable w : set
L5431
Variable u : set
L5432
Variable v : set
L5433
Hypothesis H0 : SNo x
L5434
Hypothesis H1 : SNo y
L5435
Hypothesis H2 : SNo z
L5436
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5437
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5438
Hypothesis H5 : SNo (x * z)
L5439
Hypothesis H6 : SNo (y * z)
L5440
Hypothesis H7 : u SNoR z
L5441
Hypothesis H8 : SNo w
L5442
Hypothesis H10 : z < u
L5443
Hypothesis H11 : SNo (x * u)
L5444
Hypothesis H12 : SNo (y * u)
L5445
Hypothesis H13 : SNo (w * z)
L5446
Hypothesis H14 : SNo (w * u)
L5447
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5448
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5449
Hypothesis H17 : v SNoR x
L5450
Hypothesis H18 : (v + y)w
L5451
Hypothesis H19 : SNo v
L5452
Hypothesis H20 : x < v
L5453
Hypothesis H21 : SNo (v * u)
L5454
Hypothesis H22 : SNo (v * z)
L5455
Theorem. (Conj_mul_SNo_distrR__108__9)
SNo (v + y)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__108__9
Beginning of Section Conj_mul_SNo_distrR__109__8
L5461
Variable x : set
(*** Conj_mul_SNo_distrR__109__8 TMR29mPKBrRdXxvXXa2ABtwUAtyYCgtQuKg bounty of about 25 bars ***)
L5462
Variable y : set
L5463
Variable z : set
L5464
Variable w : set
L5465
Variable u : set
L5466
Variable v : set
L5467
Hypothesis H0 : SNo x
L5468
Hypothesis H1 : SNo y
L5469
Hypothesis H2 : SNo z
L5470
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5471
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5472
Hypothesis H5 : SNo (x * z)
L5473
Hypothesis H6 : SNo (y * z)
L5474
Hypothesis H7 : u SNoR z
L5475
Hypothesis H9 : SNo u
L5476
Hypothesis H10 : z < u
L5477
Hypothesis H11 : SNo (x * u)
L5478
Hypothesis H12 : SNo (y * u)
L5479
Hypothesis H13 : SNo (w * z)
L5480
Hypothesis H14 : SNo (w * u)
L5481
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5482
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5483
Hypothesis H17 : v SNoR x
L5484
Hypothesis H18 : (v + y)w
L5485
Hypothesis H19 : SNo v
L5486
Hypothesis H20 : x < v
L5487
Hypothesis H21 : SNo (v * u)
L5488
Theorem. (Conj_mul_SNo_distrR__109__8)
SNo (v * z)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__109__8
Beginning of Section Conj_mul_SNo_distrR__109__18
L5494
Variable x : set
(*** Conj_mul_SNo_distrR__109__18 TMarrrQcBPDY9ANwKErTgSQcuXFFPeGPYyR bounty of about 25 bars ***)
L5495
Variable y : set
L5496
Variable z : set
L5497
Variable w : set
L5498
Variable u : set
L5499
Variable v : set
L5500
Hypothesis H0 : SNo x
L5501
Hypothesis H1 : SNo y
L5502
Hypothesis H2 : SNo z
L5503
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5504
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5505
Hypothesis H5 : SNo (x * z)
L5506
Hypothesis H6 : SNo (y * z)
L5507
Hypothesis H7 : u SNoR z
L5508
Hypothesis H8 : SNo w
L5509
Hypothesis H9 : SNo u
L5510
Hypothesis H10 : z < u
L5511
Hypothesis H11 : SNo (x * u)
L5512
Hypothesis H12 : SNo (y * u)
L5513
Hypothesis H13 : SNo (w * z)
L5514
Hypothesis H14 : SNo (w * u)
L5515
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5516
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5517
Hypothesis H17 : v SNoR x
L5518
Hypothesis H19 : SNo v
L5519
Hypothesis H20 : x < v
L5520
Hypothesis H21 : SNo (v * u)
L5521
Theorem. (Conj_mul_SNo_distrR__109__18)
SNo (v * z)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__109__18
Beginning of Section Conj_mul_SNo_distrR__110__16
L5527
Variable x : set
(*** Conj_mul_SNo_distrR__110__16 TMT3SmXYNFrPGLCpf1JXtoh6fuYCoBBXhsj bounty of about 25 bars ***)
L5528
Variable y : set
L5529
Variable z : set
L5530
Variable w : set
L5531
Variable u : set
L5532
Variable v : set
L5533
Hypothesis H0 : SNo x
L5534
Hypothesis H1 : SNo y
L5535
Hypothesis H2 : SNo z
L5536
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5537
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5538
Hypothesis H5 : SNo (x * z)
L5539
Hypothesis H6 : SNo (y * z)
L5540
Hypothesis H7 : u SNoR z
L5541
Hypothesis H8 : SNo w
L5542
Hypothesis H9 : SNo u
L5543
Hypothesis H10 : z < u
L5544
Hypothesis H11 : SNo (x * u)
L5545
Hypothesis H12 : SNo (y * u)
L5546
Hypothesis H13 : SNo (w * z)
L5547
Hypothesis H14 : SNo (w * u)
L5548
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5549
Hypothesis H17 : v SNoR x
L5550
Hypothesis H18 : (v + y)w
L5551
Hypothesis H19 : SNo v
L5552
Hypothesis H20 : x < v
L5553
Theorem. (Conj_mul_SNo_distrR__110__16)
SNo (v * u)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__110__16
Beginning of Section Conj_mul_SNo_distrR__111__6
L5559
Variable x : set
(*** Conj_mul_SNo_distrR__111__6 TMKA4QnGbrP8ewmTp7yjZAd8eBK4rMndEKH bounty of about 25 bars ***)
L5560
Variable y : set
L5561
Variable z : set
L5562
Variable w : set
L5563
Variable u : set
L5564
Hypothesis H0 : SNo x
L5565
Hypothesis H1 : SNo y
L5566
Hypothesis H2 : SNo z
L5567
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5568
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5569
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5570
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5571
Hypothesis H8 : SNo (x * z)
L5572
Hypothesis H9 : SNo (y * z)
L5573
Hypothesis H10 : SNo (x * z + y * z)
L5574
Hypothesis H11 : w SNoR (x + y)
L5575
Hypothesis H12 : u SNoR z
L5576
Hypothesis H13 : SNo w
L5577
Hypothesis H14 : SNo u
L5578
Hypothesis H15 : z < u
L5579
Hypothesis H16 : SNo (x * u)
L5580
Hypothesis H17 : SNo (y * u)
L5581
Hypothesis H18 : SNo (w * z)
L5582
Hypothesis H19 : SNo ((x + y) * u)
L5583
Hypothesis H20 : SNo (w * u)
L5584
Hypothesis H21 : SNo (w * z + x * u + y * u)
L5585
Theorem. (Conj_mul_SNo_distrR__111__6)
SNo (x * z + y * z + w * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__111__6
Beginning of Section Conj_mul_SNo_distrR__112__16
L5591
Variable x : set
(*** Conj_mul_SNo_distrR__112__16 TMTsYSd29QRVRacBeoKmMi44fv9bZkqsqt5 bounty of about 25 bars ***)
L5592
Variable y : set
L5593
Variable z : set
L5594
Variable w : set
L5595
Variable u : set
L5596
Hypothesis H0 : SNo x
L5597
Hypothesis H1 : SNo y
L5598
Hypothesis H2 : SNo z
L5599
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5600
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5601
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5602
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5603
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5604
Hypothesis H8 : SNo (x * z)
L5605
Hypothesis H9 : SNo (y * z)
L5606
Hypothesis H10 : SNo (x * z + y * z)
L5607
Hypothesis H11 : w SNoR (x + y)
L5608
Hypothesis H12 : u SNoR z
L5609
Hypothesis H13 : SNo w
L5610
Hypothesis H14 : SNo u
L5611
Hypothesis H15 : z < u
L5612
Hypothesis H17 : SNo (y * u)
L5613
Hypothesis H18 : SNo (w * z)
L5614
Hypothesis H19 : SNo ((x + y) * u)
L5615
Hypothesis H20 : SNo (w * u)
L5616
Theorem. (Conj_mul_SNo_distrR__112__16)
SNo (w * z + x * u + y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__112__16
Beginning of Section Conj_mul_SNo_distrR__115__15
L5622
Variable x : set
(*** Conj_mul_SNo_distrR__115__15 TMdr8fpa33fDW9E7px4bSFN6qQGct1NccZR bounty of about 25 bars ***)
L5623
Variable y : set
L5624
Variable z : set
L5625
Variable w : set
L5626
Variable u : set
L5627
Hypothesis H0 : SNo x
L5628
Hypothesis H1 : SNo y
L5629
Hypothesis H2 : SNo z
L5630
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5631
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5632
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5633
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5634
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5635
Hypothesis H8 : SNo (x + y)
L5636
Hypothesis H9 : SNo (x * z)
L5637
Hypothesis H10 : SNo (y * z)
L5638
Hypothesis H11 : SNo (x * z + y * z)
L5639
Hypothesis H12 : w SNoR (x + y)
L5640
Hypothesis H13 : u SNoR z
L5641
Hypothesis H14 : SNo w
L5642
Hypothesis H16 : z < u
L5643
Hypothesis H17 : SNo (x * u)
L5644
Hypothesis H18 : SNo (y * u)
L5645
Hypothesis H19 : SNo (w * z)
L5646
Theorem. (Conj_mul_SNo_distrR__115__15)
SNo ((x + y) * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__115__15
Beginning of Section Conj_mul_SNo_distrR__116__7
L5652
Variable x : set
(*** Conj_mul_SNo_distrR__116__7 TMN7czdKeDMPFj3NnG9p73uF2fTNWbJtajp bounty of about 25 bars ***)
L5653
Variable y : set
L5654
Variable z : set
L5655
Variable w : set
L5656
Variable u : set
L5657
Hypothesis H0 : SNo x
L5658
Hypothesis H1 : SNo y
L5659
Hypothesis H2 : SNo z
L5660
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5661
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5662
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5663
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5664
Hypothesis H8 : SNo (x + y)
L5665
Hypothesis H9 : SNo (x * z)
L5666
Hypothesis H10 : SNo (y * z)
L5667
Hypothesis H11 : SNo (x * z + y * z)
L5668
Hypothesis H12 : w SNoR (x + y)
L5669
Hypothesis H13 : u SNoR z
L5670
Hypothesis H14 : SNo w
L5671
Hypothesis H15 : SNo u
L5672
Hypothesis H16 : z < u
L5673
Hypothesis H17 : SNo (x * u)
L5674
Hypothesis H18 : SNo (y * u)
L5675
Theorem. (Conj_mul_SNo_distrR__116__7)
SNo (w * z)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__116__7
Beginning of Section Conj_mul_SNo_distrR__116__15
L5681
Variable x : set
(*** Conj_mul_SNo_distrR__116__15 TMKyhHdRiSpxLyfSq3VUGSMRfSwctKQycDi bounty of about 25 bars ***)
L5682
Variable y : set
L5683
Variable z : set
L5684
Variable w : set
L5685
Variable u : set
L5686
Hypothesis H0 : SNo x
L5687
Hypothesis H1 : SNo y
L5688
Hypothesis H2 : SNo z
L5689
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5690
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5691
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5692
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5693
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5694
Hypothesis H8 : SNo (x + y)
L5695
Hypothesis H9 : SNo (x * z)
L5696
Hypothesis H10 : SNo (y * z)
L5697
Hypothesis H11 : SNo (x * z + y * z)
L5698
Hypothesis H12 : w SNoR (x + y)
L5699
Hypothesis H13 : u SNoR z
L5700
Hypothesis H14 : SNo w
L5701
Hypothesis H16 : z < u
L5702
Hypothesis H17 : SNo (x * u)
L5703
Hypothesis H18 : SNo (y * u)
L5704
Theorem. (Conj_mul_SNo_distrR__116__15)
SNo (w * z)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__116__15
Beginning of Section Conj_mul_SNo_distrR__117__12
L5710
Variable x : set
(*** Conj_mul_SNo_distrR__117__12 TMUEPZtJ8VRUMpL7GBoiZDjMtTJZq1k5edf bounty of about 25 bars ***)
L5711
Variable y : set
L5712
Variable z : set
L5713
Variable w : set
L5714
Variable u : set
L5715
Hypothesis H0 : SNo x
L5716
Hypothesis H1 : SNo y
L5717
Hypothesis H2 : SNo z
L5718
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5719
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5720
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5721
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5722
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5723
Hypothesis H8 : SNo (x + y)
L5724
Hypothesis H9 : SNo (x * z)
L5725
Hypothesis H10 : SNo (y * z)
L5726
Hypothesis H11 : SNo (x * z + y * z)
L5727
Hypothesis H13 : u SNoR z
L5728
Hypothesis H14 : SNo w
L5729
Hypothesis H15 : SNo u
L5730
Hypothesis H16 : z < u
L5731
Hypothesis H17 : SNo (x * u)
L5732
Theorem. (Conj_mul_SNo_distrR__117__12)
SNo (y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__117__12
Beginning of Section Conj_mul_SNo_distrR__118__12
L5738
Variable x : set
(*** Conj_mul_SNo_distrR__118__12 TMErf8zaukDoYseiSjUgjpyqPn9NCEmjXGK bounty of about 25 bars ***)
L5739
Variable y : set
L5740
Variable z : set
L5741
Variable w : set
L5742
Variable u : set
L5743
Hypothesis H0 : SNo x
L5744
Hypothesis H1 : SNo y
L5745
Hypothesis H2 : SNo z
L5746
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5747
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5748
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5749
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5750
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5751
Hypothesis H8 : SNo (x + y)
L5752
Hypothesis H9 : SNo (x * z)
L5753
Hypothesis H10 : SNo (y * z)
L5754
Hypothesis H11 : SNo (x * z + y * z)
L5755
Hypothesis H13 : u SNoR z
L5756
Hypothesis H14 : SNo w
L5757
Hypothesis H15 : SNo u
L5758
Hypothesis H16 : z < u
L5759
Theorem. (Conj_mul_SNo_distrR__118__12)
SNo (x * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__118__12
Beginning of Section Conj_mul_SNo_distrR__119__9
L5765
Variable x : set
(*** Conj_mul_SNo_distrR__119__9 TMVSquwN6wmCxEKjoGQgbEGZgucA73LggWW bounty of about 25 bars ***)
L5766
Variable y : set
L5767
Variable z : set
L5768
Variable w : set
L5769
Variable u : set
L5770
Variable v : set
L5771
Hypothesis H0 : SNo x
L5772
Hypothesis H1 : SNo y
L5773
Hypothesis H2 : SNo z
L5774
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L5775
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L5776
Hypothesis H5 : SNo (x * z)
L5777
Hypothesis H6 : SNo (y * z)
L5778
Hypothesis H7 : u SNoL z
L5779
Hypothesis H8 : SNo w
L5780
Hypothesis H10 : u < z
L5781
Hypothesis H11 : SNo (x * u)
L5782
Hypothesis H12 : SNo (y * u)
L5783
Hypothesis H13 : SNo (w * z)
L5784
Hypothesis H14 : SNo (w * u)
L5785
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5786
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5787
Hypothesis H17 : v SNoL y
L5788
Hypothesis H18 : wx + v
L5789
Hypothesis H19 : SNo v
L5790
Hypothesis H20 : v < y
L5791
Hypothesis H21 : SNo (v * u)
L5792
Hypothesis H22 : SNo (v * z)
L5793
Theorem. (Conj_mul_SNo_distrR__119__9)
SNo (x + v)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__119__9
Beginning of Section Conj_mul_SNo_distrR__120__16
L5799
Variable x : set
(*** Conj_mul_SNo_distrR__120__16 TMSuPWeJog6BvBemPtjpDyM3kJsRxpDJrpo bounty of about 25 bars ***)
L5800
Variable y : set
L5801
Variable z : set
L5802
Variable w : set
L5803
Variable u : set
L5804
Variable v : set
L5805
Hypothesis H0 : SNo x
L5806
Hypothesis H1 : SNo y
L5807
Hypothesis H2 : SNo z
L5808
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
L5809
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L5810
Hypothesis H5 : SNo (x * z)
L5811
Hypothesis H6 : SNo (y * z)
L5812
Hypothesis H7 : u SNoL z
L5813
Hypothesis H8 : SNo w
L5814
Hypothesis H9 : SNo u
L5815
Hypothesis H10 : u < z
L5816
Hypothesis H11 : SNo (x * u)
L5817
Hypothesis H12 : SNo (y * u)
L5818
Hypothesis H13 : SNo (w * z)
L5819
Hypothesis H14 : SNo (w * u)
L5820
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5821
Hypothesis H17 : v SNoL y
L5822
Hypothesis H18 : wx + v
L5823
Hypothesis H19 : SNo v
L5824
Hypothesis H20 : v < y
L5825
Hypothesis H21 : SNo (v * u)
L5826
Theorem. (Conj_mul_SNo_distrR__120__16)
SNo (v * z)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__120__16
Beginning of Section Conj_mul_SNo_distrR__121__3
L5832
Variable x : set
(*** Conj_mul_SNo_distrR__121__3 TMVzGEdKhSYAVyKfTJN9ubZcnnifuK6XCxX bounty of about 25 bars ***)
L5833
Variable y : set
L5834
Variable z : set
L5835
Variable w : set
L5836
Variable u : set
L5837
Variable v : set
L5838
Hypothesis H0 : SNo x
L5839
Hypothesis H1 : SNo y
L5840
Hypothesis H2 : SNo z
L5841
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
L5842
Hypothesis H5 : SNo (x * z)
L5843
Hypothesis H6 : SNo (y * z)
L5844
Hypothesis H7 : u SNoL z
L5845
Hypothesis H8 : SNo w
L5846
Hypothesis H9 : SNo u
L5847
Hypothesis H10 : u < z
L5848
Hypothesis H11 : SNo (x * u)
L5849
Hypothesis H12 : SNo (y * u)
L5850
Hypothesis H13 : SNo (w * z)
L5851
Hypothesis H14 : SNo (w * u)
L5852
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5853
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5854
Hypothesis H17 : v SNoL y
L5855
Hypothesis H18 : wx + v
L5856
Hypothesis H19 : SNo v
L5857
Hypothesis H20 : v < y
L5858
Theorem. (Conj_mul_SNo_distrR__121__3)
SNo (v * u)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__121__3
Beginning of Section Conj_mul_SNo_distrR__123__10
L5864
Variable x : set
(*** Conj_mul_SNo_distrR__123__10 TMHb1ZGudXqMwXcWmR5PPAcJwWxTt7GX8K6 bounty of about 25 bars ***)
L5865
Variable y : set
L5866
Variable z : set
L5867
Variable w : set
L5868
Variable u : set
L5869
Variable v : set
L5870
Hypothesis H0 : SNo x
L5871
Hypothesis H1 : SNo y
L5872
Hypothesis H2 : SNo z
L5873
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
L5874
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
L5875
Hypothesis H5 : SNo (x * z)
L5876
Hypothesis H6 : SNo (y * z)
L5877
Hypothesis H7 : u SNoL z
L5878
Hypothesis H8 : SNo w
L5879
Hypothesis H9 : SNo u
L5880
Hypothesis H11 : SNo (x * u)
L5881
Hypothesis H12 : SNo (y * u)
L5882
Hypothesis H13 : SNo (w * z)
L5883
Hypothesis H14 : SNo (w * u)
L5884
Hypothesis H15 : SNo (w * z + x * u + y * u)
L5885
Hypothesis H16 : SNo (x * z + y * z + w * u)
L5886
Hypothesis H17 : v SNoL x
L5887
Hypothesis H18 : wv + y
L5888
Hypothesis H19 : SNo v
L5889
Hypothesis H20 : v < x
L5890
Hypothesis H21 : SNo (v * u)
L5891
Theorem. (Conj_mul_SNo_distrR__123__10)
SNo (v * z)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__123__10
Beginning of Section Conj_mul_SNo_distrR__125__15
L5897
Variable x : set
(*** Conj_mul_SNo_distrR__125__15 TMG6Ed7CNp5CtxzisUGSLKRzaAg8jb8PHsA bounty of about 25 bars ***)
L5898
Variable y : set
L5899
Variable z : set
L5900
Variable w : set
L5901
Variable u : set
L5902
Hypothesis H0 : SNo x
L5903
Hypothesis H1 : SNo y
L5904
Hypothesis H2 : SNo z
L5905
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5906
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5907
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5908
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5909
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5910
Hypothesis H8 : SNo (x * z)
L5911
Hypothesis H9 : SNo (y * z)
L5912
Hypothesis H10 : SNo (x * z + y * z)
L5913
Hypothesis H11 : w SNoL (x + y)
L5914
Hypothesis H12 : u SNoL z
L5915
Hypothesis H13 : SNo w
L5916
Hypothesis H14 : SNo u
L5917
Hypothesis H16 : SNo (x * u)
L5918
Hypothesis H17 : SNo (y * u)
L5919
Hypothesis H18 : SNo (w * z)
L5920
Hypothesis H19 : SNo ((x + y) * u)
L5921
Hypothesis H20 : SNo (w * u)
L5922
Hypothesis H21 : SNo (w * z + x * u + y * u)
L5923
Theorem. (Conj_mul_SNo_distrR__125__15)
SNo (x * z + y * z + w * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__125__15
Beginning of Section Conj_mul_SNo_distrR__126__9
L5929
Variable x : set
(*** Conj_mul_SNo_distrR__126__9 TMS9ZBnEU5zJXypDnr55dyZj2vQoNMPXJ12 bounty of about 25 bars ***)
L5930
Variable y : set
L5931
Variable z : set
L5932
Variable w : set
L5933
Variable u : set
L5934
Hypothesis H0 : SNo x
L5935
Hypothesis H1 : SNo y
L5936
Hypothesis H2 : SNo z
L5937
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5938
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5939
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5940
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5941
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5942
Hypothesis H8 : SNo (x * z)
L5943
Hypothesis H10 : SNo (x * z + y * z)
L5944
Hypothesis H11 : w SNoL (x + y)
L5945
Hypothesis H12 : u SNoL z
L5946
Hypothesis H13 : SNo w
L5947
Hypothesis H14 : SNo u
L5948
Hypothesis H15 : u < z
L5949
Hypothesis H16 : SNo (x * u)
L5950
Hypothesis H17 : SNo (y * u)
L5951
Hypothesis H18 : SNo (w * z)
L5952
Hypothesis H19 : SNo ((x + y) * u)
L5953
Hypothesis H20 : SNo (w * u)
L5954
Theorem. (Conj_mul_SNo_distrR__126__9)
SNo (w * z + x * u + y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__126__9
Beginning of Section Conj_mul_SNo_distrR__126__11
L5960
Variable x : set
(*** Conj_mul_SNo_distrR__126__11 TMQQ5TytRWd5jQx4kwLCNYzJX3XtGoNx838 bounty of about 25 bars ***)
L5961
Variable y : set
L5962
Variable z : set
L5963
Variable w : set
L5964
Variable u : set
L5965
Hypothesis H0 : SNo x
L5966
Hypothesis H1 : SNo y
L5967
Hypothesis H2 : SNo z
L5968
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L5969
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L5970
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L5971
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L5972
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L5973
Hypothesis H8 : SNo (x * z)
L5974
Hypothesis H9 : SNo (y * z)
L5975
Hypothesis H10 : SNo (x * z + y * z)
L5976
Hypothesis H12 : u SNoL z
L5977
Hypothesis H13 : SNo w
L5978
Hypothesis H14 : SNo u
L5979
Hypothesis H15 : u < z
L5980
Hypothesis H16 : SNo (x * u)
L5981
Hypothesis H17 : SNo (y * u)
L5982
Hypothesis H18 : SNo (w * z)
L5983
Hypothesis H19 : SNo ((x + y) * u)
L5984
Hypothesis H20 : SNo (w * u)
L5985
Theorem. (Conj_mul_SNo_distrR__126__11)
SNo (w * z + x * u + y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__126__11
Beginning of Section Conj_mul_SNo_distrR__127__7
L5991
Variable x : set
(*** Conj_mul_SNo_distrR__127__7 TMFRFLNCAwByM8QsRVEQ8hBkoSgiMXU6uRX bounty of about 25 bars ***)
L5992
Variable y : set
L5993
Variable z : set
L5994
Variable w : set
L5995
Variable u : set
L5996
Hypothesis H0 : SNo x
L5997
Hypothesis H1 : SNo y
L5998
Hypothesis H2 : SNo z
L5999
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6000
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6001
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6002
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6003
Hypothesis H8 : SNo (x * z)
L6004
Hypothesis H9 : SNo (y * z)
L6005
Hypothesis H10 : SNo (x * z + y * z)
L6006
Hypothesis H11 : w SNoL (x + y)
L6007
Hypothesis H12 : u SNoL z
L6008
Hypothesis H13 : SNo w
L6009
Hypothesis H14 : SNo u
L6010
Hypothesis H15 : u < z
L6011
Hypothesis H16 : SNo (x * u)
L6012
Hypothesis H17 : SNo (y * u)
L6013
Hypothesis H18 : SNo (w * z)
L6014
Hypothesis H19 : SNo ((x + y) * u)
L6015
Theorem. (Conj_mul_SNo_distrR__127__7)
SNo (w * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__127__7
Beginning of Section Conj_mul_SNo_distrR__128__15
L6021
Variable x : set
(*** Conj_mul_SNo_distrR__128__15 TMdio434wQ2X1DSMfMBLroMwX78BTLPX4xb bounty of about 25 bars ***)
L6022
Variable y : set
L6023
Variable z : set
L6024
Variable w : set
L6025
Variable u : set
L6026
Hypothesis H0 : SNo x
L6027
Hypothesis H1 : SNo y
L6028
Hypothesis H2 : SNo z
L6029
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6030
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6031
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6032
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6033
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6034
Hypothesis H8 : SNo (x * z)
L6035
Hypothesis H9 : SNo (y * z)
L6036
Hypothesis H10 : SNo (x * z + y * z)
L6037
Hypothesis H11 : w SNoL (x + y)
L6038
Hypothesis H12 : u SNoL z
L6039
Hypothesis H13 : SNo w
L6040
Hypothesis H14 : SNo u
L6041
Hypothesis H16 : SNo (x * u)
L6042
Hypothesis H17 : SNo (y * u)
L6043
Hypothesis H18 : SNo (w * z)
L6044
Hypothesis H19 : SNo ((x + y) * u)
L6045
Theorem. (Conj_mul_SNo_distrR__128__15)
SNo (x * u + y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__128__15
Beginning of Section Conj_mul_SNo_distrR__129__10
L6051
Variable x : set
(*** Conj_mul_SNo_distrR__129__10 TMbCVvbWdvQuvVDWx1pmoiYFB9xdSpfTUAu bounty of about 25 bars ***)
L6052
Variable y : set
L6053
Variable z : set
L6054
Variable w : set
L6055
Variable u : set
L6056
Hypothesis H0 : SNo x
L6057
Hypothesis H1 : SNo y
L6058
Hypothesis H2 : SNo z
L6059
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6060
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6061
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6062
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6063
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6064
Hypothesis H8 : SNo (x + y)
L6065
Hypothesis H9 : SNo (x * z)
L6066
Hypothesis H11 : SNo (x * z + y * z)
L6067
Hypothesis H12 : w SNoL (x + y)
L6068
Hypothesis H13 : u SNoL z
L6069
Hypothesis H14 : SNo w
L6070
Hypothesis H15 : SNo u
L6071
Hypothesis H16 : u < z
L6072
Hypothesis H17 : SNo (x * u)
L6073
Hypothesis H18 : SNo (y * u)
L6074
Hypothesis H19 : SNo (w * z)
L6075
Theorem. (Conj_mul_SNo_distrR__129__10)
SNo ((x + y) * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__129__10
Beginning of Section Conj_mul_SNo_distrR__130__13
L6081
Variable x : set
(*** Conj_mul_SNo_distrR__130__13 TMFqsC1YdjeodiemfS8aTPvwvqXBma6DZjj bounty of about 25 bars ***)
L6082
Variable y : set
L6083
Variable z : set
L6084
Variable w : set
L6085
Variable u : set
L6086
Hypothesis H0 : SNo x
L6087
Hypothesis H1 : SNo y
L6088
Hypothesis H2 : SNo z
L6089
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6090
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6091
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6092
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6093
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6094
Hypothesis H8 : SNo (x + y)
L6095
Hypothesis H9 : SNo (x * z)
L6096
Hypothesis H10 : SNo (y * z)
L6097
Hypothesis H11 : SNo (x * z + y * z)
L6098
Hypothesis H12 : w SNoL (x + y)
L6099
Hypothesis H14 : SNo w
L6100
Hypothesis H15 : SNo u
L6101
Hypothesis H16 : u < z
L6102
Hypothesis H17 : SNo (x * u)
L6103
Hypothesis H18 : SNo (y * u)
L6104
Theorem. (Conj_mul_SNo_distrR__130__13)
SNo (w * z)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__130__13
Beginning of Section Conj_mul_SNo_distrR__131__12
L6110
Variable x : set
(*** Conj_mul_SNo_distrR__131__12 TMbk48qRYLWf1AtxikXuWdBGhZnFdyeikbT bounty of about 25 bars ***)
L6111
Variable y : set
L6112
Variable z : set
L6113
Variable w : set
L6114
Variable u : set
L6115
Hypothesis H0 : SNo x
L6116
Hypothesis H1 : SNo y
L6117
Hypothesis H2 : SNo z
L6118
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6119
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6120
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6121
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6122
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6123
Hypothesis H8 : SNo (x + y)
L6124
Hypothesis H9 : SNo (x * z)
L6125
Hypothesis H10 : SNo (y * z)
L6126
Hypothesis H11 : SNo (x * z + y * z)
L6127
Hypothesis H13 : u SNoL z
L6128
Hypothesis H14 : SNo w
L6129
Hypothesis H15 : SNo u
L6130
Hypothesis H16 : u < z
L6131
Hypothesis H17 : SNo (x * u)
L6132
Theorem. (Conj_mul_SNo_distrR__131__12)
SNo (y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__131__12
Beginning of Section Conj_mul_SNo_distrR__131__17
L6138
Variable x : set
(*** Conj_mul_SNo_distrR__131__17 TMXVxFvrAEo8u5qotzvuZkF3E1zE7NX9eqh bounty of about 25 bars ***)
L6139
Variable y : set
L6140
Variable z : set
L6141
Variable w : set
L6142
Variable u : set
L6143
Hypothesis H0 : SNo x
L6144
Hypothesis H1 : SNo y
L6145
Hypothesis H2 : SNo z
L6146
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6147
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6148
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6149
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6150
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6151
Hypothesis H8 : SNo (x + y)
L6152
Hypothesis H9 : SNo (x * z)
L6153
Hypothesis H10 : SNo (y * z)
L6154
Hypothesis H11 : SNo (x * z + y * z)
L6155
Hypothesis H12 : w SNoL (x + y)
L6156
Hypothesis H13 : u SNoL z
L6157
Hypothesis H14 : SNo w
L6158
Hypothesis H15 : SNo u
L6159
Hypothesis H16 : u < z
L6160
Theorem. (Conj_mul_SNo_distrR__131__17)
SNo (y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__131__17
Beginning of Section Conj_mul_SNo_distrR__132__4
L6166
Variable x : set
(*** Conj_mul_SNo_distrR__132__4 TMYoVokjyoKoJZZoXWnadx6zKwz8jh3B98L bounty of about 25 bars ***)
L6167
Variable y : set
L6168
Variable z : set
L6169
Variable w : set
L6170
Variable u : set
L6171
Hypothesis H0 : SNo x
L6172
Hypothesis H1 : SNo y
L6173
Hypothesis H2 : SNo z
L6174
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6175
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6176
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6177
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6178
Hypothesis H8 : SNo (x + y)
L6179
Hypothesis H9 : SNo (x * z)
L6180
Hypothesis H10 : SNo (y * z)
L6181
Hypothesis H11 : SNo (x * z + y * z)
L6182
Hypothesis H12 : w SNoL (x + y)
L6183
Hypothesis H13 : u SNoL z
L6184
Hypothesis H14 : SNo w
L6185
Hypothesis H15 : SNo u
L6186
Hypothesis H16 : u < z
L6187
Theorem. (Conj_mul_SNo_distrR__132__4)
SNo (x * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__132__4
Beginning of Section Conj_mul_SNo_distrR__132__16
L6193
Variable x : set
(*** Conj_mul_SNo_distrR__132__16 TMV6XTChegLQBsFFGLeXpn9qjfcsuYrvDJA bounty of about 25 bars ***)
L6194
Variable y : set
L6195
Variable z : set
L6196
Variable w : set
L6197
Variable u : set
L6198
Hypothesis H0 : SNo x
L6199
Hypothesis H1 : SNo y
L6200
Hypothesis H2 : SNo z
L6201
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6202
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6203
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6204
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6205
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6206
Hypothesis H8 : SNo (x + y)
L6207
Hypothesis H9 : SNo (x * z)
L6208
Hypothesis H10 : SNo (y * z)
L6209
Hypothesis H11 : SNo (x * z + y * z)
L6210
Hypothesis H12 : w SNoL (x + y)
L6211
Hypothesis H13 : u SNoL z
L6212
Hypothesis H14 : SNo w
L6213
Hypothesis H15 : SNo u
L6214
Theorem. (Conj_mul_SNo_distrR__132__16)
SNo (x * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__132__16
Beginning of Section Conj_mul_SNo_distrR__133__11
L6220
Variable x : set
(*** Conj_mul_SNo_distrR__133__11 TML7HZcZ7JwBWG2K9ezf3QaNvpogEzhkBTX bounty of about 25 bars ***)
L6221
Variable y : set
L6222
Variable z : set
L6223
Variable w : set
L6224
Variable u : set
L6225
Hypothesis H0 : SNo x
L6226
Hypothesis H1 : SNo y
L6227
Hypothesis H2 : SNo z
L6228
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6229
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6230
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6231
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6232
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6233
Hypothesis H8 : SNoCutP w u
L6234
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6235
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6236
Hypothesis H12 : SNo (x + y)
L6237
Hypothesis H13 : SNo ((x + y) * z)
L6238
Hypothesis H14 : SNo (x * z)
L6239
Hypothesis H15 : SNo (y * z)
L6240
Hypothesis H16 : SNo (x * z + y * z)
L6241
Theorem. (Conj_mul_SNo_distrR__133__11)
x * z + y * z = SNoCut (binunion (Repl (SNoL (x * z)) (λv : setv + y * z)) (Repl (SNoL (y * z)) (add_SNo (x * z)))) (binunion (Repl (SNoR (x * z)) (λv : setv + y * z)) (Repl (SNoR (y * z)) (add_SNo (x * z))))(x + y) * z = x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__133__11
Beginning of Section Conj_mul_SNo_distrR__135__6
L6247
Variable x : set
(*** Conj_mul_SNo_distrR__135__6 TMUdLTNFkPPLEBZomZJEP1p5q1yPFnJUrCD bounty of about 25 bars ***)
L6248
Variable y : set
L6249
Variable z : set
L6250
Variable w : set
L6251
Variable u : set
L6252
Hypothesis H0 : SNo x
L6253
Hypothesis H1 : SNo y
L6254
Hypothesis H2 : SNo z
L6255
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6256
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6257
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6258
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6259
Hypothesis H8 : SNoCutP w u
L6260
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6261
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6262
Hypothesis H11 : (x + y) * z = SNoCut w u
L6263
Hypothesis H12 : SNo (x + y)
L6264
Hypothesis H13 : SNo ((x + y) * z)
L6265
Hypothesis H14 : SNo (x * z)
L6266
Theorem. (Conj_mul_SNo_distrR__135__6)
SNo (y * z)(x + y) * z = x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__135__6
Beginning of Section Conj_mul_SNo_distrR__136__5
L6272
Variable x : set
(*** Conj_mul_SNo_distrR__136__5 TMSnYvLozqEjEtvJrXtGzfQjDkyd1f5Vs7W bounty of about 25 bars ***)
L6273
Variable y : set
L6274
Variable z : set
L6275
Variable w : set
L6276
Variable u : set
L6277
Hypothesis H0 : SNo x
L6278
Hypothesis H1 : SNo y
L6279
Hypothesis H2 : SNo z
L6280
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6281
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6282
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6283
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6284
Hypothesis H8 : SNoCutP w u
L6285
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6286
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6287
Hypothesis H11 : (x + y) * z = SNoCut w u
L6288
Hypothesis H12 : SNo (x + y)
L6289
Hypothesis H13 : SNo ((x + y) * z)
L6290
Theorem. (Conj_mul_SNo_distrR__136__5)
SNo (x * z)(x + y) * z = x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__136__5
Beginning of Section Conj_mul_SNo_distrR__137__3
L6296
Variable x : set
(*** Conj_mul_SNo_distrR__137__3 TMczyWUXwud5rYRj376zaqvmmeCKZRMfCj4 bounty of about 25 bars ***)
L6297
Variable y : set
L6298
Variable z : set
L6299
Variable w : set
L6300
Variable u : set
L6301
Hypothesis H0 : SNo x
L6302
Hypothesis H1 : SNo y
L6303
Hypothesis H2 : SNo z
L6304
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6305
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6306
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6307
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6308
Hypothesis H8 : SNoCutP w u
L6309
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6310
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6311
Hypothesis H11 : (x + y) * z = SNoCut w u
L6312
Hypothesis H12 : SNo (x + y)
L6313
Theorem. (Conj_mul_SNo_distrR__137__3)
SNo ((x + y) * z)(x + y) * z = x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__137__3
Beginning of Section Conj_mul_SNo_distrR__137__4
L6319
Variable x : set
(*** Conj_mul_SNo_distrR__137__4 TMdgaUgt6mi2ReHtWvwJifq4ETmGwGbiY7b bounty of about 25 bars ***)
L6320
Variable y : set
L6321
Variable z : set
L6322
Variable w : set
L6323
Variable u : set
L6324
Hypothesis H0 : SNo x
L6325
Hypothesis H1 : SNo y
L6326
Hypothesis H2 : SNo z
L6327
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6328
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6329
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
L6330
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6331
Hypothesis H8 : SNoCutP w u
L6332
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6333
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6334
Hypothesis H11 : (x + y) * z = SNoCut w u
L6335
Hypothesis H12 : SNo (x + y)
L6336
Theorem. (Conj_mul_SNo_distrR__137__4)
SNo ((x + y) * z)(x + y) * z = x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__137__4
Beginning of Section Conj_mul_SNo_distrR__138__6
L6342
Variable x : set
(*** Conj_mul_SNo_distrR__138__6 TMQdquZdAwnr9iL7hp3Cv2QXzBuKjSyKXRN bounty of about 25 bars ***)
L6343
Variable y : set
L6344
Variable z : set
L6345
Variable w : set
L6346
Variable u : set
L6347
Hypothesis H0 : SNo x
L6348
Hypothesis H1 : SNo y
L6349
Hypothesis H2 : SNo z
L6350
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
L6351
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
L6352
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
L6353
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
L6354
Hypothesis H8 : SNoCutP w u
L6355
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6356
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
L6357
Hypothesis H11 : (x + y) * z = SNoCut w u
L6358
Theorem. (Conj_mul_SNo_distrR__138__6)
SNo (x + y)(x + y) * z = x * z + y * z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_distrR__138__6
Beginning of Section Conj_mul_SNo_assoc_lem1__1__7
L6364
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__1__7 TMKnnoPW6hcBe3TD7vdUN6JmCK4pKEW7jMc bounty of about 25 bars ***)
L6365
Variable x : set
L6366
Variable y : set
L6367
Variable z : set
L6368
Variable w : set
L6369
Variable u : set
L6370
Variable v : set
L6371
Variable x2 : set
L6372
Variable y2 : set
L6373
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6374
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6375
Hypothesis H2 : SNo x
L6376
Hypothesis H3 : SNo z
L6377
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6378
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6379
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6380
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6381
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6382
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6383
Hypothesis H11 : SNo (g x y)
L6384
Hypothesis H12 : SNo (g (g x y) z)
L6385
Hypothesis H13 : u SNoS_ (SNoLev x)
L6386
Hypothesis H14 : SNo v
L6387
Hypothesis H15 : x2 SNoS_ (SNoLev y)
L6388
Hypothesis H16 : y2 SNoS_ (SNoLev z)
L6389
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
L6390
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6391
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6392
Hypothesis H20 : SNo u
L6393
Hypothesis H21 : SNo y2
L6394
Hypothesis H22 : SNo (g u (g y z))
L6395
Hypothesis H23 : SNo (g x v)
L6396
Hypothesis H24 : SNo (g x x2)
L6397
Hypothesis H25 : SNo (g u v)
L6398
Hypothesis H26 : SNo (g u x2)
L6399
Hypothesis H27 : SNo (g u y)
L6400
Hypothesis H28 : SNo (g x2 z)
L6401
Hypothesis H29 : SNo (g y y2)
L6402
Hypothesis H30 : SNo (g u (g x2 z))
L6403
Hypothesis H31 : SNo (g u (g y y2))
L6404
Hypothesis H32 : SNo (g x2 y2)
L6405
Hypothesis H33 : SNo (g x (g x2 y2))
L6406
Hypothesis H34 : SNo (g x (g x2 z))
L6407
Hypothesis H35 : SNo (g x (g y y2))
L6408
Hypothesis H36 : SNo (g u (g y z) + g x v)
L6409
Hypothesis H37 : SNo (g (g x y) z + g u v)
L6410
Hypothesis H38 : SNo (g u (g x2 y2))
L6411
Hypothesis H39 : SNo (g u (v + g x2 y2))
L6412
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
L6413
Hypothesis H41 : SNo (g u (g y z) + g x (g x2 z) + g x (g y y2) + g u v + g u (g x2 y2))
L6414
Theorem. (Conj_mul_SNo_assoc_lem1__1__7)
SNo (g u (g x2 z) + g u (g y y2) + g x (g x2 y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__1__7
Beginning of Section Conj_mul_SNo_assoc_lem1__1__33
L6420
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__1__33 TMZ2dwQaMb41nvs4kPygdgDzVBerbqzWcPV bounty of about 25 bars ***)
L6421
Variable x : set
L6422
Variable y : set
L6423
Variable z : set
L6424
Variable w : set
L6425
Variable u : set
L6426
Variable v : set
L6427
Variable x2 : set
L6428
Variable y2 : set
L6429
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6430
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6431
Hypothesis H2 : SNo x
L6432
Hypothesis H3 : SNo z
L6433
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6434
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6435
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6436
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6437
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6438
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6439
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6440
Hypothesis H11 : SNo (g x y)
L6441
Hypothesis H12 : SNo (g (g x y) z)
L6442
Hypothesis H13 : u SNoS_ (SNoLev x)
L6443
Hypothesis H14 : SNo v
L6444
Hypothesis H15 : x2 SNoS_ (SNoLev y)
L6445
Hypothesis H16 : y2 SNoS_ (SNoLev z)
L6446
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
L6447
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6448
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6449
Hypothesis H20 : SNo u
L6450
Hypothesis H21 : SNo y2
L6451
Hypothesis H22 : SNo (g u (g y z))
L6452
Hypothesis H23 : SNo (g x v)
L6453
Hypothesis H24 : SNo (g x x2)
L6454
Hypothesis H25 : SNo (g u v)
L6455
Hypothesis H26 : SNo (g u x2)
L6456
Hypothesis H27 : SNo (g u y)
L6457
Hypothesis H28 : SNo (g x2 z)
L6458
Hypothesis H29 : SNo (g y y2)
L6459
Hypothesis H30 : SNo (g u (g x2 z))
L6460
Hypothesis H31 : SNo (g u (g y y2))
L6461
Hypothesis H32 : SNo (g x2 y2)
L6462
Hypothesis H34 : SNo (g x (g x2 z))
L6463
Hypothesis H35 : SNo (g x (g y y2))
L6464
Hypothesis H36 : SNo (g u (g y z) + g x v)
L6465
Hypothesis H37 : SNo (g (g x y) z + g u v)
L6466
Hypothesis H38 : SNo (g u (g x2 y2))
L6467
Hypothesis H39 : SNo (g u (v + g x2 y2))
L6468
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
L6469
Hypothesis H41 : SNo (g u (g y z) + g x (g x2 z) + g x (g y y2) + g u v + g u (g x2 y2))
L6470
Theorem. (Conj_mul_SNo_assoc_lem1__1__33)
SNo (g u (g x2 z) + g u (g y y2) + g x (g x2 y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__1__33
Beginning of Section Conj_mul_SNo_assoc_lem1__2__27
L6476
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__2__27 TMMYbjBBEyXjofdffuhoRfHHJBgAska7jJo bounty of about 25 bars ***)
L6477
Variable x : set
L6478
Variable y : set
L6479
Variable z : set
L6480
Variable w : set
L6481
Variable u : set
L6482
Variable v : set
L6483
Variable x2 : set
L6484
Variable y2 : set
L6485
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6486
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6487
Hypothesis H2 : SNo x
L6488
Hypothesis H3 : SNo z
L6489
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6490
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6491
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6492
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6493
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6494
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6495
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6496
Hypothesis H11 : SNo (g x y)
L6497
Hypothesis H12 : SNo (g (g x y) z)
L6498
Hypothesis H13 : u SNoS_ (SNoLev x)
L6499
Hypothesis H14 : SNo v
L6500
Hypothesis H15 : x2 SNoS_ (SNoLev y)
L6501
Hypothesis H16 : y2 SNoS_ (SNoLev z)
L6502
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
L6503
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6504
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6505
Hypothesis H20 : SNo u
L6506
Hypothesis H21 : SNo y2
L6507
Hypothesis H22 : SNo (g u (g y z))
L6508
Hypothesis H23 : SNo (g x v)
L6509
Hypothesis H24 : SNo (g x x2)
L6510
Hypothesis H25 : SNo (g u v)
L6511
Hypothesis H26 : SNo (g u x2)
L6512
Hypothesis H28 : SNo (g x2 z)
L6513
Hypothesis H29 : SNo (g y y2)
L6514
Hypothesis H30 : SNo (g u (g x2 z))
L6515
Hypothesis H31 : SNo (g u (g y y2))
L6516
Hypothesis H32 : SNo (g x2 y2)
L6517
Hypothesis H33 : SNo (g x (g x2 y2))
L6518
Hypothesis H34 : SNo (g x (g x2 z))
L6519
Hypothesis H35 : SNo (g x (g y y2))
L6520
Hypothesis H36 : SNo (g u (g y z) + g x v)
L6521
Hypothesis H37 : SNo (g (g x y) z + g u v)
L6522
Hypothesis H38 : SNo (g u (g x2 y2))
L6523
Hypothesis H39 : SNo (g u (v + g x2 y2))
L6524
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
L6525
Hypothesis H41 : SNo (g u v + g u (g x2 y2))
L6526
Theorem. (Conj_mul_SNo_assoc_lem1__2__27)
SNo (g u (g y z) + g x (g x2 z) + g x (g y y2) + g u v + g u (g x2 y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__2__27
Beginning of Section Conj_mul_SNo_assoc_lem1__3__17
L6532
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__3__17 TMN4vHLkZcrXP7tS5GZpmPUBoN4YsEqLyv5 bounty of about 25 bars ***)
L6533
Variable x : set
L6534
Variable y : set
L6535
Variable z : set
L6536
Variable w : set
L6537
Variable u : set
L6538
Variable v : set
L6539
Variable x2 : set
L6540
Variable y2 : set
L6541
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6542
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6543
Hypothesis H2 : SNo x
L6544
Hypothesis H3 : SNo z
L6545
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6546
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6547
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6548
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6549
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6550
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6551
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6552
Hypothesis H11 : SNo (g x y)
L6553
Hypothesis H12 : SNo (g (g x y) z)
L6554
Hypothesis H13 : u SNoS_ (SNoLev x)
L6555
Hypothesis H14 : SNo v
L6556
Hypothesis H15 : x2 SNoS_ (SNoLev y)
L6557
Hypothesis H16 : y2 SNoS_ (SNoLev z)
L6558
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6559
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6560
Hypothesis H20 : SNo u
L6561
Hypothesis H21 : SNo y2
L6562
Hypothesis H22 : SNo (g u (g y z))
L6563
Hypothesis H23 : SNo (g x v)
L6564
Hypothesis H24 : SNo (g x x2)
L6565
Hypothesis H25 : SNo (g u v)
L6566
Hypothesis H26 : SNo (g u x2)
L6567
Hypothesis H27 : SNo (g u y)
L6568
Hypothesis H28 : SNo (g x2 z)
L6569
Hypothesis H29 : SNo (g y y2)
L6570
Hypothesis H30 : SNo (g u (g x2 z))
L6571
Hypothesis H31 : SNo (g u (g y y2))
L6572
Hypothesis H32 : SNo (g x2 y2)
L6573
Hypothesis H33 : SNo (g x (g x2 y2))
L6574
Hypothesis H34 : SNo (g x (g x2 z))
L6575
Hypothesis H35 : SNo (g x (g y y2))
L6576
Hypothesis H36 : SNo (g u (g y z) + g x v)
L6577
Hypothesis H37 : SNo (g (g x y) z + g u v)
L6578
Hypothesis H38 : SNo (g u (g x2 y2))
L6579
Hypothesis H39 : SNo (g u (v + g x2 y2))
L6580
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
L6581
Theorem. (Conj_mul_SNo_assoc_lem1__3__17)
SNo (g u v + g u (g x2 y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__3__17
Beginning of Section Conj_mul_SNo_assoc_lem1__3__38
L6587
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__3__38 TMSqYdGmrpnSAebNhRfhF9U1NUTqAvCAwLC bounty of about 25 bars ***)
L6588
Variable x : set
L6589
Variable y : set
L6590
Variable z : set
L6591
Variable w : set
L6592
Variable u : set
L6593
Variable v : set
L6594
Variable x2 : set
L6595
Variable y2 : set
L6596
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6597
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6598
Hypothesis H2 : SNo x
L6599
Hypothesis H3 : SNo z
L6600
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6601
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6602
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6603
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6604
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6605
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6606
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6607
Hypothesis H11 : SNo (g x y)
L6608
Hypothesis H12 : SNo (g (g x y) z)
L6609
Hypothesis H13 : u SNoS_ (SNoLev x)
L6610
Hypothesis H14 : SNo v
L6611
Hypothesis H15 : x2 SNoS_ (SNoLev y)
L6612
Hypothesis H16 : y2 SNoS_ (SNoLev z)
L6613
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
L6614
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6615
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6616
Hypothesis H20 : SNo u
L6617
Hypothesis H21 : SNo y2
L6618
Hypothesis H22 : SNo (g u (g y z))
L6619
Hypothesis H23 : SNo (g x v)
L6620
Hypothesis H24 : SNo (g x x2)
L6621
Hypothesis H25 : SNo (g u v)
L6622
Hypothesis H26 : SNo (g u x2)
L6623
Hypothesis H27 : SNo (g u y)
L6624
Hypothesis H28 : SNo (g x2 z)
L6625
Hypothesis H29 : SNo (g y y2)
L6626
Hypothesis H30 : SNo (g u (g x2 z))
L6627
Hypothesis H31 : SNo (g u (g y y2))
L6628
Hypothesis H32 : SNo (g x2 y2)
L6629
Hypothesis H33 : SNo (g x (g x2 y2))
L6630
Hypothesis H34 : SNo (g x (g x2 z))
L6631
Hypothesis H35 : SNo (g x (g y y2))
L6632
Hypothesis H36 : SNo (g u (g y z) + g x v)
L6633
Hypothesis H37 : SNo (g (g x y) z + g u v)
L6634
Hypothesis H39 : SNo (g u (v + g x2 y2))
L6635
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
L6636
Theorem. (Conj_mul_SNo_assoc_lem1__3__38)
SNo (g u v + g u (g x2 y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__3__38
Beginning of Section Conj_mul_SNo_assoc_lem1__4__1
L6642
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__4__1 TMXcAqsTEE1hgtGAT5HjrtMKvK2iNpueWPH bounty of about 25 bars ***)
L6643
Variable x : set
L6644
Variable y : set
L6645
Variable z : set
L6646
Variable w : set
L6647
Variable u : set
L6648
Variable v : set
L6649
Variable x2 : set
L6650
Variable y2 : set
L6651
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L6652
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6653
Hypothesis H3 : SNo x
L6654
Hypothesis H4 : SNo z
L6655
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6656
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6657
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6658
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6659
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6660
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6661
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6662
Hypothesis H12 : SNo (g x y)
L6663
Hypothesis H13 : SNo (g (g x y) z)
L6664
Hypothesis H14 : u SNoS_ (SNoLev x)
L6665
Hypothesis H15 : SNo v
L6666
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L6667
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L6668
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L6669
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6670
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6671
Hypothesis H21 : SNo u
L6672
Hypothesis H22 : SNo y2
L6673
Hypothesis H23 : SNo (g u (g y z))
L6674
Hypothesis H24 : SNo (g x v)
L6675
Hypothesis H25 : SNo (g x x2)
L6676
Hypothesis H26 : SNo (g u v)
L6677
Hypothesis H27 : SNo (g u x2)
L6678
Hypothesis H28 : SNo (g u y)
L6679
Hypothesis H29 : SNo (g x2 z)
L6680
Hypothesis H30 : SNo (g y y2)
L6681
Hypothesis H31 : SNo (g u (g x2 z))
L6682
Hypothesis H32 : SNo (g u (g y y2))
L6683
Hypothesis H33 : SNo (g x2 y2)
L6684
Hypothesis H34 : SNo (g x (g x2 y2))
L6685
Hypothesis H35 : SNo (g x (g x2 z))
L6686
Hypothesis H36 : SNo (g x (g y y2))
L6687
Hypothesis H37 : SNo (g u (g y z) + g x v)
L6688
Hypothesis H38 : SNo (g (g x y) z + g u v)
L6689
Hypothesis H39 : SNo (g u (g x2 y2))
L6690
Hypothesis H40 : SNo (g u (v + g x2 y2))
L6691
Theorem. (Conj_mul_SNo_assoc_lem1__4__1)
SNo (g u (g x2 z + g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__4__1
Beginning of Section Conj_mul_SNo_assoc_lem1__4__8
L6697
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__4__8 TMHqeR25A8wfCNzLRzDFcNrBmLVdymZjKmd bounty of about 25 bars ***)
L6698
Variable x : set
L6699
Variable y : set
L6700
Variable z : set
L6701
Variable w : set
L6702
Variable u : set
L6703
Variable v : set
L6704
Variable x2 : set
L6705
Variable y2 : set
L6706
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L6707
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6708
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6709
Hypothesis H3 : SNo x
L6710
Hypothesis H4 : SNo z
L6711
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6712
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6713
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6714
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6715
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6716
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6717
Hypothesis H12 : SNo (g x y)
L6718
Hypothesis H13 : SNo (g (g x y) z)
L6719
Hypothesis H14 : u SNoS_ (SNoLev x)
L6720
Hypothesis H15 : SNo v
L6721
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L6722
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L6723
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L6724
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6725
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6726
Hypothesis H21 : SNo u
L6727
Hypothesis H22 : SNo y2
L6728
Hypothesis H23 : SNo (g u (g y z))
L6729
Hypothesis H24 : SNo (g x v)
L6730
Hypothesis H25 : SNo (g x x2)
L6731
Hypothesis H26 : SNo (g u v)
L6732
Hypothesis H27 : SNo (g u x2)
L6733
Hypothesis H28 : SNo (g u y)
L6734
Hypothesis H29 : SNo (g x2 z)
L6735
Hypothesis H30 : SNo (g y y2)
L6736
Hypothesis H31 : SNo (g u (g x2 z))
L6737
Hypothesis H32 : SNo (g u (g y y2))
L6738
Hypothesis H33 : SNo (g x2 y2)
L6739
Hypothesis H34 : SNo (g x (g x2 y2))
L6740
Hypothesis H35 : SNo (g x (g x2 z))
L6741
Hypothesis H36 : SNo (g x (g y y2))
L6742
Hypothesis H37 : SNo (g u (g y z) + g x v)
L6743
Hypothesis H38 : SNo (g (g x y) z + g u v)
L6744
Hypothesis H39 : SNo (g u (g x2 y2))
L6745
Hypothesis H40 : SNo (g u (v + g x2 y2))
L6746
Theorem. (Conj_mul_SNo_assoc_lem1__4__8)
SNo (g u (g x2 z + g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__4__8
Beginning of Section Conj_mul_SNo_assoc_lem1__4__18
L6752
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__4__18 TMSNQ9v7jdToPn2XowpMzAZxtuxyWQU35tL bounty of about 25 bars ***)
L6753
Variable x : set
L6754
Variable y : set
L6755
Variable z : set
L6756
Variable w : set
L6757
Variable u : set
L6758
Variable v : set
L6759
Variable x2 : set
L6760
Variable y2 : set
L6761
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L6762
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6763
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6764
Hypothesis H3 : SNo x
L6765
Hypothesis H4 : SNo z
L6766
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6767
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6768
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6769
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6770
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6771
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6772
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6773
Hypothesis H12 : SNo (g x y)
L6774
Hypothesis H13 : SNo (g (g x y) z)
L6775
Hypothesis H14 : u SNoS_ (SNoLev x)
L6776
Hypothesis H15 : SNo v
L6777
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L6778
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L6779
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6780
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6781
Hypothesis H21 : SNo u
L6782
Hypothesis H22 : SNo y2
L6783
Hypothesis H23 : SNo (g u (g y z))
L6784
Hypothesis H24 : SNo (g x v)
L6785
Hypothesis H25 : SNo (g x x2)
L6786
Hypothesis H26 : SNo (g u v)
L6787
Hypothesis H27 : SNo (g u x2)
L6788
Hypothesis H28 : SNo (g u y)
L6789
Hypothesis H29 : SNo (g x2 z)
L6790
Hypothesis H30 : SNo (g y y2)
L6791
Hypothesis H31 : SNo (g u (g x2 z))
L6792
Hypothesis H32 : SNo (g u (g y y2))
L6793
Hypothesis H33 : SNo (g x2 y2)
L6794
Hypothesis H34 : SNo (g x (g x2 y2))
L6795
Hypothesis H35 : SNo (g x (g x2 z))
L6796
Hypothesis H36 : SNo (g x (g y y2))
L6797
Hypothesis H37 : SNo (g u (g y z) + g x v)
L6798
Hypothesis H38 : SNo (g (g x y) z + g u v)
L6799
Hypothesis H39 : SNo (g u (g x2 y2))
L6800
Hypothesis H40 : SNo (g u (v + g x2 y2))
L6801
Theorem. (Conj_mul_SNo_assoc_lem1__4__18)
SNo (g u (g x2 z + g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__4__18
Beginning of Section Conj_mul_SNo_assoc_lem1__4__27
L6807
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__4__27 TMRivtAg1Hpj5g8vE8JBaLWPNZ5M99bCppQ bounty of about 25 bars ***)
L6808
Variable x : set
L6809
Variable y : set
L6810
Variable z : set
L6811
Variable w : set
L6812
Variable u : set
L6813
Variable v : set
L6814
Variable x2 : set
L6815
Variable y2 : set
L6816
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L6817
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6818
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6819
Hypothesis H3 : SNo x
L6820
Hypothesis H4 : SNo z
L6821
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6822
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6823
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6824
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6825
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6826
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6827
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6828
Hypothesis H12 : SNo (g x y)
L6829
Hypothesis H13 : SNo (g (g x y) z)
L6830
Hypothesis H14 : u SNoS_ (SNoLev x)
L6831
Hypothesis H15 : SNo v
L6832
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L6833
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L6834
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L6835
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6836
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6837
Hypothesis H21 : SNo u
L6838
Hypothesis H22 : SNo y2
L6839
Hypothesis H23 : SNo (g u (g y z))
L6840
Hypothesis H24 : SNo (g x v)
L6841
Hypothesis H25 : SNo (g x x2)
L6842
Hypothesis H26 : SNo (g u v)
L6843
Hypothesis H28 : SNo (g u y)
L6844
Hypothesis H29 : SNo (g x2 z)
L6845
Hypothesis H30 : SNo (g y y2)
L6846
Hypothesis H31 : SNo (g u (g x2 z))
L6847
Hypothesis H32 : SNo (g u (g y y2))
L6848
Hypothesis H33 : SNo (g x2 y2)
L6849
Hypothesis H34 : SNo (g x (g x2 y2))
L6850
Hypothesis H35 : SNo (g x (g x2 z))
L6851
Hypothesis H36 : SNo (g x (g y y2))
L6852
Hypothesis H37 : SNo (g u (g y z) + g x v)
L6853
Hypothesis H38 : SNo (g (g x y) z + g u v)
L6854
Hypothesis H39 : SNo (g u (g x2 y2))
L6855
Hypothesis H40 : SNo (g u (v + g x2 y2))
L6856
Theorem. (Conj_mul_SNo_assoc_lem1__4__27)
SNo (g u (g x2 z + g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__4__27
Beginning of Section Conj_mul_SNo_assoc_lem1__6__15
L6862
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__6__15 TMMKp1bkq5dDyp14ALeW9ahjHFkKUqM2nvs bounty of about 25 bars ***)
L6863
Variable x : set
L6864
Variable y : set
L6865
Variable z : set
L6866
Variable w : set
L6867
Variable u : set
L6868
Variable v : set
L6869
Variable x2 : set
L6870
Variable y2 : set
L6871
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L6872
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6873
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6874
Hypothesis H3 : SNo x
L6875
Hypothesis H4 : SNo z
L6876
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6877
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6878
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6879
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6880
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6881
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6882
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6883
Hypothesis H12 : SNo (g x y)
L6884
Hypothesis H13 : SNo (g (g x y) z)
L6885
Hypothesis H14 : u SNoS_ (SNoLev x)
L6886
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L6887
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L6888
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L6889
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6890
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6891
Hypothesis H21 : SNo u
L6892
Hypothesis H22 : SNo y2
L6893
Hypothesis H23 : SNo (g u (g y z))
L6894
Hypothesis H24 : SNo (g x v)
L6895
Hypothesis H25 : SNo (g x x2)
L6896
Hypothesis H26 : SNo (g u v)
L6897
Hypothesis H27 : SNo (g u x2)
L6898
Hypothesis H28 : SNo (g u y)
L6899
Hypothesis H29 : SNo (g x2 z)
L6900
Hypothesis H30 : SNo (g y y2)
L6901
Hypothesis H31 : SNo (g u (g x2 z))
L6902
Hypothesis H32 : SNo (g u (g y y2))
L6903
Hypothesis H33 : SNo (g x2 y2)
L6904
Hypothesis H34 : SNo (g x (g x2 y2))
L6905
Hypothesis H35 : SNo (g x (g x2 z))
L6906
Hypothesis H36 : SNo (g x (g y y2))
L6907
Hypothesis H37 : SNo (g u (g y z) + g x v)
L6908
Hypothesis H38 : SNo (g (g x y) z + g u v)
L6909
Hypothesis H39 : SNo (g u (g x2 y2))
L6910
Theorem. (Conj_mul_SNo_assoc_lem1__6__15)
SNo (v + g x2 y2)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__6__15
Beginning of Section Conj_mul_SNo_assoc_lem1__6__31
L6916
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__6__31 TMPXcW5uzUy7EqAgtSNhTECT8qPW2egc1Ur bounty of about 25 bars ***)
L6917
Variable x : set
L6918
Variable y : set
L6919
Variable z : set
L6920
Variable w : set
L6921
Variable u : set
L6922
Variable v : set
L6923
Variable x2 : set
L6924
Variable y2 : set
L6925
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L6926
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6927
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6928
Hypothesis H3 : SNo x
L6929
Hypothesis H4 : SNo z
L6930
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6931
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6932
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6933
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6934
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6935
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6936
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6937
Hypothesis H12 : SNo (g x y)
L6938
Hypothesis H13 : SNo (g (g x y) z)
L6939
Hypothesis H14 : u SNoS_ (SNoLev x)
L6940
Hypothesis H15 : SNo v
L6941
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L6942
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L6943
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L6944
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6945
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L6946
Hypothesis H21 : SNo u
L6947
Hypothesis H22 : SNo y2
L6948
Hypothesis H23 : SNo (g u (g y z))
L6949
Hypothesis H24 : SNo (g x v)
L6950
Hypothesis H25 : SNo (g x x2)
L6951
Hypothesis H26 : SNo (g u v)
L6952
Hypothesis H27 : SNo (g u x2)
L6953
Hypothesis H28 : SNo (g u y)
L6954
Hypothesis H29 : SNo (g x2 z)
L6955
Hypothesis H30 : SNo (g y y2)
L6956
Hypothesis H32 : SNo (g u (g y y2))
L6957
Hypothesis H33 : SNo (g x2 y2)
L6958
Hypothesis H34 : SNo (g x (g x2 y2))
L6959
Hypothesis H35 : SNo (g x (g x2 z))
L6960
Hypothesis H36 : SNo (g x (g y y2))
L6961
Hypothesis H37 : SNo (g u (g y z) + g x v)
L6962
Hypothesis H38 : SNo (g (g x y) z + g u v)
L6963
Hypothesis H39 : SNo (g u (g x2 y2))
L6964
Theorem. (Conj_mul_SNo_assoc_lem1__6__31)
SNo (v + g x2 y2)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__6__31
Beginning of Section Conj_mul_SNo_assoc_lem1__6__39
L6970
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__6__39 TMTWYzUV5UDpy1hKuhnZarfTwo7KBRde5wJ bounty of about 25 bars ***)
L6971
Variable x : set
L6972
Variable y : set
L6973
Variable z : set
L6974
Variable w : set
L6975
Variable u : set
L6976
Variable v : set
L6977
Variable x2 : set
L6978
Variable y2 : set
L6979
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L6980
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L6981
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L6982
Hypothesis H3 : SNo x
L6983
Hypothesis H4 : SNo z
L6984
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L6985
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L6986
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L6987
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L6988
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L6989
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L6990
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L6991
Hypothesis H12 : SNo (g x y)
L6992
Hypothesis H13 : SNo (g (g x y) z)
L6993
Hypothesis H14 : u SNoS_ (SNoLev x)
L6994
Hypothesis H15 : SNo v
L6995
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L6996
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L6997
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L6998
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L6999
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7000
Hypothesis H21 : SNo u
L7001
Hypothesis H22 : SNo y2
L7002
Hypothesis H23 : SNo (g u (g y z))
L7003
Hypothesis H24 : SNo (g x v)
L7004
Hypothesis H25 : SNo (g x x2)
L7005
Hypothesis H26 : SNo (g u v)
L7006
Hypothesis H27 : SNo (g u x2)
L7007
Hypothesis H28 : SNo (g u y)
L7008
Hypothesis H29 : SNo (g x2 z)
L7009
Hypothesis H30 : SNo (g y y2)
L7010
Hypothesis H31 : SNo (g u (g x2 z))
L7011
Hypothesis H32 : SNo (g u (g y y2))
L7012
Hypothesis H33 : SNo (g x2 y2)
L7013
Hypothesis H34 : SNo (g x (g x2 y2))
L7014
Hypothesis H35 : SNo (g x (g x2 z))
L7015
Hypothesis H36 : SNo (g x (g y y2))
L7016
Hypothesis H37 : SNo (g u (g y z) + g x v)
L7017
Hypothesis H38 : SNo (g (g x y) z + g u v)
L7018
Theorem. (Conj_mul_SNo_assoc_lem1__6__39)
SNo (v + g x2 y2)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__6__39
Beginning of Section Conj_mul_SNo_assoc_lem1__9__22
L7024
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__9__22 TML5UvhA1EB19XK4JVreoGD2HLShnGjvJ1L bounty of about 25 bars ***)
L7025
Variable x : set
L7026
Variable y : set
L7027
Variable z : set
L7028
Variable w : set
L7029
Variable u : set
L7030
Variable v : set
L7031
Variable x2 : set
L7032
Variable y2 : set
L7033
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7034
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7035
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7036
Hypothesis H3 : SNo x
L7037
Hypothesis H4 : SNo z
L7038
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7039
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7040
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7041
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7042
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7043
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7044
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7045
Hypothesis H12 : SNo (g x y)
L7046
Hypothesis H13 : SNo (g (g x y) z)
L7047
Hypothesis H14 : u SNoS_ (SNoLev x)
L7048
Hypothesis H15 : SNo v
L7049
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7050
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7051
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7052
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7053
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7054
Hypothesis H21 : SNo u
L7055
Hypothesis H23 : SNo (g u (g y z))
L7056
Hypothesis H24 : SNo (g x v)
L7057
Hypothesis H25 : SNo (g x x2)
L7058
Hypothesis H26 : SNo (g u v)
L7059
Hypothesis H27 : SNo (g u x2)
L7060
Hypothesis H28 : SNo (g u y)
L7061
Hypothesis H29 : SNo (g x2 z)
L7062
Hypothesis H30 : SNo (g y y2)
L7063
Hypothesis H31 : SNo (g u (g x2 z))
L7064
Hypothesis H32 : SNo (g u (g y y2))
L7065
Hypothesis H33 : SNo (g x2 y2)
L7066
Hypothesis H34 : SNo (g x (g x2 y2))
L7067
Hypothesis H35 : SNo (g x (g x2 z))
L7068
Hypothesis H36 : SNo (g x (g y y2))
L7069
Theorem. (Conj_mul_SNo_assoc_lem1__9__22)
SNo (g u (g y z) + g x v)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__9__22
Beginning of Section Conj_mul_SNo_assoc_lem1__10__14
L7075
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__10__14 TMciT5MQuzNPVkBa3VvEFY6mhkvQM44PZuM bounty of about 25 bars ***)
L7076
Variable x : set
L7077
Variable y : set
L7078
Variable z : set
L7079
Variable w : set
L7080
Variable u : set
L7081
Variable v : set
L7082
Variable x2 : set
L7083
Variable y2 : set
L7084
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7085
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7086
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7087
Hypothesis H3 : SNo x
L7088
Hypothesis H4 : SNo z
L7089
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7090
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7091
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7092
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7093
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7094
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7095
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7096
Hypothesis H12 : SNo (g x y)
L7097
Hypothesis H13 : SNo (g (g x y) z)
L7098
Hypothesis H15 : SNo v
L7099
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7100
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7101
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7102
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7103
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7104
Hypothesis H21 : SNo u
L7105
Hypothesis H22 : SNo y2
L7106
Hypothesis H23 : SNo (g u (g y z))
L7107
Hypothesis H24 : SNo (g x v)
L7108
Hypothesis H25 : SNo (g x x2)
L7109
Hypothesis H26 : SNo (g u v)
L7110
Hypothesis H27 : SNo (g u x2)
L7111
Hypothesis H28 : SNo (g u y)
L7112
Hypothesis H29 : SNo (g x2 z)
L7113
Hypothesis H30 : SNo (g y y2)
L7114
Hypothesis H31 : SNo (g u (g x2 z))
L7115
Hypothesis H32 : SNo (g u (g y y2))
L7116
Hypothesis H33 : SNo (g x2 y2)
L7117
Hypothesis H34 : SNo (g x (g x2 y2))
L7118
Hypothesis H35 : SNo (g x (g x2 z))
L7119
Theorem. (Conj_mul_SNo_assoc_lem1__10__14)
SNo (g x (g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__10__14
Beginning of Section Conj_mul_SNo_assoc_lem1__10__16
L7125
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__10__16 TMQQUwReS53D6Ao3Pua1pAeLJXeWQanM8Uf bounty of about 25 bars ***)
L7126
Variable x : set
L7127
Variable y : set
L7128
Variable z : set
L7129
Variable w : set
L7130
Variable u : set
L7131
Variable v : set
L7132
Variable x2 : set
L7133
Variable y2 : set
L7134
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7135
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7136
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7137
Hypothesis H3 : SNo x
L7138
Hypothesis H4 : SNo z
L7139
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7140
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7141
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7142
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7143
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7144
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7145
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7146
Hypothesis H12 : SNo (g x y)
L7147
Hypothesis H13 : SNo (g (g x y) z)
L7148
Hypothesis H14 : u SNoS_ (SNoLev x)
L7149
Hypothesis H15 : SNo v
L7150
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7151
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7152
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7153
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7154
Hypothesis H21 : SNo u
L7155
Hypothesis H22 : SNo y2
L7156
Hypothesis H23 : SNo (g u (g y z))
L7157
Hypothesis H24 : SNo (g x v)
L7158
Hypothesis H25 : SNo (g x x2)
L7159
Hypothesis H26 : SNo (g u v)
L7160
Hypothesis H27 : SNo (g u x2)
L7161
Hypothesis H28 : SNo (g u y)
L7162
Hypothesis H29 : SNo (g x2 z)
L7163
Hypothesis H30 : SNo (g y y2)
L7164
Hypothesis H31 : SNo (g u (g x2 z))
L7165
Hypothesis H32 : SNo (g u (g y y2))
L7166
Hypothesis H33 : SNo (g x2 y2)
L7167
Hypothesis H34 : SNo (g x (g x2 y2))
L7168
Hypothesis H35 : SNo (g x (g x2 z))
L7169
Theorem. (Conj_mul_SNo_assoc_lem1__10__16)
SNo (g x (g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__10__16
Beginning of Section Conj_mul_SNo_assoc_lem1__10__19
L7175
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__10__19 TMRVGx7eJ9f36S1ZzNyy8Y1R5BCct4CBbU6 bounty of about 25 bars ***)
L7176
Variable x : set
L7177
Variable y : set
L7178
Variable z : set
L7179
Variable w : set
L7180
Variable u : set
L7181
Variable v : set
L7182
Variable x2 : set
L7183
Variable y2 : set
L7184
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7185
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7186
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7187
Hypothesis H3 : SNo x
L7188
Hypothesis H4 : SNo z
L7189
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7190
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7191
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7192
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7193
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7194
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7195
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7196
Hypothesis H12 : SNo (g x y)
L7197
Hypothesis H13 : SNo (g (g x y) z)
L7198
Hypothesis H14 : u SNoS_ (SNoLev x)
L7199
Hypothesis H15 : SNo v
L7200
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7201
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7202
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7203
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7204
Hypothesis H21 : SNo u
L7205
Hypothesis H22 : SNo y2
L7206
Hypothesis H23 : SNo (g u (g y z))
L7207
Hypothesis H24 : SNo (g x v)
L7208
Hypothesis H25 : SNo (g x x2)
L7209
Hypothesis H26 : SNo (g u v)
L7210
Hypothesis H27 : SNo (g u x2)
L7211
Hypothesis H28 : SNo (g u y)
L7212
Hypothesis H29 : SNo (g x2 z)
L7213
Hypothesis H30 : SNo (g y y2)
L7214
Hypothesis H31 : SNo (g u (g x2 z))
L7215
Hypothesis H32 : SNo (g u (g y y2))
L7216
Hypothesis H33 : SNo (g x2 y2)
L7217
Hypothesis H34 : SNo (g x (g x2 y2))
L7218
Hypothesis H35 : SNo (g x (g x2 z))
L7219
Theorem. (Conj_mul_SNo_assoc_lem1__10__19)
SNo (g x (g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__10__19
Beginning of Section Conj_mul_SNo_assoc_lem1__10__26
L7225
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__10__26 TMWFSt8CQsyePtHHgC3w6gXt9FkTq72zq6n bounty of about 25 bars ***)
L7226
Variable x : set
L7227
Variable y : set
L7228
Variable z : set
L7229
Variable w : set
L7230
Variable u : set
L7231
Variable v : set
L7232
Variable x2 : set
L7233
Variable y2 : set
L7234
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7235
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7236
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7237
Hypothesis H3 : SNo x
L7238
Hypothesis H4 : SNo z
L7239
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7240
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7241
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7242
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7243
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7244
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7245
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7246
Hypothesis H12 : SNo (g x y)
L7247
Hypothesis H13 : SNo (g (g x y) z)
L7248
Hypothesis H14 : u SNoS_ (SNoLev x)
L7249
Hypothesis H15 : SNo v
L7250
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7251
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7252
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7253
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7254
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7255
Hypothesis H21 : SNo u
L7256
Hypothesis H22 : SNo y2
L7257
Hypothesis H23 : SNo (g u (g y z))
L7258
Hypothesis H24 : SNo (g x v)
L7259
Hypothesis H25 : SNo (g x x2)
L7260
Hypothesis H27 : SNo (g u x2)
L7261
Hypothesis H28 : SNo (g u y)
L7262
Hypothesis H29 : SNo (g x2 z)
L7263
Hypothesis H30 : SNo (g y y2)
L7264
Hypothesis H31 : SNo (g u (g x2 z))
L7265
Hypothesis H32 : SNo (g u (g y y2))
L7266
Hypothesis H33 : SNo (g x2 y2)
L7267
Hypothesis H34 : SNo (g x (g x2 y2))
L7268
Hypothesis H35 : SNo (g x (g x2 z))
L7269
Theorem. (Conj_mul_SNo_assoc_lem1__10__26)
SNo (g x (g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__10__26
Beginning of Section Conj_mul_SNo_assoc_lem1__12__2
L7275
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__12__2 TMZo1YdifN3e5enp4ydBHys7i9ghGmkcy3N bounty of about 25 bars ***)
L7276
Variable x : set
L7277
Variable y : set
L7278
Variable z : set
L7279
Variable w : set
L7280
Variable u : set
L7281
Variable v : set
L7282
Variable x2 : set
L7283
Variable y2 : set
L7284
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7285
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7286
Hypothesis H3 : SNo x
L7287
Hypothesis H4 : SNo z
L7288
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7289
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7290
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7291
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7292
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7293
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7294
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7295
Hypothesis H12 : SNo (g x y)
L7296
Hypothesis H13 : SNo (g (g x y) z)
L7297
Hypothesis H14 : u SNoS_ (SNoLev x)
L7298
Hypothesis H15 : SNo v
L7299
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7300
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7301
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7302
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7303
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7304
Hypothesis H21 : SNo u
L7305
Hypothesis H22 : SNo y2
L7306
Hypothesis H23 : SNo (g u (g y z))
L7307
Hypothesis H24 : SNo (g x v)
L7308
Hypothesis H25 : SNo (g x x2)
L7309
Hypothesis H26 : SNo (g u v)
L7310
Hypothesis H27 : SNo (g u x2)
L7311
Hypothesis H28 : SNo (g u y)
L7312
Hypothesis H29 : SNo (g x2 z)
L7313
Hypothesis H30 : SNo (g y y2)
L7314
Hypothesis H31 : SNo (g u (g x2 z))
L7315
Hypothesis H32 : SNo (g u (g y y2))
L7316
Hypothesis H33 : SNo (g x2 y2)
L7317
Theorem. (Conj_mul_SNo_assoc_lem1__12__2)
SNo (g x (g x2 y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__12__2
Beginning of Section Conj_mul_SNo_assoc_lem1__12__16
L7323
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__12__16 TMPXwsxij2gSSDac57YbY16Wika8rQ18gTL bounty of about 25 bars ***)
L7324
Variable x : set
L7325
Variable y : set
L7326
Variable z : set
L7327
Variable w : set
L7328
Variable u : set
L7329
Variable v : set
L7330
Variable x2 : set
L7331
Variable y2 : set
L7332
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7333
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7334
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7335
Hypothesis H3 : SNo x
L7336
Hypothesis H4 : SNo z
L7337
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7338
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7339
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7340
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7341
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7342
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7343
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7344
Hypothesis H12 : SNo (g x y)
L7345
Hypothesis H13 : SNo (g (g x y) z)
L7346
Hypothesis H14 : u SNoS_ (SNoLev x)
L7347
Hypothesis H15 : SNo v
L7348
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7349
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7350
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7351
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7352
Hypothesis H21 : SNo u
L7353
Hypothesis H22 : SNo y2
L7354
Hypothesis H23 : SNo (g u (g y z))
L7355
Hypothesis H24 : SNo (g x v)
L7356
Hypothesis H25 : SNo (g x x2)
L7357
Hypothesis H26 : SNo (g u v)
L7358
Hypothesis H27 : SNo (g u x2)
L7359
Hypothesis H28 : SNo (g u y)
L7360
Hypothesis H29 : SNo (g x2 z)
L7361
Hypothesis H30 : SNo (g y y2)
L7362
Hypothesis H31 : SNo (g u (g x2 z))
L7363
Hypothesis H32 : SNo (g u (g y y2))
L7364
Hypothesis H33 : SNo (g x2 y2)
L7365
Theorem. (Conj_mul_SNo_assoc_lem1__12__16)
SNo (g x (g x2 y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__12__16
Beginning of Section Conj_mul_SNo_assoc_lem1__12__17
L7371
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__12__17 TMVnHxQQNK4PGT3sHgK5wJFtaB6LWs1aEWx bounty of about 25 bars ***)
L7372
Variable x : set
L7373
Variable y : set
L7374
Variable z : set
L7375
Variable w : set
L7376
Variable u : set
L7377
Variable v : set
L7378
Variable x2 : set
L7379
Variable y2 : set
L7380
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7381
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7382
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7383
Hypothesis H3 : SNo x
L7384
Hypothesis H4 : SNo z
L7385
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7386
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7387
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7388
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7389
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7390
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7391
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7392
Hypothesis H12 : SNo (g x y)
L7393
Hypothesis H13 : SNo (g (g x y) z)
L7394
Hypothesis H14 : u SNoS_ (SNoLev x)
L7395
Hypothesis H15 : SNo v
L7396
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7397
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7398
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7399
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7400
Hypothesis H21 : SNo u
L7401
Hypothesis H22 : SNo y2
L7402
Hypothesis H23 : SNo (g u (g y z))
L7403
Hypothesis H24 : SNo (g x v)
L7404
Hypothesis H25 : SNo (g x x2)
L7405
Hypothesis H26 : SNo (g u v)
L7406
Hypothesis H27 : SNo (g u x2)
L7407
Hypothesis H28 : SNo (g u y)
L7408
Hypothesis H29 : SNo (g x2 z)
L7409
Hypothesis H30 : SNo (g y y2)
L7410
Hypothesis H31 : SNo (g u (g x2 z))
L7411
Hypothesis H32 : SNo (g u (g y y2))
L7412
Hypothesis H33 : SNo (g x2 y2)
L7413
Theorem. (Conj_mul_SNo_assoc_lem1__12__17)
SNo (g x (g x2 y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__12__17
Beginning of Section Conj_mul_SNo_assoc_lem1__13__6
L7419
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__13__6 TMMq2w8qWm3wmZmQdsNFjkpwHhP7uU6Vc8V bounty of about 25 bars ***)
L7420
Variable x : set
L7421
Variable y : set
L7422
Variable z : set
L7423
Variable w : set
L7424
Variable u : set
L7425
Variable v : set
L7426
Variable x2 : set
L7427
Variable y2 : set
L7428
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7429
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7430
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7431
Hypothesis H3 : SNo x
L7432
Hypothesis H4 : SNo z
L7433
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7434
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7435
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7436
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7437
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7438
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7439
Hypothesis H12 : SNo (g x y)
L7440
Hypothesis H13 : SNo (g (g x y) z)
L7441
Hypothesis H14 : u SNoS_ (SNoLev x)
L7442
Hypothesis H15 : SNo v
L7443
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7444
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7445
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7446
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7447
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7448
Hypothesis H21 : SNo u
L7449
Hypothesis H22 : SNo x2
L7450
Hypothesis H23 : SNo y2
L7451
Hypothesis H24 : SNo (g u (g y z))
L7452
Hypothesis H25 : SNo (g x v)
L7453
Hypothesis H26 : SNo (g x x2)
L7454
Hypothesis H27 : SNo (g u v)
L7455
Hypothesis H28 : SNo (g u x2)
L7456
Hypothesis H29 : SNo (g u y)
L7457
Hypothesis H30 : SNo (g x2 z)
L7458
Hypothesis H31 : SNo (g y y2)
L7459
Hypothesis H32 : SNo (g u (g x2 z))
L7460
Hypothesis H33 : SNo (g u (g y y2))
L7461
Theorem. (Conj_mul_SNo_assoc_lem1__13__6)
SNo (g x2 y2)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__13__6
Beginning of Section Conj_mul_SNo_assoc_lem1__13__12
L7467
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__13__12 TMa3hMPDPyKTYUenuDmjD9MyWFLydGTRNaD bounty of about 25 bars ***)
L7468
Variable x : set
L7469
Variable y : set
L7470
Variable z : set
L7471
Variable w : set
L7472
Variable u : set
L7473
Variable v : set
L7474
Variable x2 : set
L7475
Variable y2 : set
L7476
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7477
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7478
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7479
Hypothesis H3 : SNo x
L7480
Hypothesis H4 : SNo z
L7481
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7482
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7483
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7484
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7485
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7486
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7487
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7488
Hypothesis H13 : SNo (g (g x y) z)
L7489
Hypothesis H14 : u SNoS_ (SNoLev x)
L7490
Hypothesis H15 : SNo v
L7491
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7492
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7493
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7494
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7495
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7496
Hypothesis H21 : SNo u
L7497
Hypothesis H22 : SNo x2
L7498
Hypothesis H23 : SNo y2
L7499
Hypothesis H24 : SNo (g u (g y z))
L7500
Hypothesis H25 : SNo (g x v)
L7501
Hypothesis H26 : SNo (g x x2)
L7502
Hypothesis H27 : SNo (g u v)
L7503
Hypothesis H28 : SNo (g u x2)
L7504
Hypothesis H29 : SNo (g u y)
L7505
Hypothesis H30 : SNo (g x2 z)
L7506
Hypothesis H31 : SNo (g y y2)
L7507
Hypothesis H32 : SNo (g u (g x2 z))
L7508
Hypothesis H33 : SNo (g u (g y y2))
L7509
Theorem. (Conj_mul_SNo_assoc_lem1__13__12)
SNo (g x2 y2)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__13__12
Beginning of Section Conj_mul_SNo_assoc_lem1__13__26
L7515
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__13__26 TMZ1iaAArizmmL56DcJgDa6t1M26M8Bgzmi bounty of about 25 bars ***)
L7516
Variable x : set
L7517
Variable y : set
L7518
Variable z : set
L7519
Variable w : set
L7520
Variable u : set
L7521
Variable v : set
L7522
Variable x2 : set
L7523
Variable y2 : set
L7524
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7525
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7526
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7527
Hypothesis H3 : SNo x
L7528
Hypothesis H4 : SNo z
L7529
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7530
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7531
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7532
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7533
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7534
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7535
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7536
Hypothesis H12 : SNo (g x y)
L7537
Hypothesis H13 : SNo (g (g x y) z)
L7538
Hypothesis H14 : u SNoS_ (SNoLev x)
L7539
Hypothesis H15 : SNo v
L7540
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7541
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7542
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7543
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7544
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7545
Hypothesis H21 : SNo u
L7546
Hypothesis H22 : SNo x2
L7547
Hypothesis H23 : SNo y2
L7548
Hypothesis H24 : SNo (g u (g y z))
L7549
Hypothesis H25 : SNo (g x v)
L7550
Hypothesis H27 : SNo (g u v)
L7551
Hypothesis H28 : SNo (g u x2)
L7552
Hypothesis H29 : SNo (g u y)
L7553
Hypothesis H30 : SNo (g x2 z)
L7554
Hypothesis H31 : SNo (g y y2)
L7555
Hypothesis H32 : SNo (g u (g x2 z))
L7556
Hypothesis H33 : SNo (g u (g y y2))
L7557
Theorem. (Conj_mul_SNo_assoc_lem1__13__26)
SNo (g x2 y2)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__13__26
Beginning of Section Conj_mul_SNo_assoc_lem1__14__12
L7563
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__14__12 TMTrG48ZSckWqGvwCzWNNEhyG34pswmW1KS bounty of about 25 bars ***)
L7564
Variable x : set
L7565
Variable y : set
L7566
Variable z : set
L7567
Variable w : set
L7568
Variable u : set
L7569
Variable v : set
L7570
Variable x2 : set
L7571
Variable y2 : set
L7572
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7573
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7574
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7575
Hypothesis H3 : SNo x
L7576
Hypothesis H4 : SNo z
L7577
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7578
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7579
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7580
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7581
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7582
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7583
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7584
Hypothesis H13 : SNo (g (g x y) z)
L7585
Hypothesis H14 : u SNoS_ (SNoLev x)
L7586
Hypothesis H15 : SNo v
L7587
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7588
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7589
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7590
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7591
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7592
Hypothesis H21 : SNo u
L7593
Hypothesis H22 : SNo x2
L7594
Hypothesis H23 : SNo y2
L7595
Hypothesis H24 : SNo (g u (g y z))
L7596
Hypothesis H25 : SNo (g x v)
L7597
Hypothesis H26 : SNo (g x x2)
L7598
Hypothesis H27 : SNo (g u v)
L7599
Hypothesis H28 : SNo (g u x2)
L7600
Hypothesis H29 : SNo (g u y)
L7601
Hypothesis H30 : SNo (g x2 z)
L7602
Hypothesis H31 : SNo (g y y2)
L7603
Hypothesis H32 : SNo (g u (g x2 z))
L7604
Theorem. (Conj_mul_SNo_assoc_lem1__14__12)
SNo (g u (g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__14__12
Beginning of Section Conj_mul_SNo_assoc_lem1__14__21
L7610
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__14__21 TMFpz8ZrD1CgD8aTy4QqkjTACqbqDxvi3AN bounty of about 25 bars ***)
L7611
Variable x : set
L7612
Variable y : set
L7613
Variable z : set
L7614
Variable w : set
L7615
Variable u : set
L7616
Variable v : set
L7617
Variable x2 : set
L7618
Variable y2 : set
L7619
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7620
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7621
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7622
Hypothesis H3 : SNo x
L7623
Hypothesis H4 : SNo z
L7624
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7625
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7626
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7627
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7628
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7629
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7630
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7631
Hypothesis H12 : SNo (g x y)
L7632
Hypothesis H13 : SNo (g (g x y) z)
L7633
Hypothesis H14 : u SNoS_ (SNoLev x)
L7634
Hypothesis H15 : SNo v
L7635
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7636
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7637
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7638
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7639
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7640
Hypothesis H22 : SNo x2
L7641
Hypothesis H23 : SNo y2
L7642
Hypothesis H24 : SNo (g u (g y z))
L7643
Hypothesis H25 : SNo (g x v)
L7644
Hypothesis H26 : SNo (g x x2)
L7645
Hypothesis H27 : SNo (g u v)
L7646
Hypothesis H28 : SNo (g u x2)
L7647
Hypothesis H29 : SNo (g u y)
L7648
Hypothesis H30 : SNo (g x2 z)
L7649
Hypothesis H31 : SNo (g y y2)
L7650
Hypothesis H32 : SNo (g u (g x2 z))
L7651
Theorem. (Conj_mul_SNo_assoc_lem1__14__21)
SNo (g u (g y y2))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__14__21
Beginning of Section Conj_mul_SNo_assoc_lem1__15__6
L7657
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__15__6 TMHEBdM2iQR8sxxGuChA4vnQ52YjKV8QT9x bounty of about 25 bars ***)
L7658
Variable x : set
L7659
Variable y : set
L7660
Variable z : set
L7661
Variable w : set
L7662
Variable u : set
L7663
Variable v : set
L7664
Variable x2 : set
L7665
Variable y2 : set
L7666
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7667
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7668
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7669
Hypothesis H3 : SNo x
L7670
Hypothesis H4 : SNo z
L7671
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7672
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7673
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7674
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7675
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7676
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7677
Hypothesis H12 : SNo (g x y)
L7678
Hypothesis H13 : SNo (g (g x y) z)
L7679
Hypothesis H14 : u SNoS_ (SNoLev x)
L7680
Hypothesis H15 : SNo v
L7681
Hypothesis H16 : x2 SNoS_ (SNoLev y)
L7682
Hypothesis H17 : y2 SNoS_ (SNoLev z)
L7683
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
L7684
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7685
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7686
Hypothesis H21 : SNo u
L7687
Hypothesis H22 : SNo x2
L7688
Hypothesis H23 : SNo y2
L7689
Hypothesis H24 : SNo (g u (g y z))
L7690
Hypothesis H25 : SNo (g x v)
L7691
Hypothesis H26 : SNo (g x x2)
L7692
Hypothesis H27 : SNo (g u v)
L7693
Hypothesis H28 : SNo (g u x2)
L7694
Hypothesis H29 : SNo (g u y)
L7695
Hypothesis H30 : SNo (g x2 z)
L7696
Hypothesis H31 : SNo (g y y2)
L7697
Theorem. (Conj_mul_SNo_assoc_lem1__15__6)
SNo (g u (g x2 z))w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__15__6
Beginning of Section Conj_mul_SNo_assoc_lem1__17__0
L7703
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__17__0 TMWedQg5CTC7ex2qFLyh3WZun2S5CvtZppW bounty of about 25 bars ***)
L7704
Variable x : set
L7705
Variable y : set
L7706
Variable z : set
L7707
Variable w : set
L7708
Variable u : set
L7709
Variable v : set
L7710
Variable x2 : set
L7711
Variable y2 : set
L7712
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7713
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7714
Hypothesis H3 : SNo x
L7715
Hypothesis H4 : SNo y
L7716
Hypothesis H5 : SNo z
L7717
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7718
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7719
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7720
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7721
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7722
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7723
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7724
Hypothesis H13 : SNo (g x y)
L7725
Hypothesis H14 : SNo (g (g x y) z)
L7726
Hypothesis H15 : u SNoS_ (SNoLev x)
L7727
Hypothesis H16 : SNo v
L7728
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L7729
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L7730
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L7731
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7732
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7733
Hypothesis H22 : SNo u
L7734
Hypothesis H23 : SNo x2
L7735
Hypothesis H24 : SNo y2
L7736
Hypothesis H25 : SNo (g u (g y z))
L7737
Hypothesis H26 : SNo (g x v)
L7738
Hypothesis H27 : SNo (g x x2)
L7739
Hypothesis H28 : SNo (g u v)
L7740
Hypothesis H29 : SNo (g u x2)
L7741
Hypothesis H30 : SNo (g u y)
L7742
Theorem. (Conj_mul_SNo_assoc_lem1__17__0)
SNo (g x2 z)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__17__0
Beginning of Section Conj_mul_SNo_assoc_lem1__17__2
L7748
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__17__2 TMW4cHKhGeVSoDs8o9MKboxwjgkF7HcmLKi bounty of about 25 bars ***)
L7749
Variable x : set
L7750
Variable y : set
L7751
Variable z : set
L7752
Variable w : set
L7753
Variable u : set
L7754
Variable v : set
L7755
Variable x2 : set
L7756
Variable y2 : set
L7757
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7758
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7759
Hypothesis H3 : SNo x
L7760
Hypothesis H4 : SNo y
L7761
Hypothesis H5 : SNo z
L7762
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7763
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7764
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7765
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7766
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7767
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7768
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7769
Hypothesis H13 : SNo (g x y)
L7770
Hypothesis H14 : SNo (g (g x y) z)
L7771
Hypothesis H15 : u SNoS_ (SNoLev x)
L7772
Hypothesis H16 : SNo v
L7773
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L7774
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L7775
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L7776
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7777
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7778
Hypothesis H22 : SNo u
L7779
Hypothesis H23 : SNo x2
L7780
Hypothesis H24 : SNo y2
L7781
Hypothesis H25 : SNo (g u (g y z))
L7782
Hypothesis H26 : SNo (g x v)
L7783
Hypothesis H27 : SNo (g x x2)
L7784
Hypothesis H28 : SNo (g u v)
L7785
Hypothesis H29 : SNo (g u x2)
L7786
Hypothesis H30 : SNo (g u y)
L7787
Theorem. (Conj_mul_SNo_assoc_lem1__17__2)
SNo (g x2 z)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__17__2
Beginning of Section Conj_mul_SNo_assoc_lem1__17__14
L7793
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__17__14 TMWJwMJWR15yeki7TxMRQhNDYjo5YENFH1V bounty of about 25 bars ***)
L7794
Variable x : set
L7795
Variable y : set
L7796
Variable z : set
L7797
Variable w : set
L7798
Variable u : set
L7799
Variable v : set
L7800
Variable x2 : set
L7801
Variable y2 : set
L7802
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7803
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7804
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7805
Hypothesis H3 : SNo x
L7806
Hypothesis H4 : SNo y
L7807
Hypothesis H5 : SNo z
L7808
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7809
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7810
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7811
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7812
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7813
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7814
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7815
Hypothesis H13 : SNo (g x y)
L7816
Hypothesis H15 : u SNoS_ (SNoLev x)
L7817
Hypothesis H16 : SNo v
L7818
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L7819
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L7820
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L7821
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7822
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7823
Hypothesis H22 : SNo u
L7824
Hypothesis H23 : SNo x2
L7825
Hypothesis H24 : SNo y2
L7826
Hypothesis H25 : SNo (g u (g y z))
L7827
Hypothesis H26 : SNo (g x v)
L7828
Hypothesis H27 : SNo (g x x2)
L7829
Hypothesis H28 : SNo (g u v)
L7830
Hypothesis H29 : SNo (g u x2)
L7831
Hypothesis H30 : SNo (g u y)
L7832
Theorem. (Conj_mul_SNo_assoc_lem1__17__14)
SNo (g x2 z)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__17__14
Beginning of Section Conj_mul_SNo_assoc_lem1__18__24
L7838
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__18__24 TMYPtSgqDEFm4NbTPaDe1sr88v4ZMUEHije bounty of about 25 bars ***)
L7839
Variable x : set
L7840
Variable y : set
L7841
Variable z : set
L7842
Variable w : set
L7843
Variable u : set
L7844
Variable v : set
L7845
Variable x2 : set
L7846
Variable y2 : set
L7847
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7848
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7849
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7850
Hypothesis H3 : SNo x
L7851
Hypothesis H4 : SNo y
L7852
Hypothesis H5 : SNo z
L7853
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7854
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7855
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7856
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7857
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7858
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7859
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7860
Hypothesis H13 : SNo (g x y)
L7861
Hypothesis H14 : SNo (g (g x y) z)
L7862
Hypothesis H15 : u SNoS_ (SNoLev x)
L7863
Hypothesis H16 : SNo v
L7864
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L7865
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L7866
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L7867
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7868
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7869
Hypothesis H22 : SNo u
L7870
Hypothesis H23 : SNo x2
L7871
Hypothesis H25 : SNo (g u (g y z))
L7872
Hypothesis H26 : SNo (g x v)
L7873
Hypothesis H27 : SNo (g x x2)
L7874
Hypothesis H28 : SNo (g u v)
L7875
Hypothesis H29 : SNo (g u x2)
L7876
Theorem. (Conj_mul_SNo_assoc_lem1__18__24)
SNo (g u y)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__18__24
Beginning of Section Conj_mul_SNo_assoc_lem1__18__27
L7882
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__18__27 TMR3Xczm7LHwMZp8fFPDwDaHkeHYkCdxsPP bounty of about 25 bars ***)
L7883
Variable x : set
L7884
Variable y : set
L7885
Variable z : set
L7886
Variable w : set
L7887
Variable u : set
L7888
Variable v : set
L7889
Variable x2 : set
L7890
Variable y2 : set
L7891
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7892
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7893
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7894
Hypothesis H3 : SNo x
L7895
Hypothesis H4 : SNo y
L7896
Hypothesis H5 : SNo z
L7897
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7898
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7899
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7900
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7901
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7902
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7903
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7904
Hypothesis H13 : SNo (g x y)
L7905
Hypothesis H14 : SNo (g (g x y) z)
L7906
Hypothesis H15 : u SNoS_ (SNoLev x)
L7907
Hypothesis H16 : SNo v
L7908
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L7909
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L7910
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L7911
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7912
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7913
Hypothesis H22 : SNo u
L7914
Hypothesis H23 : SNo x2
L7915
Hypothesis H24 : SNo y2
L7916
Hypothesis H25 : SNo (g u (g y z))
L7917
Hypothesis H26 : SNo (g x v)
L7918
Hypothesis H28 : SNo (g u v)
L7919
Hypothesis H29 : SNo (g u x2)
L7920
Theorem. (Conj_mul_SNo_assoc_lem1__18__27)
SNo (g u y)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__18__27
Beginning of Section Conj_mul_SNo_assoc_lem1__19__13
L7926
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__19__13 TMbQw1uPYngB8ZEjaNZREXfTr4Aj8YNm2My bounty of about 25 bars ***)
L7927
Variable x : set
L7928
Variable y : set
L7929
Variable z : set
L7930
Variable w : set
L7931
Variable u : set
L7932
Variable v : set
L7933
Variable x2 : set
L7934
Variable y2 : set
L7935
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7936
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7937
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7938
Hypothesis H3 : SNo x
L7939
Hypothesis H4 : SNo y
L7940
Hypothesis H5 : SNo z
L7941
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7942
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7943
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7944
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7945
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7946
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7947
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7948
Hypothesis H14 : SNo (g (g x y) z)
L7949
Hypothesis H15 : u SNoS_ (SNoLev x)
L7950
Hypothesis H16 : SNo v
L7951
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L7952
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L7953
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L7954
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7955
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7956
Hypothesis H22 : SNo u
L7957
Hypothesis H23 : SNo x2
L7958
Hypothesis H24 : SNo y2
L7959
Hypothesis H25 : SNo (g u (g y z))
L7960
Hypothesis H26 : SNo (g x v)
L7961
Hypothesis H27 : SNo (g x x2)
L7962
Hypothesis H28 : SNo (g u v)
L7963
Theorem. (Conj_mul_SNo_assoc_lem1__19__13)
SNo (g u x2)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__19__13
Beginning of Section Conj_mul_SNo_assoc_lem1__20__5
L7969
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__20__5 TMUY5RTGyX3sZPo9pFK7rSa4VY51kTP6vm5 bounty of about 25 bars ***)
L7970
Variable x : set
L7971
Variable y : set
L7972
Variable z : set
L7973
Variable w : set
L7974
Variable u : set
L7975
Variable v : set
L7976
Variable x2 : set
L7977
Variable y2 : set
L7978
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L7979
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L7980
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L7981
Hypothesis H3 : SNo x
L7982
Hypothesis H4 : SNo y
L7983
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L7984
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L7985
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L7986
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L7987
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L7988
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L7989
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L7990
Hypothesis H13 : SNo (g x y)
L7991
Hypothesis H14 : SNo (g (g x y) z)
L7992
Hypothesis H15 : u SNoS_ (SNoLev x)
L7993
Hypothesis H16 : SNo v
L7994
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L7995
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L7996
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L7997
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L7998
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L7999
Hypothesis H22 : SNo u
L8000
Hypothesis H23 : SNo x2
L8001
Hypothesis H24 : SNo y2
L8002
Hypothesis H25 : SNo (g u (g y z))
L8003
Hypothesis H26 : SNo (g x v)
L8004
Hypothesis H27 : SNo (g x x2)
L8005
Theorem. (Conj_mul_SNo_assoc_lem1__20__5)
SNo (g u v)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__20__5
Beginning of Section Conj_mul_SNo_assoc_lem1__20__23
L8011
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__20__23 TMc5P4U3d4PGbJGEDfdS6UC3svi4KFgbvsS bounty of about 25 bars ***)
L8012
Variable x : set
L8013
Variable y : set
L8014
Variable z : set
L8015
Variable w : set
L8016
Variable u : set
L8017
Variable v : set
L8018
Variable x2 : set
L8019
Variable y2 : set
L8020
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L8021
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L8022
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L8023
Hypothesis H3 : SNo x
L8024
Hypothesis H4 : SNo y
L8025
Hypothesis H5 : SNo z
L8026
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L8027
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L8028
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L8029
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L8030
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L8031
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L8032
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L8033
Hypothesis H13 : SNo (g x y)
L8034
Hypothesis H14 : SNo (g (g x y) z)
L8035
Hypothesis H15 : u SNoS_ (SNoLev x)
L8036
Hypothesis H16 : SNo v
L8037
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L8038
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L8039
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L8040
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L8041
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L8042
Hypothesis H22 : SNo u
L8043
Hypothesis H24 : SNo y2
L8044
Hypothesis H25 : SNo (g u (g y z))
L8045
Hypothesis H26 : SNo (g x v)
L8046
Hypothesis H27 : SNo (g x x2)
L8047
Theorem. (Conj_mul_SNo_assoc_lem1__20__23)
SNo (g u v)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__20__23
Beginning of Section Conj_mul_SNo_assoc_lem1__22__14
L8053
Variable g : (set(setset))
(*** Conj_mul_SNo_assoc_lem1__22__14 TMRXTNTyEoHqgUsZCWbvERiFkvDA8pfrZ5S bounty of about 25 bars ***)
L8054
Variable x : set
L8055
Variable y : set
L8056
Variable z : set
L8057
Variable w : set
L8058
Variable u : set
L8059
Variable v : set
L8060
Variable x2 : set
L8061
Variable y2 : set
L8062
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
L8063
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
L8064
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
L8065
Hypothesis H3 : SNo x
L8066
Hypothesis H4 : SNo y
L8067
Hypothesis H5 : SNo z
L8068
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
L8069
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
L8070
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
L8071
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
L8072
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
L8073
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
L8074
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
L8075
Hypothesis H13 : SNo (g x y)
L8076
Hypothesis H15 : u SNoS_ (SNoLev x)
L8077
Hypothesis H16 : SNo v
L8078
Hypothesis H17 : x2 SNoS_ (SNoLev y)
L8079
Hypothesis H18 : y2 SNoS_ (SNoLev z)
L8080
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
L8081
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
L8082
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
L8083
Hypothesis H22 : SNo u
L8084
Hypothesis H23 : SNo x2
L8085
Hypothesis H24 : SNo y2
L8086
Hypothesis H25 : SNo (g u (g y z))
L8087
Theorem. (Conj_mul_SNo_assoc_lem1__22__14)
SNo (g x v)w < g (g x y) z
Proof:
Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__22__14