Beginning of Section Conj_mul_SNo_Lt__23__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (x * w)
Hypothesis H7 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H8 : SNo (z * w)
Hypothesis H9 : SNo (z * y + x * w)
Hypothesis H11 : z SNoL x
Hypothesis H12 : SNo u
Hypothesis H13 : w < u
Hypothesis H14 : SNoLev u SNoLev w
Hypothesis H15 : u SNoL y
Theorem. (Conj_mul_SNo_Lt__23__10)
u SNoR w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__23__10
Beginning of Section Conj_mul_SNo_Lt__24__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo (x * y)
Hypothesis H5 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : SNo (z * y + x * w)
Hypothesis H11 : SNo (x * y + z * w)
Hypothesis H12 : z SNoL x
Hypothesis H13 : SNo u
Hypothesis H14 : w < u
Hypothesis H15 : u < y
Hypothesis H16 : SNoLev u SNoLev w
Hypothesis H17 : SNoLev u SNoLev y
Theorem. (Conj_mul_SNo_Lt__24__6)
u SNoL y(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__24__6
Beginning of Section Conj_mul_SNo_Lt__24__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo (x * y)
Hypothesis H5 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H10 : SNo (z * y + x * w)
Hypothesis H11 : SNo (x * y + z * w)
Hypothesis H12 : z SNoL x
Hypothesis H13 : SNo u
Hypothesis H14 : w < u
Hypothesis H15 : u < y
Hypothesis H16 : SNoLev u SNoLev w
Hypothesis H17 : SNoLev u SNoLev y
Theorem. (Conj_mul_SNo_Lt__24__9)
u SNoL y(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__24__9
Beginning of Section Conj_mul_SNo_Lt__26__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H6 : SNo (x * y + z * w)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : SNo (z * w + u * y)
Hypothesis H11 : SNo (u * w + x * y)
Hypothesis H12 : SNo (x * w + u * y)
Hypothesis H13 : SNo (u * w + z * y)
Hypothesis H14 : y SNoR w
Hypothesis H15 : (x * w + u * y) < u * w + x * y
Theorem. (Conj_mul_SNo_Lt__26__4)
(u * w + z * y) < z * w + u * y(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__26__4
Beginning of Section Conj_mul_SNo_Lt__27__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H6 : SNo (z * y + x * w)
Hypothesis H7 : SNo (x * y + z * w)
Hypothesis H8 : u SNoL x
Hypothesis H9 : u SNoR z
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (u * w)
Hypothesis H12 : SNo (z * w + u * y)
Hypothesis H14 : SNo (x * w + u * y)
Hypothesis H15 : SNo (u * w + z * y)
Hypothesis H16 : y SNoR w
Theorem. (Conj_mul_SNo_Lt__27__13)
(x * w + u * y) < u * w + x * y(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__27__13
Beginning of Section Conj_mul_SNo_Lt__29__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H6 : SNo (x * y + z * w)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : SNo (u * y + x * w)
Hypothesis H11 : SNo (u * y + z * w)
Hypothesis H12 : SNo (x * y + u * w)
Hypothesis H13 : SNo (z * y + u * w)
Hypothesis H14 : w SNoL y
Hypothesis H15 : (u * y + x * w) < x * y + u * w
Theorem. (Conj_mul_SNo_Lt__29__0)
(z * y + u * w) < u * y + z * w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__29__0
Beginning of Section Conj_mul_SNo_Lt__29__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : SNo (u * y + x * w)
Hypothesis H11 : SNo (u * y + z * w)
Hypothesis H12 : SNo (x * y + u * w)
Hypothesis H13 : SNo (z * y + u * w)
Hypothesis H14 : w SNoL y
Hypothesis H15 : (u * y + x * w) < x * y + u * w
Theorem. (Conj_mul_SNo_Lt__29__6)
(z * y + u * w) < u * y + z * w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__29__6
Beginning of Section Conj_mul_SNo_Lt__29__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H6 : SNo (x * y + z * w)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H11 : SNo (u * y + z * w)
Hypothesis H12 : SNo (x * y + u * w)
Hypothesis H13 : SNo (z * y + u * w)
Hypothesis H14 : w SNoL y
Hypothesis H15 : (u * y + x * w) < x * y + u * w
Theorem. (Conj_mul_SNo_Lt__29__10)
(z * y + u * w) < u * y + z * w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__29__10
Beginning of Section Conj_mul_SNo_Lt__31__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo y
Hypothesis H1 : SNo w
Hypothesis H2 : w < y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : SNo (z * w)
Hypothesis H10 : SNo (x * y + z * w)
Hypothesis H11 : u SNoL x
Hypothesis H12 : u SNoR z
Hypothesis H13 : SNo (u * y)
Hypothesis H14 : SNo (u * w)
Hypothesis H15 : SNo (u * y + x * w)
Hypothesis H16 : SNo (u * y + z * w)
Hypothesis H17 : SNo (x * y + u * w)
Hypothesis H18 : SNo (z * y + u * w)
Hypothesis H19 : SNoLev w SNoLev y
Theorem. (Conj_mul_SNo_Lt__31__9)
w SNoL y(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__31__9
Beginning of Section Conj_mul_SNo_Lt__32__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Hypothesis H21 : SNo (u * y + x * v)
Hypothesis H22 : SNo (x * y + u * v)
Theorem. (Conj_mul_SNo_Lt__32__13)
SNo (z * w + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__32__13
Beginning of Section Conj_mul_SNo_Lt__33__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Hypothesis H21 : SNo (u * y + x * v)
Theorem. (Conj_mul_SNo_Lt__33__2)
SNo (x * y + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__33__2
Beginning of Section Conj_mul_SNo_Lt__33__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Theorem. (Conj_mul_SNo_Lt__33__21)
SNo (x * y + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__33__21
Beginning of Section Conj_mul_SNo_Lt__34__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Theorem. (Conj_mul_SNo_Lt__34__7)
SNo (u * y + x * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__34__7
Beginning of Section Conj_mul_SNo_Lt__35__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Theorem. (Conj_mul_SNo_Lt__35__7)
SNo (x * y + x * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__35__7
Beginning of Section Conj_mul_SNo_Lt__35__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Theorem. (Conj_mul_SNo_Lt__35__18)
SNo (x * y + x * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__35__18
Beginning of Section Conj_mul_SNo_Lt__36__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Theorem. (Conj_mul_SNo_Lt__36__19)
SNo (u * w + z * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__36__19
Beginning of Section Conj_mul_SNo_Lt__37__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Theorem. (Conj_mul_SNo_Lt__37__3)
SNo (x * w + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__37__3
Beginning of Section Conj_mul_SNo_Lt__37__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H18 : SNo (z * y + u * v)
Theorem. (Conj_mul_SNo_Lt__37__17)
SNo (x * w + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__37__17
Beginning of Section Conj_mul_SNo_Lt__38__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Theorem. (Conj_mul_SNo_Lt__38__15)
SNo (z * y + u * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__38__15
Beginning of Section Conj_mul_SNo_Lt__39__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Theorem. (Conj_mul_SNo_Lt__39__12)
SNo (u * w + x * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__39__12
Beginning of Section Conj_mul_SNo_Lt__40__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Theorem. (Conj_mul_SNo_Lt__40__13)
SNo (u * y + z * v)((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__40__13
Beginning of Section Conj_mul_SNo_Lt__41__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Theorem. (Conj_mul_SNo_Lt__41__1)
SNo (u * v + u * v)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__41__1
Beginning of Section Conj_mul_SNo_Lt__42__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H6 : SNo (x * y + z * w)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : v SNoL y
Hypothesis H11 : SNo (x * v)
Hypothesis H13 : SNo (u * v)
Hypothesis H14 : (u * y + x * v) < x * y + u * v
Hypothesis H15 : (u * w + z * v) < z * w + u * v
Hypothesis H16 : (x * w + u * v) < u * w + x * v
Theorem. (Conj_mul_SNo_Lt__42__12)
(z * y + u * v) < u * y + z * v(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__42__12
Beginning of Section Conj_mul_SNo_Lt__44__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H2 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H7 : SNo (z * y + x * w)
Hypothesis H8 : SNo (x * y + z * w)
Hypothesis H9 : u SNoL x
Hypothesis H10 : u SNoR z
Hypothesis H11 : SNo (u * y)
Hypothesis H12 : SNo (u * w)
Hypothesis H13 : v SNoL y
Hypothesis H14 : v SNoR w
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (z * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : (u * y + x * v) < x * y + u * v
Theorem. (Conj_mul_SNo_Lt__44__1)
(u * w + z * v) < z * w + u * v(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__44__1
Beginning of Section Conj_mul_SNo_Lt__44__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H7 : SNo (z * y + x * w)
Hypothesis H8 : SNo (x * y + z * w)
Hypothesis H9 : u SNoL x
Hypothesis H10 : u SNoR z
Hypothesis H11 : SNo (u * y)
Hypothesis H12 : SNo (u * w)
Hypothesis H13 : v SNoL y
Hypothesis H14 : v SNoR w
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (z * v)
Hypothesis H17 : SNo (u * v)
Theorem. (Conj_mul_SNo_Lt__44__18)
(u * w + z * v) < z * w + u * v(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__44__18
Beginning of Section Conj_mul_SNo_Lt__48__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H4 : SNo (z * y)
Hypothesis H5 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H6 : SNo (x * w)
Hypothesis H7 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H8 : SNo (z * w)
Hypothesis H9 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H10 : SNo (z * y + x * w)
Hypothesis H11 : SNo (x * y + z * w)
Hypothesis H12 : SNo u
Hypothesis H13 : u SNoL x
Hypothesis H14 : u SNoR z
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (u * w)
Hypothesis H17 : SNo v
Hypothesis H18 : v SNoL y
Hypothesis H19 : v SNoR w
Theorem. (Conj_mul_SNo_Lt__48__2)
SNo (x * v)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__48__2
Beginning of Section Conj_mul_SNo_Lt__49__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H11 : SNo (z * y + x * w)
Hypothesis H12 : SNo (x * y + z * w)
Hypothesis H13 : SNo u
Hypothesis H14 : u SNoL x
Hypothesis H15 : u SNoR z
Hypothesis H16 : SNo (u * y)
Hypothesis H17 : SNo (u * w)
Hypothesis H18 : SNo v
Hypothesis H19 : w < v
Hypothesis H20 : SNoLev v SNoLev w
Hypothesis H21 : v SNoL y
Theorem. (Conj_mul_SNo_Lt__49__1)
v SNoR w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__49__1
Beginning of Section Conj_mul_SNo_Lt__49__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H11 : SNo (z * y + x * w)
Hypothesis H13 : SNo u
Hypothesis H14 : u SNoL x
Hypothesis H15 : u SNoR z
Hypothesis H16 : SNo (u * y)
Hypothesis H17 : SNo (u * w)
Hypothesis H18 : SNo v
Hypothesis H19 : w < v
Hypothesis H20 : SNoLev v SNoLev w
Hypothesis H21 : v SNoL y
Theorem. (Conj_mul_SNo_Lt__49__12)
v SNoR w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__49__12
Beginning of Section Conj_mul_SNo_Lt__49__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H11 : SNo (z * y + x * w)
Hypothesis H12 : SNo (x * y + z * w)
Hypothesis H13 : SNo u
Hypothesis H14 : u SNoL x
Hypothesis H15 : u SNoR z
Hypothesis H16 : SNo (u * y)
Hypothesis H17 : SNo (u * w)
Hypothesis H18 : SNo v
Hypothesis H19 : w < v
Hypothesis H21 : v SNoL y
Theorem. (Conj_mul_SNo_Lt__49__20)
v SNoR w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__49__20
Beginning of Section Conj_mul_SNo_Lt__50__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo (x * y)
Hypothesis H5 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoL y(z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR w(x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H10 : SNo (z * w)
Hypothesis H11 : (∀x2 : set, x2 SNoR z(∀y2 : set, y2 SNoR w(x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H12 : SNo (z * y + x * w)
Hypothesis H13 : SNo (x * y + z * w)
Hypothesis H14 : SNo u
Hypothesis H15 : u SNoL x
Hypothesis H17 : SNo (u * y)
Hypothesis H18 : SNo (u * w)
Hypothesis H19 : SNo v
Hypothesis H20 : w < v
Hypothesis H21 : v < y
Hypothesis H22 : SNoLev v SNoLev w
Hypothesis H23 : SNoLev v SNoLev y
Theorem. (Conj_mul_SNo_Lt__50__16)
v SNoL y(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__50__16
Beginning of Section Conj_mul_SNo_Lt__52__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Hypothesis H24 : SNo (z * w + u * y)
Hypothesis H25 : SNo (u * w + x * y)
Theorem. (Conj_mul_SNo_Lt__52__23)
SNo (x * w + u * y)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__52__23
Beginning of Section Conj_mul_SNo_Lt__53__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Hypothesis H24 : SNo (z * w + u * y)
Theorem. (Conj_mul_SNo_Lt__53__23)
SNo (u * w + x * y)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__53__23
Beginning of Section Conj_mul_SNo_Lt__53__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Hypothesis H23 : SNo (z * y + u * w)
Theorem. (Conj_mul_SNo_Lt__53__24)
SNo (u * w + x * y)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__53__24
Beginning of Section Conj_mul_SNo_Lt__54__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Hypothesis H23 : SNo (z * y + u * w)
Theorem. (Conj_mul_SNo_Lt__54__4)
SNo (z * w + u * y)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__54__4
Beginning of Section Conj_mul_SNo_Lt__54__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H23 : SNo (z * y + u * w)
Theorem. (Conj_mul_SNo_Lt__54__22)
SNo (z * w + u * y)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__54__22
Beginning of Section Conj_mul_SNo_Lt__55__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Theorem. (Conj_mul_SNo_Lt__55__12)
SNo (z * y + u * w)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__55__12
Beginning of Section Conj_mul_SNo_Lt__55__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Theorem. (Conj_mul_SNo_Lt__55__22)
SNo (z * y + u * w)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__55__22
Beginning of Section Conj_mul_SNo_Lt__57__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Theorem. (Conj_mul_SNo_Lt__57__1)
SNo (u * y + z * w)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__57__1
Beginning of Section Conj_mul_SNo_Lt__57__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Theorem. (Conj_mul_SNo_Lt__57__6)
SNo (u * y + z * w)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__57__6
Beginning of Section Conj_mul_SNo_Lt__57__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Hypothesis H17 : u SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Theorem. (Conj_mul_SNo_Lt__57__11)
SNo (u * y + z * w)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__57__11
Beginning of Section Conj_mul_SNo_Lt__60__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u SNoL x
Theorem. (Conj_mul_SNo_Lt__60__17)
SNo (u * y)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__60__17
Beginning of Section Conj_mul_SNo_Lt__61__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Hypothesis H17 : SNoLev u SNoLev z
Hypothesis H18 : u SNoL x
Theorem. (Conj_mul_SNo_Lt__61__14)
u SNoR z(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__61__14
Beginning of Section Conj_mul_SNo_SNoL_interpolate__2__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR y(x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : z < w
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoR y
Hypothesis H8 : (w + u * v)u * y + x * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Hypothesis H11 : SNo (u * v)
Theorem. (Conj_mul_SNo_SNoL_interpolate__2__2)
(w + u * v) < z + u * vx * y < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__2__2
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR y(x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : z < w
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoR y
Hypothesis H8 : (w + u * v)u * y + x * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__3__1
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR y(x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : z < w
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoR y
Hypothesis H8 : (w + u * v)u * y + x * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__3__2
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR y(x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoR y
Hypothesis H8 : (w + u * v)u * y + x * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__3__5
Beginning of Section Conj_mul_SNo_SNoL_interpolate__5__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL y(x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : z < w
Hypothesis H6 : u SNoL x
Hypothesis H7 : v SNoL y
Hypothesis H8 : (w + u * v)u * y + x * v
Hypothesis H10 : SNo v
Hypothesis H11 : SNo (u * v)
Theorem. (Conj_mul_SNo_SNoL_interpolate__5__9)
(w + u * v) < z + u * vx * y < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__5__9
Beginning of Section Conj_mul_SNo_SNoL_interpolate__7__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H4 : (∀u : set, u SNoS_ (SNoLev z)SNoLev u SNoLev (x * y)u < x * y(∃v : set, v SNoL x(∃x2 : set, x2 SNoL y(u + v * x2)v * y + x * x2))(∃v : set, v SNoR x(∃x2 : set, x2 SNoR y(u + v * x2)v * y + x * x2)))
Hypothesis H5 : SNoLev z SNoLev (x * y)
Hypothesis H6 : (∀u : set, u SNoL x(∀v : set, v SNoL y(u * y + x * v) < z + u * v))
Hypothesis H7 : (∀u : set, u SNoR x(∀v : set, v SNoR y(u * y + x * v) < z + u * v))
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w SNoLev z
Hypothesis H10 : z < w
Hypothesis H11 : w < x * y
Theorem. (Conj_mul_SNo_SNoL_interpolate__7__3)
(∃u : set, u SNoL x(∃v : set, v SNoL y(w + u * v)u * y + x * v))(∃u : set, u SNoR x(∃v : set, v SNoR y(w + u * v)u * y + x * v))x * y < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__7__3
Beginning of Section Conj_mul_SNo_SNoL_interpolate__8__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo z
Hypothesis H4 : (∀w : set, w SNoS_ (SNoLev z)SNoLev w SNoLev (x * y)w < x * y(∃u : set, u SNoL x(∃v : set, v SNoL y(w + u * v)u * y + x * v))(∃u : set, u SNoR x(∃v : set, v SNoR y(w + u * v)u * y + x * v)))
Hypothesis H5 : SNoLev z SNoLev (x * y)
Hypothesis H6 : z < x * y
Hypothesis H7 : ¬ ((∃w : set, w SNoL x(∃u : set, u SNoL y(z + w * u)w * y + x * u))(∃w : set, w SNoR x(∃u : set, u SNoR y(z + w * u)w * y + x * u)))
Hypothesis H8 : (∀w : set, w SNoL x(∀u : set, u SNoL y(w * y + x * u) < z + w * u))
Theorem. (Conj_mul_SNo_SNoL_interpolate__8__1)
¬ (∀w : set, w SNoR x(∀u : set, u SNoR y(w * y + x * u) < z + w * u))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__8__1
Beginning of Section Conj_mul_SNo_SNoL_interpolate__9__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo z
Hypothesis H5 : SNoLev z SNoLev (x * y)
Hypothesis H6 : z < x * y
Hypothesis H7 : ¬ ((∃w : set, w SNoL x(∃u : set, u SNoL y(z + w * u)w * y + x * u))(∃w : set, w SNoR x(∃u : set, u SNoR y(z + w * u)w * y + x * u)))
Theorem. (Conj_mul_SNo_SNoL_interpolate__9__4)
¬ (∀w : set, w SNoL x(∀u : set, u SNoL y(w * y + x * u) < z + w * u))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__9__4
Beginning of Section Conj_mul_SNo_SNoL_interpolate__11__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Theorem. (Conj_mul_SNo_SNoL_interpolate__11__0)
SNo (x * y)(∀z : set, z SNoL (x * y)(∃w : set, w SNoL x(∃u : set, u SNoL y(z + w * u)w * y + x * u))(∃w : set, w SNoR x(∃u : set, u SNoR y(z + w * u)w * y + x * u)))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoL_interpolate__11__0
Beginning of Section Conj_mul_SNo_SNoR_interpolate__1__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo z
Hypothesis H1 : SNo w
Hypothesis H2 : w < z
Hypothesis H4 : (z + u * v) < w + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoR_interpolate__1__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__3__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL y(z + x2 * y2) < x2 * y + x * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : w < z
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoL y
Hypothesis H8 : (u * y + x * v)w + u * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoR_interpolate__3__1
Beginning of Section Conj_mul_SNo_SNoR_interpolate__3__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL y(z + x2 * y2) < x2 * y + x * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : w < z
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoL y
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoR_interpolate__3__8
Beginning of Section Conj_mul_SNo_SNoR_interpolate__4__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo z
Hypothesis H1 : SNo w
Hypothesis H2 : w < z
Hypothesis H4 : (z + u * v) < w + u * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoR_interpolate__4__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__6__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR y(z + x2 * y2) < x2 * y + x * y2))
Hypothesis H5 : w < z
Hypothesis H6 : u SNoL x
Hypothesis H7 : v SNoR y
Hypothesis H8 : (u * y + x * v)w + u * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoR_interpolate__6__4
Beginning of Section Conj_mul_SNo_SNoR_interpolate__7__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H4 : (∀u : set, u SNoS_ (SNoLev z)SNoLev u SNoLev (x * y)x * y < u(∃v : set, v SNoL x(∃x2 : set, x2 SNoR y(v * y + x * x2)u + v * x2))(∃v : set, v SNoR x(∃x2 : set, x2 SNoL y(v * y + x * x2)u + v * x2)))
Hypothesis H5 : SNoLev z SNoLev (x * y)
Hypothesis H6 : (∀u : set, u SNoL x(∀v : set, v SNoR y(z + u * v) < u * y + x * v))
Hypothesis H7 : (∀u : set, u SNoR x(∀v : set, v SNoL y(z + u * v) < u * y + x * v))
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w SNoLev z
Hypothesis H10 : w < z
Hypothesis H11 : x * y < w
Theorem. (Conj_mul_SNo_SNoR_interpolate__7__3)
(∃u : set, u SNoL x(∃v : set, v SNoR y(u * y + x * v)w + u * v))(∃u : set, u SNoR x(∃v : set, v SNoL y(u * y + x * v)w + u * v))w < x * y
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoR_interpolate__7__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__8__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : (∀w : set, w SNoS_ (SNoLev z)SNoLev w SNoLev (x * y)x * y < w(∃u : set, u SNoL x(∃v : set, v SNoR y(u * y + x * v)w + u * v))(∃u : set, u SNoR x(∃v : set, v SNoL y(u * y + x * v)w + u * v)))
Hypothesis H5 : SNoLev z SNoLev (x * y)
Hypothesis H6 : x * y < z
Hypothesis H7 : ¬ ((∃w : set, w SNoL x(∃u : set, u SNoR y(w * y + x * u)z + w * u))(∃w : set, w SNoR x(∃u : set, u SNoL y(w * y + x * u)z + w * u)))
Hypothesis H8 : (∀w : set, w SNoL x(∀u : set, u SNoR y(z + w * u) < w * y + x * u))
Theorem. (Conj_mul_SNo_SNoR_interpolate__8__2)
¬ (∀w : set, w SNoR x(∀u : set, u SNoL y(z + w * u) < w * y + x * u))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_SNoR_interpolate__8__2
Beginning of Section Conj_mul_SNo_oneR__3__0
Variable x : set
Variable y : set
Hypothesis H1 : (∀z : set, z SNoL x(∀w : set, w SNoL (ordsucc Empty)(z * ordsucc Empty + x * w) < x * ordsucc Empty + z * w))
Hypothesis H2 : Empty SNoL (ordsucc Empty)
Hypothesis H3 : y SNoL x
Hypothesis H4 : SNo y
Hypothesis H5 : y * ordsucc Empty + x * Empty = y
Theorem. (Conj_mul_SNo_oneR__3__0)
x * ordsucc Empty + y * Empty = x * ordsucc Emptyy < x * ordsucc Empty
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_oneR__3__0
Beginning of Section Conj_mul_SNo_com__1__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
Hypothesis H5 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H8 : (∀x2 : set, x2 v(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
Hypothesis H9 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
Hypothesis H10 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
Hypothesis H11 : z = u
Theorem. (Conj_mul_SNo_com__1__0)
w = vSNoCut z w = SNoCut u v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_com__1__0
Beginning of Section Conj_mul_SNo_com__2__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) z))
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) z))
Hypothesis H8 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H9 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H10 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H11 : (∀x2 : set, x2 u(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
Hypothesis H12 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) u))
Hypothesis H13 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) u))
Hypothesis H14 : (∀x2 : set, x2 v(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
Hypothesis H15 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
Hypothesis H16 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
Theorem. (Conj_mul_SNo_com__2__5)
z = uSNoCut z w = SNoCut u v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_com__2__5
Beginning of Section Conj_mul_SNo_com__2__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
Hypothesis H5 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) z))
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) z))
Hypothesis H8 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H10 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H11 : (∀x2 : set, x2 u(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
Hypothesis H12 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) u))
Hypothesis H13 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) u))
Hypothesis H14 : (∀x2 : set, x2 v(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
Hypothesis H15 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
Hypothesis H16 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
Theorem. (Conj_mul_SNo_com__2__9)
z = uSNoCut z w = SNoCut u v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_com__2__9
Beginning of Section Conj_mul_SNo_com__2__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
Hypothesis H5 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) z))
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) z))
Hypothesis H8 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H9 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H10 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H12 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) u))
Hypothesis H13 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) u))
Hypothesis H14 : (∀x2 : set, x2 v(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
Hypothesis H15 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
Hypothesis H16 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
Theorem. (Conj_mul_SNo_com__2__11)
z = uSNoCut z w = SNoCut u v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_com__2__11
Beginning of Section Conj_mul_SNo_com__2__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)x2 * y2 = y2 * x2))
Hypothesis H5 : (∀x2 : set, x2 z(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H6 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) z))
Hypothesis H7 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) z))
Hypothesis H8 : (∀x2 : set, x2 w(∀P : prop, (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR yx2 = y2 * y + x * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL yx2 = y2 * y + x * z2 + - (y2 * z2)P))P))
Hypothesis H9 : (∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H10 : (∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL yx2 * y + x * y2 + - (x2 * y2) w))
Hypothesis H11 : (∀x2 : set, x2 u(∀P : prop, (∀y2 : set, y2 SNoL y(∀z2 : set, z2 SNoL xx2 = y2 * x + y * z2 + - (y2 * z2)P))(∀y2 : set, y2 SNoR y(∀z2 : set, z2 SNoR xx2 = y2 * x + y * z2 + - (y2 * z2)P))P))
Hypothesis H12 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) u))
Hypothesis H13 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) u))
Hypothesis H15 : (∀x2 : set, x2 SNoL y(∀y2 : set, y2 SNoR xx2 * x + y * y2 + - (x2 * y2) v))
Hypothesis H16 : (∀x2 : set, x2 SNoR y(∀y2 : set, y2 SNoL xx2 * x + y * y2 + - (x2 * y2) v))
Theorem. (Conj_mul_SNo_com__2__14)
z = uSNoCut z w = SNoCut u v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_com__2__14
Beginning of Section Conj_mul_SNo_minus_distrL__2__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoL (- x)(∀y2 : set, y2 SNoR yx2 * y + - x * y2 + - (x2 * y2) z))
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoR y
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u SNoLev x
Hypothesis H11 : x < u
Hypothesis H13 : SNo (- u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__2__12
Beginning of Section Conj_mul_SNo_minus_distrL__4__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR (- x)(∀y2 : set, y2 SNoL yx2 * y + - x * y2 + - (x2 * y2) z))
Hypothesis H6 : u SNoL x
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Hypothesis H11 : - u SNoR (- x)
Theorem. (Conj_mul_SNo_minus_distrL__4__7)
- w = - u * y + - x * v + - (- u * v)- w z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__4__7
Beginning of Section Conj_mul_SNo_minus_distrL__5__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR (- x)(∀y2 : set, y2 SNoL yx2 * y + - x * y2 + - (x2 * y2) z))
Hypothesis H6 : u SNoL x
Hypothesis H7 : v SNoL y
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u SNoLev x
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (- u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__5__1
Beginning of Section Conj_mul_SNo_minus_distrL__9__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev x)- v * y = - (v * y))
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev y)- x * v = - (x * v))
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)- v * x2 = - (v * x2)))
Hypothesis H5 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL yv * y + x * x2 + - (v * x2) z))
Hypothesis H6 : u SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev (- x)
Hypothesis H9 : - x < w
Hypothesis H10 : SNo u
Theorem. (Conj_mul_SNo_minus_distrL__9__0)
SNo (- w)w * y + - x * u + - (w * u) Repl z minus_SNo
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__9__0
Beginning of Section Conj_mul_SNo_minus_distrL__15__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoL (- x)(∀y2 : set, y2 SNoL yx2 * y + - x * y2 + - (x2 * y2) z))
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoL y
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u SNoLev x
Hypothesis H12 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__15__11
Beginning of Section Conj_mul_SNo_minus_distrL__18__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR (- x)(∀y2 : set, y2 SNoR yx2 * y + - x * y2 + - (x2 * y2) z))
Hypothesis H6 : u SNoL x
Hypothesis H7 : v SNoR y
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u SNoLev x
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__18__8
Beginning of Section Conj_mul_SNo_minus_distrL__18__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 SNoS_ (SNoLev x)- x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)- x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev y)- x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR (- x)(∀y2 : set, y2 SNoR yx2 * y + - x * y2 + - (x2 * y2) z))
Hypothesis H6 : u SNoL x
Hypothesis H7 : v SNoR y
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__18__10
Beginning of Section Conj_mul_SNo_minus_distrL__19__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev x)- v * y = - (v * y))
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev y)- x * v = - (x * v))
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)- v * x2 = - (v * x2)))
Hypothesis H6 : u SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (- w)
Hypothesis H10 : - w SNoL x
Theorem. (Conj_mul_SNo_minus_distrL__19__5)
w * y + - x * u + - (w * u) = - (- w * y + x * u + - (- w * u))w * y + - x * u + - (w * u) Repl z minus_SNo
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__19__5
Beginning of Section Conj_mul_SNo_minus_distrL__22__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev x)- v * y = - (v * y))
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev y)- x * v = - (x * v))
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)- v * x2 = - (v * x2)))
Hypothesis H5 : (∀v : set, v SNoR x(∀x2 : set, x2 SNoL yv * y + x * x2 + - (v * x2) z))
Hypothesis H6 : u SNoL y
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (- w)
Hypothesis H10 : - w SNoR x
Theorem. (Conj_mul_SNo_minus_distrL__22__7)
w * y + - x * u + - (w * u) = - (- w * y + x * u + - (- w * u))w * y + - x * u + - (w * u) Repl z minus_SNo
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__22__7
Beginning of Section Conj_mul_SNo_minus_distrL__26__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev x)- z * y = - (z * y))
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev y)- x * z = - (x * z))
Hypothesis H4 : (∀z : set, z SNoS_ (SNoLev x)(∀w : set, w SNoS_ (SNoLev y)- z * w = - (z * w)))
Theorem. (Conj_mul_SNo_minus_distrL__26__0)
SNo (- x)- x * y = - (x * y)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_minus_distrL__26__0
Beginning of Section Conj_mul_SNo_distrR__1__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H24 : SNo (w + x * z)
Hypothesis H25 : SNo (u * v + x * v)
Theorem. (Conj_mul_SNo_distrR__1__23)
SNo (u * z + x * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__1__23
Beginning of Section Conj_mul_SNo_distrR__2__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Theorem. (Conj_mul_SNo_distrR__2__24)
SNo (u * v + x * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__2__24
Beginning of Section Conj_mul_SNo_distrR__6__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__6__9)
SNo (u * z)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__6__9
Beginning of Section Conj_mul_SNo_distrR__6__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__6__16)
SNo (u * z)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__6__16
Beginning of Section Conj_mul_SNo_distrR__6__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__6__19)
SNo (u * z)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__6__19
Beginning of Section Conj_mul_SNo_distrR__6__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Theorem. (Conj_mul_SNo_distrR__6__20)
SNo (u * z)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__6__20
Beginning of Section Conj_mul_SNo_distrR__10__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Theorem. (Conj_mul_SNo_distrR__10__4)
SNo (u * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__10__4
Beginning of Section Conj_mul_SNo_distrR__13__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Theorem. (Conj_mul_SNo_distrR__13__1)
SNo (y * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__13__1
Beginning of Section Conj_mul_SNo_distrR__14__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__14__14)
SNo (x * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__14__14
Beginning of Section Conj_mul_SNo_distrR__15__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__15__1)
SNo (u * z)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__15__1
Beginning of Section Conj_mul_SNo_distrR__16__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Theorem. (Conj_mul_SNo_distrR__16__5)
SNo ((x + y) * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__16__5
Beginning of Section Conj_mul_SNo_distrR__16__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Theorem. (Conj_mul_SNo_distrR__16__14)
SNo ((x + y) * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__16__14
Beginning of Section Conj_mul_SNo_distrR__17__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Theorem. (Conj_mul_SNo_distrR__17__1)
SNo (w + u * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__17__1
Beginning of Section Conj_mul_SNo_distrR__17__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Theorem. (Conj_mul_SNo_distrR__17__2)
SNo (w + u * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__17__2
Beginning of Section Conj_mul_SNo_distrR__17__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H12 : (u * z + y * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Theorem. (Conj_mul_SNo_distrR__17__11)
SNo (w + u * v)(x + y) * z < w + x * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__17__11
Beginning of Section Conj_mul_SNo_distrR__20__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Theorem. (Conj_mul_SNo_distrR__20__1)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__20__1
Beginning of Section Conj_mul_SNo_distrR__20__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Theorem. (Conj_mul_SNo_distrR__20__2)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__20__2
Beginning of Section Conj_mul_SNo_distrR__20__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Theorem. (Conj_mul_SNo_distrR__20__6)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__20__6
Beginning of Section Conj_mul_SNo_distrR__20__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Theorem. (Conj_mul_SNo_distrR__20__20)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__20__20
Beginning of Section Conj_mul_SNo_distrR__25__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Theorem. (Conj_mul_SNo_distrR__25__5)
SNo ((x + y) * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__25__5
Beginning of Section Conj_mul_SNo_distrR__27__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Theorem. (Conj_mul_SNo_distrR__27__13)
SNo (u + y)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__27__13
Beginning of Section Conj_mul_SNo_distrR__27__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Theorem. (Conj_mul_SNo_distrR__27__16)
SNo (u + y)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__27__16
Beginning of Section Conj_mul_SNo_distrR__29__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Hypothesis H25 : SNo (u * v + y * v)
Theorem. (Conj_mul_SNo_distrR__29__11)
SNo (u * z + x * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__29__11
Beginning of Section Conj_mul_SNo_distrR__30__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Theorem. (Conj_mul_SNo_distrR__30__18)
SNo (u * v + y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__30__18
Beginning of Section Conj_mul_SNo_distrR__31__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Theorem. (Conj_mul_SNo_distrR__31__15)
SNo (w + y * z)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__31__15
Beginning of Section Conj_mul_SNo_distrR__31__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Theorem. (Conj_mul_SNo_distrR__31__19)
SNo (w + y * z)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__31__19
Beginning of Section Conj_mul_SNo_distrR__32__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Theorem. (Conj_mul_SNo_distrR__32__11)
SNo (y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__32__11
Beginning of Section Conj_mul_SNo_distrR__32__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Theorem. (Conj_mul_SNo_distrR__32__14)
SNo (y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__32__14
Beginning of Section Conj_mul_SNo_distrR__32__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Theorem. (Conj_mul_SNo_distrR__32__16)
SNo (y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__32__16
Beginning of Section Conj_mul_SNo_distrR__32__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__32__22)
SNo (y * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__32__22
Beginning of Section Conj_mul_SNo_distrR__33__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__33__1)
SNo (x * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__33__1
Beginning of Section Conj_mul_SNo_distrR__33__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__33__10)
SNo (x * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__33__10
Beginning of Section Conj_mul_SNo_distrR__33__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__33__11)
SNo (x * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__33__11
Beginning of Section Conj_mul_SNo_distrR__34__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__34__15)
SNo (u * z)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__34__15
Beginning of Section Conj_mul_SNo_distrR__35__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Theorem. (Conj_mul_SNo_distrR__35__17)
SNo ((x + y) * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__35__17
Beginning of Section Conj_mul_SNo_distrR__36__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (u * z + x * v)w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Theorem. (Conj_mul_SNo_distrR__36__16)
SNo (w + u * v)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__36__16
Beginning of Section Conj_mul_SNo_distrR__37__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR z
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Theorem. (Conj_mul_SNo_distrR__37__12)
SNo (u + y)(x + y) * z < w + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__37__12
Beginning of Section Conj_mul_SNo_distrR__39__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + x * z)
Hypothesis H25 : SNo (u * v + x * v)
Theorem. (Conj_mul_SNo_distrR__39__5)
SNo (u * z + x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__39__5
Beginning of Section Conj_mul_SNo_distrR__40__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + x * z)
Theorem. (Conj_mul_SNo_distrR__40__1)
SNo (u * v + x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__40__1
Beginning of Section Conj_mul_SNo_distrR__40__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Theorem. (Conj_mul_SNo_distrR__40__24)
SNo (u * v + x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__40__24
Beginning of Section Conj_mul_SNo_distrR__41__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Theorem. (Conj_mul_SNo_distrR__41__10)
SNo (w + x * z)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__41__10
Beginning of Section Conj_mul_SNo_distrR__41__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Theorem. (Conj_mul_SNo_distrR__41__14)
SNo (w + x * z)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__41__14
Beginning of Section Conj_mul_SNo_distrR__42__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Theorem. (Conj_mul_SNo_distrR__42__19)
SNo (y * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__42__19
Beginning of Section Conj_mul_SNo_distrR__44__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__44__4)
SNo (u * z)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__44__4
Beginning of Section Conj_mul_SNo_distrR__45__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Theorem. (Conj_mul_SNo_distrR__45__16)
SNo ((x + y) * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__45__16
Beginning of Section Conj_mul_SNo_distrR__47__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Theorem. (Conj_mul_SNo_distrR__47__17)
SNo (x + u)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__47__17
Beginning of Section Conj_mul_SNo_distrR__48__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Theorem. (Conj_mul_SNo_distrR__48__11)
SNo (u * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__48__11
Beginning of Section Conj_mul_SNo_distrR__48__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR y
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H16 : z < v
Theorem. (Conj_mul_SNo_distrR__48__15)
SNo (u * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__48__15
Beginning of Section Conj_mul_SNo_distrR__49__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + x * z)
Theorem. (Conj_mul_SNo_distrR__49__2)
SNo (u * v + x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__49__2
Beginning of Section Conj_mul_SNo_distrR__52__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__52__2)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__52__2
Beginning of Section Conj_mul_SNo_distrR__52__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__52__9)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__52__9
Beginning of Section Conj_mul_SNo_distrR__52__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__52__13)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__52__13
Beginning of Section Conj_mul_SNo_distrR__52__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__52__19)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__52__19
Beginning of Section Conj_mul_SNo_distrR__52__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__52__21)
SNo (x * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__52__21
Beginning of Section Conj_mul_SNo_distrR__53__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__53__19)
SNo (u * z)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__53__19
Beginning of Section Conj_mul_SNo_distrR__56__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Theorem. (Conj_mul_SNo_distrR__56__5)
SNo (x + u)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__56__5
Beginning of Section Conj_mul_SNo_distrR__56__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Theorem. (Conj_mul_SNo_distrR__56__15)
SNo (x + u)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__56__15
Beginning of Section Conj_mul_SNo_distrR__57__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL y
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Theorem. (Conj_mul_SNo_distrR__57__7)
SNo (u * v)(w + x * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__57__7
Beginning of Section Conj_mul_SNo_distrR__58__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Theorem. (Conj_mul_SNo_distrR__58__19)
SNo (u * v + y * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__58__19
Beginning of Section Conj_mul_SNo_distrR__60__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Theorem. (Conj_mul_SNo_distrR__60__18)
SNo (y * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__60__18
Beginning of Section Conj_mul_SNo_distrR__61__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Theorem. (Conj_mul_SNo_distrR__61__21)
SNo (x * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__61__21
Beginning of Section Conj_mul_SNo_distrR__63__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Theorem. (Conj_mul_SNo_distrR__63__2)
SNo ((x + y) * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__63__2
Beginning of Section Conj_mul_SNo_distrR__64__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoR z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H18 : SNo (u + y)
Theorem. (Conj_mul_SNo_distrR__64__17)
SNo (w + u * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__64__17
Beginning of Section Conj_mul_SNo_distrR__67__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Hypothesis H25 : SNo (u * v + y * v)
Theorem. (Conj_mul_SNo_distrR__67__6)
SNo (u * z + x * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__67__6
Beginning of Section Conj_mul_SNo_distrR__67__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H24 : SNo (w + y * z)
Hypothesis H25 : SNo (u * v + y * v)
Theorem. (Conj_mul_SNo_distrR__67__23)
SNo (u * z + x * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__67__23
Beginning of Section Conj_mul_SNo_distrR__68__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Theorem. (Conj_mul_SNo_distrR__68__11)
SNo (u * v + y * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__68__11
Beginning of Section Conj_mul_SNo_distrR__68__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Theorem. (Conj_mul_SNo_distrR__68__13)
SNo (u * v + y * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__68__13
Beginning of Section Conj_mul_SNo_distrR__69__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Theorem. (Conj_mul_SNo_distrR__69__4)
SNo (w + y * z)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__69__4
Beginning of Section Conj_mul_SNo_distrR__69__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Theorem. (Conj_mul_SNo_distrR__69__8)
SNo (w + y * z)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__69__8
Beginning of Section Conj_mul_SNo_distrR__70__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Theorem. (Conj_mul_SNo_distrR__70__19)
SNo (y * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__70__19
Beginning of Section Conj_mul_SNo_distrR__70__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Theorem. (Conj_mul_SNo_distrR__70__20)
SNo (y * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__70__20
Beginning of Section Conj_mul_SNo_distrR__71__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Theorem. (Conj_mul_SNo_distrR__71__13)
SNo (x * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__71__13
Beginning of Section Conj_mul_SNo_distrR__73__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Theorem. (Conj_mul_SNo_distrR__73__19)
SNo ((x + y) * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__73__19
Beginning of Section Conj_mul_SNo_distrR__74__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Theorem. (Conj_mul_SNo_distrR__74__5)
SNo (w + u * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__74__5
Beginning of Section Conj_mul_SNo_distrR__75__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H12 : (w + u * v)u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Theorem. (Conj_mul_SNo_distrR__75__5)
SNo (u + y)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__75__5
Beginning of Section Conj_mul_SNo_distrR__76__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev z)(x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoL z
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Theorem. (Conj_mul_SNo_distrR__76__12)
SNo (u * v)(w + y * z) < (x + y) * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__76__12
Beginning of Section Conj_mul_SNo_distrR__77__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR y
Hypothesis H18 : (x + v)w
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__77__2)
SNo (x + v)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__77__2
Beginning of Section Conj_mul_SNo_distrR__77__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR y
Hypothesis H18 : (x + v)w
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__77__13)
SNo (x + v)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__77__13
Beginning of Section Conj_mul_SNo_distrR__78__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR y
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__78__18)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__78__18
Beginning of Section Conj_mul_SNo_distrR__80__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__80__0)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__80__0
Beginning of Section Conj_mul_SNo_distrR__80__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__80__7)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__80__7
Beginning of Section Conj_mul_SNo_distrR__80__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__80__13)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__80__13
Beginning of Section Conj_mul_SNo_distrR__80__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__80__16)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__80__16
Beginning of Section Conj_mul_SNo_distrR__81__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__81__7)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__81__7
Beginning of Section Conj_mul_SNo_distrR__81__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__81__9)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__81__9
Beginning of Section Conj_mul_SNo_distrR__81__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__81__10)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__81__10
Beginning of Section Conj_mul_SNo_distrR__81__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__81__19)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__81__19
Beginning of Section Conj_mul_SNo_distrR__82__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Theorem. (Conj_mul_SNo_distrR__82__13)
SNo (v * u)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__82__13
Beginning of Section Conj_mul_SNo_distrR__83__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoR (x + y)
Hypothesis H12 : u SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Hypothesis H21 : SNo (w * z + x * u + y * u)
Theorem. (Conj_mul_SNo_distrR__83__8)
SNo (x * z + y * z + w * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__83__8
Beginning of Section Conj_mul_SNo_distrR__85__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoR (x + y)
Hypothesis H12 : u SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H19 : SNo ((x + y) * u)
Theorem. (Conj_mul_SNo_distrR__85__18)
SNo (w * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__85__18
Beginning of Section Conj_mul_SNo_distrR__90__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoR (x + y)
Hypothesis H13 : u SNoL z
Hypothesis H14 : SNo w
Hypothesis H16 : u < z
Theorem. (Conj_mul_SNo_distrR__90__15)
SNo (x * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__90__15
Beginning of Section Conj_mul_SNo_distrR__92__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoL y
Hypothesis H18 : wx + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__92__5)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__92__5
Beginning of Section Conj_mul_SNo_distrR__92__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H17 : v SNoL y
Hypothesis H18 : wx + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__92__16)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__92__16
Beginning of Section Conj_mul_SNo_distrR__93__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoL y
Hypothesis H18 : wx + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Theorem. (Conj_mul_SNo_distrR__93__0)
SNo (v * u)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__93__0
Beginning of Section Conj_mul_SNo_distrR__94__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoL x
Hypothesis H18 : wv + y
Hypothesis H19 : SNo v
Hypothesis H20 : v < x
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__94__0)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__94__0
Beginning of Section Conj_mul_SNo_distrR__94__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoL x
Hypothesis H18 : wv + y
Hypothesis H19 : SNo v
Hypothesis H20 : v < x
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__94__22)
SNo (v + y)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__94__22
Beginning of Section Conj_mul_SNo_distrR__95__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoL x
Hypothesis H18 : wv + y
Hypothesis H19 : SNo v
Hypothesis H20 : v < x
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__95__12)
SNo (v * z)(x * z + y * z + w * u) < w * z + x * u + y * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__95__12
Beginning of Section Conj_mul_SNo_distrR__97__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoL (x + y)
Hypothesis H12 : u SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Hypothesis H21 : SNo (w * z + x * u + y * u)
Theorem. (Conj_mul_SNo_distrR__97__18)
SNo (x * z + y * z + w * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__97__18
Beginning of Section Conj_mul_SNo_distrR__98__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H11 : w SNoL (x + y)
Hypothesis H12 : u SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Theorem. (Conj_mul_SNo_distrR__98__10)
SNo (w * z + x * u + y * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__98__10
Beginning of Section Conj_mul_SNo_distrR__100__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoL (x + y)
Hypothesis H12 : u SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Theorem. (Conj_mul_SNo_distrR__100__6)
SNo (x * u + y * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__100__6
Beginning of Section Conj_mul_SNo_distrR__100__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoL (x + y)
Hypothesis H12 : u SNoR z
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Theorem. (Conj_mul_SNo_distrR__100__13)
SNo (x * u + y * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__100__13
Beginning of Section Conj_mul_SNo_distrR__101__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoL (x + y)
Hypothesis H13 : u SNoR z
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Hypothesis H19 : SNo (w * z)
Theorem. (Conj_mul_SNo_distrR__101__14)
SNo ((x + y) * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__101__14
Beginning of Section Conj_mul_SNo_distrR__104__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoL (x + y)
Hypothesis H13 : u SNoR z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Theorem. (Conj_mul_SNo_distrR__104__2)
SNo (x * u)(x * z + y * z) < w * z + (x + y) * u + - (w * u)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__104__2
Beginning of Section Conj_mul_SNo_distrR__105__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR y
Hypothesis H18 : (x + v)w
Hypothesis H20 : y < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__105__19)
SNo (x + v)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__105__19
Beginning of Section Conj_mul_SNo_distrR__107__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR y
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Theorem. (Conj_mul_SNo_distrR__107__18)
SNo (v * u)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__107__18
Beginning of Section Conj_mul_SNo_distrR__108__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__108__2)
SNo (v + y)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__108__2
Beginning of Section Conj_mul_SNo_distrR__108__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__108__9)
SNo (v + y)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__108__9
Beginning of Section Conj_mul_SNo_distrR__109__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__109__8)
SNo (v * z)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__109__8
Beginning of Section Conj_mul_SNo_distrR__109__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoR x
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__109__18)
SNo (v * z)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__109__18
Beginning of Section Conj_mul_SNo_distrR__110__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H17 : v SNoR x
Hypothesis H18 : (v + y)w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Theorem. (Conj_mul_SNo_distrR__110__16)
SNo (v * u)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__110__16
Beginning of Section Conj_mul_SNo_distrR__111__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoR (x + y)
Hypothesis H12 : u SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Hypothesis H21 : SNo (w * z + x * u + y * u)
Theorem. (Conj_mul_SNo_distrR__111__6)
SNo (x * z + y * z + w * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__111__6
Beginning of Section Conj_mul_SNo_distrR__112__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoR (x + y)
Hypothesis H12 : u SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Theorem. (Conj_mul_SNo_distrR__112__16)
SNo (w * z + x * u + y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__112__16
Beginning of Section Conj_mul_SNo_distrR__115__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoR (x + y)
Hypothesis H13 : u SNoR z
Hypothesis H14 : SNo w
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Hypothesis H19 : SNo (w * z)
Theorem. (Conj_mul_SNo_distrR__115__15)
SNo ((x + y) * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__115__15
Beginning of Section Conj_mul_SNo_distrR__116__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoR (x + y)
Hypothesis H13 : u SNoR z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Theorem. (Conj_mul_SNo_distrR__116__7)
SNo (w * z)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__116__7
Beginning of Section Conj_mul_SNo_distrR__116__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoR (x + y)
Hypothesis H13 : u SNoR z
Hypothesis H14 : SNo w
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Theorem. (Conj_mul_SNo_distrR__116__15)
SNo (w * z)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__116__15
Beginning of Section Conj_mul_SNo_distrR__117__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H13 : u SNoR z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Theorem. (Conj_mul_SNo_distrR__117__12)
SNo (y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__117__12
Beginning of Section Conj_mul_SNo_distrR__118__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H13 : u SNoR z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Theorem. (Conj_mul_SNo_distrR__118__12)
SNo (x * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__118__12
Beginning of Section Conj_mul_SNo_distrR__119__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoL y
Hypothesis H18 : wx + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Theorem. (Conj_mul_SNo_distrR__119__9)
SNo (x + v)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__119__9
Beginning of Section Conj_mul_SNo_distrR__120__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H17 : v SNoL y
Hypothesis H18 : wx + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__120__16)
SNo (v * z)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__120__16
Beginning of Section Conj_mul_SNo_distrR__121__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀y2 : set, y2 SNoS_ (SNoLev z)(x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoL y
Hypothesis H18 : wx + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Theorem. (Conj_mul_SNo_distrR__121__3)
SNo (v * u)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__121__3
Beginning of Section Conj_mul_SNo_distrR__123__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev x)(x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, y2 SNoS_ (SNoLev z)(x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v SNoL x
Hypothesis H18 : wv + y
Hypothesis H19 : SNo v
Hypothesis H20 : v < x
Hypothesis H21 : SNo (v * u)
Theorem. (Conj_mul_SNo_distrR__123__10)
SNo (v * z)(w * z + x * u + y * u) < x * z + y * z + w * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__123__10
Beginning of Section Conj_mul_SNo_distrR__125__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoL (x + y)
Hypothesis H12 : u SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Hypothesis H21 : SNo (w * z + x * u + y * u)
Theorem. (Conj_mul_SNo_distrR__125__15)
SNo (x * z + y * z + w * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__125__15
Beginning of Section Conj_mul_SNo_distrR__126__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoL (x + y)
Hypothesis H12 : u SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Theorem. (Conj_mul_SNo_distrR__126__9)
SNo (w * z + x * u + y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__126__9
Beginning of Section Conj_mul_SNo_distrR__126__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H12 : u SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Theorem. (Conj_mul_SNo_distrR__126__11)
SNo (w * z + x * u + y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__126__11
Beginning of Section Conj_mul_SNo_distrR__127__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoL (x + y)
Hypothesis H12 : u SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Theorem. (Conj_mul_SNo_distrR__127__7)
SNo (w * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__127__7
Beginning of Section Conj_mul_SNo_distrR__128__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w SNoL (x + y)
Hypothesis H12 : u SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Theorem. (Conj_mul_SNo_distrR__128__15)
SNo (x * u + y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__128__15
Beginning of Section Conj_mul_SNo_distrR__129__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoL (x + y)
Hypothesis H13 : u SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Hypothesis H19 : SNo (w * z)
Theorem. (Conj_mul_SNo_distrR__129__10)
SNo ((x + y) * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__129__10
Beginning of Section Conj_mul_SNo_distrR__130__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoL (x + y)
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Theorem. (Conj_mul_SNo_distrR__130__13)
SNo (w * z)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__130__13
Beginning of Section Conj_mul_SNo_distrR__131__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H13 : u SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Hypothesis H17 : SNo (x * u)
Theorem. (Conj_mul_SNo_distrR__131__12)
SNo (y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__131__12
Beginning of Section Conj_mul_SNo_distrR__131__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoL (x + y)
Hypothesis H13 : u SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Theorem. (Conj_mul_SNo_distrR__131__17)
SNo (y * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__131__17
Beginning of Section Conj_mul_SNo_distrR__132__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoL (x + y)
Hypothesis H13 : u SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Theorem. (Conj_mul_SNo_distrR__132__4)
SNo (x * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__132__4
Beginning of Section Conj_mul_SNo_distrR__132__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w SNoL (x + y)
Hypothesis H13 : u SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Theorem. (Conj_mul_SNo_distrR__132__16)
SNo (x * u)(w * z + (x + y) * u + - (w * u)) < x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__132__16
Beginning of Section Conj_mul_SNo_distrR__133__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H12 : SNo (x + y)
Hypothesis H13 : SNo ((x + y) * z)
Hypothesis H14 : SNo (x * z)
Hypothesis H15 : SNo (y * z)
Hypothesis H16 : SNo (x * z + y * z)
Theorem. (Conj_mul_SNo_distrR__133__11)
x * z + y * z = SNoCut (binunion (Repl (SNoL (x * z)) (λv : setv + y * z)) (Repl (SNoL (y * z)) (add_SNo (x * z)))) (binunion (Repl (SNoR (x * z)) (λv : setv + y * z)) (Repl (SNoR (y * z)) (add_SNo (x * z))))(x + y) * z = x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__133__11
Beginning of Section Conj_mul_SNo_distrR__135__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Hypothesis H12 : SNo (x + y)
Hypothesis H13 : SNo ((x + y) * z)
Hypothesis H14 : SNo (x * z)
Theorem. (Conj_mul_SNo_distrR__135__6)
SNo (y * z)(x + y) * z = x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__135__6
Beginning of Section Conj_mul_SNo_distrR__136__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Hypothesis H12 : SNo (x + y)
Hypothesis H13 : SNo ((x + y) * z)
Theorem. (Conj_mul_SNo_distrR__136__5)
SNo (x * z)(x + y) * z = x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__136__5
Beginning of Section Conj_mul_SNo_distrR__137__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Hypothesis H12 : SNo (x + y)
Theorem. (Conj_mul_SNo_distrR__137__3)
SNo ((x + y) * z)(x + y) * z = x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__137__3
Beginning of Section Conj_mul_SNo_distrR__137__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev z)(v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Hypothesis H12 : SNo (x + y)
Theorem. (Conj_mul_SNo_distrR__137__4)
SNo ((x + y) * z)(x + y) * z = x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__137__4
Beginning of Section Conj_mul_SNo_distrR__138__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev y)(x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v SNoS_ (SNoLev z)(x + y) * v = x * v + y * v)
Hypothesis H7 : (∀v : set, v SNoS_ (SNoLev y)(∀x2 : set, x2 SNoS_ (SNoLev z)(x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v w(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H10 : (∀v : set, v u(∀P : prop, (∀x2 : set, x2 SNoL (x + y)(∀y2 : set, y2 SNoR zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))(∀x2 : set, x2 SNoR (x + y)(∀y2 : set, y2 SNoL zv = x2 * z + (x + y) * y2 + - (x2 * y2)P))P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Theorem. (Conj_mul_SNo_distrR__138__6)
SNo (x + y)(x + y) * z = x * z + y * z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_distrR__138__6
Beginning of Section Conj_mul_SNo_assoc_lem1__1__7
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 SNoS_ (SNoLev y)
Hypothesis H16 : y2 SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Hypothesis H41 : SNo (g u (g y z) + g x (g x2 z) + g x (g y y2) + g u v + g u (g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__1__7)
SNo (g u (g x2 z) + g u (g y y2) + g x (g x2 y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__1__7
Beginning of Section Conj_mul_SNo_assoc_lem1__1__33
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 SNoS_ (SNoLev y)
Hypothesis H16 : y2 SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Hypothesis H41 : SNo (g u (g y z) + g x (g x2 z) + g x (g y y2) + g u v + g u (g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__1__33)
SNo (g u (g x2 z) + g u (g y y2) + g x (g x2 y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__1__33
Beginning of Section Conj_mul_SNo_assoc_lem1__2__27
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 SNoS_ (SNoLev y)
Hypothesis H16 : y2 SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Hypothesis H41 : SNo (g u v + g u (g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__2__27)
SNo (g u (g y z) + g x (g x2 z) + g x (g y y2) + g u v + g u (g x2 y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__2__27
Beginning of Section Conj_mul_SNo_assoc_lem1__3__17
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 SNoS_ (SNoLev y)
Hypothesis H16 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Theorem. (Conj_mul_SNo_assoc_lem1__3__17)
SNo (g u v + g u (g x2 y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__3__17
Beginning of Section Conj_mul_SNo_assoc_lem1__3__38
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 SNoS_ (SNoLev y)
Hypothesis H16 : y2 SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Theorem. (Conj_mul_SNo_assoc_lem1__3__38)
SNo (g u v + g u (g x2 y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__3__38
Beginning of Section Conj_mul_SNo_assoc_lem1__4__1
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__4__1)
SNo (g u (g x2 z + g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__4__1
Beginning of Section Conj_mul_SNo_assoc_lem1__4__8
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__4__8)
SNo (g u (g x2 z + g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__4__8
Beginning of Section Conj_mul_SNo_assoc_lem1__4__18
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__4__18)
SNo (g u (g x2 z + g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__4__18
Beginning of Section Conj_mul_SNo_assoc_lem1__4__27
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__4__27)
SNo (g u (g x2 z + g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__4__27
Beginning of Section Conj_mul_SNo_assoc_lem1__6__15
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__6__15)
SNo (v + g x2 y2)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__6__15
Beginning of Section Conj_mul_SNo_assoc_lem1__6__31
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Theorem. (Conj_mul_SNo_assoc_lem1__6__31)
SNo (v + g x2 y2)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__6__31
Beginning of Section Conj_mul_SNo_assoc_lem1__6__39
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Theorem. (Conj_mul_SNo_assoc_lem1__6__39)
SNo (v + g x2 y2)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__6__39
Beginning of Section Conj_mul_SNo_assoc_lem1__9__22
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Theorem. (Conj_mul_SNo_assoc_lem1__9__22)
SNo (g u (g y z) + g x v)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__9__22
Beginning of Section Conj_mul_SNo_assoc_lem1__10__14
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Theorem. (Conj_mul_SNo_assoc_lem1__10__14)
SNo (g x (g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__10__14
Beginning of Section Conj_mul_SNo_assoc_lem1__10__16
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Theorem. (Conj_mul_SNo_assoc_lem1__10__16)
SNo (g x (g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__10__16
Beginning of Section Conj_mul_SNo_assoc_lem1__10__19
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Theorem. (Conj_mul_SNo_assoc_lem1__10__19)
SNo (g x (g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__10__19
Beginning of Section Conj_mul_SNo_assoc_lem1__10__26
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Theorem. (Conj_mul_SNo_assoc_lem1__10__26)
SNo (g x (g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__10__26
Beginning of Section Conj_mul_SNo_assoc_lem1__12__2
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Theorem. (Conj_mul_SNo_assoc_lem1__12__2)
SNo (g x (g x2 y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__12__2
Beginning of Section Conj_mul_SNo_assoc_lem1__12__16
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Theorem. (Conj_mul_SNo_assoc_lem1__12__16)
SNo (g x (g x2 y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__12__16
Beginning of Section Conj_mul_SNo_assoc_lem1__12__17
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Theorem. (Conj_mul_SNo_assoc_lem1__12__17)
SNo (g x (g x2 y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__12__17
Beginning of Section Conj_mul_SNo_assoc_lem1__13__6
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Hypothesis H33 : SNo (g u (g y y2))
Theorem. (Conj_mul_SNo_assoc_lem1__13__6)
SNo (g x2 y2)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__13__6
Beginning of Section Conj_mul_SNo_assoc_lem1__13__12
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Hypothesis H33 : SNo (g u (g y y2))
Theorem. (Conj_mul_SNo_assoc_lem1__13__12)
SNo (g x2 y2)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__13__12
Beginning of Section Conj_mul_SNo_assoc_lem1__13__26
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Hypothesis H33 : SNo (g u (g y y2))
Theorem. (Conj_mul_SNo_assoc_lem1__13__26)
SNo (g x2 y2)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__13__26
Beginning of Section Conj_mul_SNo_assoc_lem1__14__12
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Theorem. (Conj_mul_SNo_assoc_lem1__14__12)
SNo (g u (g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__14__12
Beginning of Section Conj_mul_SNo_assoc_lem1__14__21
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Theorem. (Conj_mul_SNo_assoc_lem1__14__21)
SNo (g u (g y y2))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__14__21
Beginning of Section Conj_mul_SNo_assoc_lem1__15__6
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 SNoS_ (SNoLev y)
Hypothesis H17 : y2 SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Theorem. (Conj_mul_SNo_assoc_lem1__15__6)
SNo (g u (g x2 z))w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__15__6
Beginning of Section Conj_mul_SNo_assoc_lem1__17__0
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Hypothesis H30 : SNo (g u y)
Theorem. (Conj_mul_SNo_assoc_lem1__17__0)
SNo (g x2 z)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__17__0
Beginning of Section Conj_mul_SNo_assoc_lem1__17__2
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Hypothesis H30 : SNo (g u y)
Theorem. (Conj_mul_SNo_assoc_lem1__17__2)
SNo (g x2 z)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__17__2
Beginning of Section Conj_mul_SNo_assoc_lem1__17__14
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Hypothesis H30 : SNo (g u y)
Theorem. (Conj_mul_SNo_assoc_lem1__17__14)
SNo (g x2 z)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__17__14
Beginning of Section Conj_mul_SNo_assoc_lem1__18__24
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Theorem. (Conj_mul_SNo_assoc_lem1__18__24)
SNo (g u y)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__18__24
Beginning of Section Conj_mul_SNo_assoc_lem1__18__27
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Theorem. (Conj_mul_SNo_assoc_lem1__18__27)
SNo (g u y)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__18__27
Beginning of Section Conj_mul_SNo_assoc_lem1__19__13
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Theorem. (Conj_mul_SNo_assoc_lem1__19__13)
SNo (g u x2)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__19__13
Beginning of Section Conj_mul_SNo_assoc_lem1__20__5
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Theorem. (Conj_mul_SNo_assoc_lem1__20__5)
SNo (g u v)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__20__5
Beginning of Section Conj_mul_SNo_assoc_lem1__20__23
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Theorem. (Conj_mul_SNo_assoc_lem1__20__23)
SNo (g u v)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__20__23
Beginning of Section Conj_mul_SNo_assoc_lem1__22__14
Variable g : (set(setset))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2SNo w2SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2SNo w2SNo u2g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 SNoS_ (SNoLev x)g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 SNoS_ (SNoLev y)g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 SNoS_ (SNoLev z)g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev z)g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀w2 : set, w2 SNoS_ (SNoLev z)g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, w2 SNoS_ (SNoLev y)(∀u2 : set, u2 SNoS_ (SNoLev z)g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H15 : u SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 SNoS_ (SNoLev y)
Hypothesis H18 : y2 SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2))g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Theorem. (Conj_mul_SNo_assoc_lem1__22__14)
SNo (g x v)w < g (g x y) z
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_assoc_lem1__22__14