Beginning of Section Conj_mul_SNo_Lt__23__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (x * w)
Hypothesis H7 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H8 : SNo (z * w)
Hypothesis H9 : SNo (z * y + x * w)
Hypothesis H11 : z ∈ SNoL x
Hypothesis H12 : SNo u
Hypothesis H13 : w < u
Hypothesis H14 : SNoLev u ∈ SNoLev w
Hypothesis H15 : u ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__23__10
Beginning of Section Conj_mul_SNo_Lt__24__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo (x * y)
Hypothesis H5 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : SNo (z * y + x * w)
Hypothesis H11 : SNo (x * y + z * w)
Hypothesis H12 : z ∈ SNoL x
Hypothesis H13 : SNo u
Hypothesis H14 : w < u
Hypothesis H15 : u < y
Hypothesis H16 : SNoLev u ∈ SNoLev w
Hypothesis H17 : SNoLev u ∈ SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__24__6
Beginning of Section Conj_mul_SNo_Lt__24__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo (x * y)
Hypothesis H5 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H10 : SNo (z * y + x * w)
Hypothesis H11 : SNo (x * y + z * w)
Hypothesis H12 : z ∈ SNoL x
Hypothesis H13 : SNo u
Hypothesis H14 : w < u
Hypothesis H15 : u < y
Hypothesis H16 : SNoLev u ∈ SNoLev w
Hypothesis H17 : SNoLev u ∈ SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__24__9
Beginning of Section Conj_mul_SNo_Lt__26__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H6 : SNo (x * y + z * w)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : SNo (z * w + u * y)
Hypothesis H11 : SNo (u * w + x * y)
Hypothesis H12 : SNo (x * w + u * y)
Hypothesis H13 : SNo (u * w + z * y)
Hypothesis H14 : y ∈ SNoR w
Hypothesis H15 : (x * w + u * y) < u * w + x * y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__26__4
Beginning of Section Conj_mul_SNo_Lt__27__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H6 : SNo (z * y + x * w)
Hypothesis H7 : SNo (x * y + z * w)
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : u ∈ SNoR z
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (u * w)
Hypothesis H12 : SNo (z * w + u * y)
Hypothesis H14 : SNo (x * w + u * y)
Hypothesis H15 : SNo (u * w + z * y)
Hypothesis H16 : y ∈ SNoR w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__27__13
Beginning of Section Conj_mul_SNo_Lt__29__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H6 : SNo (x * y + z * w)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : SNo (u * y + x * w)
Hypothesis H11 : SNo (u * y + z * w)
Hypothesis H12 : SNo (x * y + u * w)
Hypothesis H13 : SNo (z * y + u * w)
Hypothesis H14 : w ∈ SNoL y
Hypothesis H15 : (u * y + x * w) < x * y + u * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__29__0
Beginning of Section Conj_mul_SNo_Lt__29__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : SNo (u * y + x * w)
Hypothesis H11 : SNo (u * y + z * w)
Hypothesis H12 : SNo (x * y + u * w)
Hypothesis H13 : SNo (z * y + u * w)
Hypothesis H14 : w ∈ SNoL y
Hypothesis H15 : (u * y + x * w) < x * y + u * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__29__6
Beginning of Section Conj_mul_SNo_Lt__29__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H6 : SNo (x * y + z * w)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H11 : SNo (u * y + z * w)
Hypothesis H12 : SNo (x * y + u * w)
Hypothesis H13 : SNo (z * y + u * w)
Hypothesis H14 : w ∈ SNoL y
Hypothesis H15 : (u * y + x * w) < x * y + u * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__29__10
Beginning of Section Conj_mul_SNo_Lt__31__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo y
Hypothesis H1 : SNo w
Hypothesis H2 : w < y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : SNo (z * w)
Hypothesis H10 : SNo (x * y + z * w)
Hypothesis H11 : u ∈ SNoL x
Hypothesis H12 : u ∈ SNoR z
Hypothesis H13 : SNo (u * y)
Hypothesis H14 : SNo (u * w)
Hypothesis H15 : SNo (u * y + x * w)
Hypothesis H16 : SNo (u * y + z * w)
Hypothesis H17 : SNo (x * y + u * w)
Hypothesis H18 : SNo (z * y + u * w)
Hypothesis H19 : SNoLev w ∈ SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__31__9
Beginning of Section Conj_mul_SNo_Lt__32__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Hypothesis H21 : SNo (u * y + x * v)
Hypothesis H22 : SNo (x * y + u * v)
Theorem. (
Conj_mul_SNo_Lt__32__13)
SNo (z * w + u * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__32__13
Beginning of Section Conj_mul_SNo_Lt__33__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Hypothesis H21 : SNo (u * y + x * v)
Theorem. (
Conj_mul_SNo_Lt__33__2)
SNo (x * y + u * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__33__2
Beginning of Section Conj_mul_SNo_Lt__33__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Theorem. (
Conj_mul_SNo_Lt__33__21)
SNo (x * y + u * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__33__21
Beginning of Section Conj_mul_SNo_Lt__34__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Theorem. (
Conj_mul_SNo_Lt__34__7)
SNo (u * y + x * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__34__7
Beginning of Section Conj_mul_SNo_Lt__35__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Theorem. (
Conj_mul_SNo_Lt__35__7)
SNo (x * y + x * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__35__7
Beginning of Section Conj_mul_SNo_Lt__35__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H19 : SNo (x * w + u * v)
Hypothesis H20 : SNo (u * w + z * v)
Theorem. (
Conj_mul_SNo_Lt__35__18)
SNo (x * y + x * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__35__18
Beginning of Section Conj_mul_SNo_Lt__36__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Theorem. (
Conj_mul_SNo_Lt__36__19)
SNo (u * w + z * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__36__19
Beginning of Section Conj_mul_SNo_Lt__37__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Hypothesis H18 : SNo (z * y + u * v)
Theorem. (
Conj_mul_SNo_Lt__37__3)
SNo (x * w + u * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__37__3
Beginning of Section Conj_mul_SNo_Lt__37__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H18 : SNo (z * y + u * v)
Theorem. (
Conj_mul_SNo_Lt__37__17)
SNo (x * w + u * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__37__17
Beginning of Section Conj_mul_SNo_Lt__38__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H16 : SNo (u * y + z * v)
Hypothesis H17 : SNo (u * w + x * v)
Theorem. (
Conj_mul_SNo_Lt__38__15)
SNo (z * y + u * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__38__15
Beginning of Section Conj_mul_SNo_Lt__39__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Hypothesis H16 : SNo (u * y + z * v)
Theorem. (
Conj_mul_SNo_Lt__39__12)
SNo (u * w + x * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__39__12
Beginning of Section Conj_mul_SNo_Lt__40__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : SNo (u * v + u * v)
Theorem. (
Conj_mul_SNo_Lt__40__13)
SNo (u * y + z * v) → ((z * y + x * w) + u * v + u * v) < (x * y + z * w) + u * v + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__40__13
Beginning of Section Conj_mul_SNo_Lt__41__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : SNo (z * w)
Hypothesis H4 : SNo (z * y + x * w)
Hypothesis H5 : SNo (x * y + z * w)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (u * w)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (z * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : (u * y + x * v) < x * y + u * v
Hypothesis H12 : (u * w + z * v) < z * w + u * v
Hypothesis H13 : (x * w + u * v) < u * w + x * v
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__41__1
Beginning of Section Conj_mul_SNo_Lt__42__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoL y → (z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H6 : SNo (x * y + z * w)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : v ∈ SNoL y
Hypothesis H11 : SNo (x * v)
Hypothesis H13 : SNo (u * v)
Hypothesis H14 : (u * y + x * v) < x * y + u * v
Hypothesis H15 : (u * w + z * v) < z * w + u * v
Hypothesis H16 : (x * w + u * v) < u * w + x * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__42__12
Beginning of Section Conj_mul_SNo_Lt__44__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoL y → (z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR w → (x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoR w → (x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H7 : SNo (z * y + x * w)
Hypothesis H8 : SNo (x * y + z * w)
Hypothesis H9 : u ∈ SNoL x
Hypothesis H10 : u ∈ SNoR z
Hypothesis H11 : SNo (u * y)
Hypothesis H12 : SNo (u * w)
Hypothesis H13 : v ∈ SNoL y
Hypothesis H14 : v ∈ SNoR w
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (z * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : (u * y + x * v) < x * y + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__44__1
Beginning of Section Conj_mul_SNo_Lt__44__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoL y → (z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR w → (x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoR w → (x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H7 : SNo (z * y + x * w)
Hypothesis H8 : SNo (x * y + z * w)
Hypothesis H9 : u ∈ SNoL x
Hypothesis H10 : u ∈ SNoR z
Hypothesis H11 : SNo (u * y)
Hypothesis H12 : SNo (u * w)
Hypothesis H13 : v ∈ SNoL y
Hypothesis H14 : v ∈ SNoR w
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (z * v)
Hypothesis H17 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__44__18
Beginning of Section Conj_mul_SNo_Lt__48__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → (x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H4 : SNo (z * y)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoL y → (z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H6 : SNo (x * w)
Hypothesis H7 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR w → (x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H8 : SNo (z * w)
Hypothesis H9 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoR w → (x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H10 : SNo (z * y + x * w)
Hypothesis H11 : SNo (x * y + z * w)
Hypothesis H12 : SNo u
Hypothesis H13 : u ∈ SNoL x
Hypothesis H14 : u ∈ SNoR z
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (u * w)
Hypothesis H17 : SNo v
Hypothesis H18 : v ∈ SNoL y
Hypothesis H19 : v ∈ SNoR w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__48__2
Beginning of Section Conj_mul_SNo_Lt__49__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → (x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoL y → (z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR w → (x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoR w → (x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H11 : SNo (z * y + x * w)
Hypothesis H12 : SNo (x * y + z * w)
Hypothesis H13 : SNo u
Hypothesis H14 : u ∈ SNoL x
Hypothesis H15 : u ∈ SNoR z
Hypothesis H16 : SNo (u * y)
Hypothesis H17 : SNo (u * w)
Hypothesis H18 : SNo v
Hypothesis H19 : w < v
Hypothesis H20 : SNoLev v ∈ SNoLev w
Hypothesis H21 : v ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__49__1
Beginning of Section Conj_mul_SNo_Lt__49__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → (x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoL y → (z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR w → (x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoR w → (x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H11 : SNo (z * y + x * w)
Hypothesis H13 : SNo u
Hypothesis H14 : u ∈ SNoL x
Hypothesis H15 : u ∈ SNoR z
Hypothesis H16 : SNo (u * y)
Hypothesis H17 : SNo (u * w)
Hypothesis H18 : SNo v
Hypothesis H19 : w < v
Hypothesis H20 : SNoLev v ∈ SNoLev w
Hypothesis H21 : v ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__49__12
Beginning of Section Conj_mul_SNo_Lt__49__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → (x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoL y → (z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR w → (x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoR w → (x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H11 : SNo (z * y + x * w)
Hypothesis H12 : SNo (x * y + z * w)
Hypothesis H13 : SNo u
Hypothesis H14 : u ∈ SNoL x
Hypothesis H15 : u ∈ SNoR z
Hypothesis H16 : SNo (u * y)
Hypothesis H17 : SNo (u * w)
Hypothesis H18 : SNo v
Hypothesis H19 : w < v
Hypothesis H21 : v ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__49__20
Beginning of Section Conj_mul_SNo_Lt__50__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo (x * y)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → (x2 * y + x * y2) < x * y + x2 * y2))
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoL y → (z * y + x2 * y2) < x2 * y + z * y2))
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR w → (x * w + x2 * y2) < x2 * w + x * y2))
Hypothesis H10 : SNo (z * w)
Hypothesis H11 : (∀x2 : set, x2 ∈ SNoR z → (∀y2 : set, y2 ∈ SNoR w → (x2 * w + z * y2) < z * w + x2 * y2))
Hypothesis H12 : SNo (z * y + x * w)
Hypothesis H13 : SNo (x * y + z * w)
Hypothesis H14 : SNo u
Hypothesis H15 : u ∈ SNoL x
Hypothesis H17 : SNo (u * y)
Hypothesis H18 : SNo (u * w)
Hypothesis H19 : SNo v
Hypothesis H20 : w < v
Hypothesis H21 : v < y
Hypothesis H22 : SNoLev v ∈ SNoLev w
Hypothesis H23 : SNoLev v ∈ SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__50__16
Beginning of Section Conj_mul_SNo_Lt__52__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Hypothesis H24 : SNo (z * w + u * y)
Hypothesis H25 : SNo (u * w + x * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__52__23
Beginning of Section Conj_mul_SNo_Lt__53__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Hypothesis H24 : SNo (z * w + u * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__53__23
Beginning of Section Conj_mul_SNo_Lt__53__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Hypothesis H23 : SNo (z * y + u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__53__24
Beginning of Section Conj_mul_SNo_Lt__54__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Hypothesis H23 : SNo (z * y + u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__54__4
Beginning of Section Conj_mul_SNo_Lt__54__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H23 : SNo (z * y + u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__54__22
Beginning of Section Conj_mul_SNo_Lt__55__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Hypothesis H22 : SNo (x * y + u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__55__12
Beginning of Section Conj_mul_SNo_Lt__55__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Hypothesis H21 : SNo (u * y + z * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__55__22
Beginning of Section Conj_mul_SNo_Lt__57__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__57__1
Beginning of Section Conj_mul_SNo_Lt__57__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__57__6
Beginning of Section Conj_mul_SNo_Lt__57__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Hypothesis H17 : u ∈ SNoR z
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (u * w)
Hypothesis H20 : SNo (u * y + x * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__57__11
Beginning of Section Conj_mul_SNo_Lt__60__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H14 : SNo (x * y + z * w)
Hypothesis H15 : SNo u
Hypothesis H16 : u ∈ SNoL x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__60__17
Beginning of Section Conj_mul_SNo_Lt__61__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : w < y
Hypothesis H5 : SNo (x * y)
Hypothesis H6 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H13 : SNo (z * y + x * w)
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Hypothesis H17 : SNoLev u ∈ SNoLev z
Hypothesis H18 : u ∈ SNoL x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__61__14
Beginning of Section Conj_mul_SNo_SNoL_interpolate__2__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR y → (x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : z < w
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoR y
Hypothesis H8 : (w + u * v) ≤ u * y + x * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Hypothesis H11 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__2__2
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR y → (x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : z < w
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoR y
Hypothesis H8 : (w + u * v) ≤ u * y + x * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__3__1
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR y → (x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : z < w
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoR y
Hypothesis H8 : (w + u * v) ≤ u * y + x * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__3__2
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR y → (x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoR y
Hypothesis H8 : (w + u * v) ≤ u * y + x * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__3__5
Beginning of Section Conj_mul_SNo_SNoL_interpolate__5__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → (x2 * y + x * y2) < z + x2 * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : z < w
Hypothesis H6 : u ∈ SNoL x
Hypothesis H7 : v ∈ SNoL y
Hypothesis H8 : (w + u * v) ≤ u * y + x * v
Hypothesis H10 : SNo v
Hypothesis H11 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__5__9
Beginning of Section Conj_mul_SNo_SNoL_interpolate__7__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H4 : (∀u : set, u ∈ SNoS_ (SNoLev z) → SNoLev u ∈ SNoLev (x * y) → u < x * y → (∃v : set, v ∈ SNoL x ∧ (∃x2 : set, x2 ∈ SNoL y ∧ (u + v * x2) ≤ v * y + x * x2)) ∨ (∃v : set, v ∈ SNoR x ∧ (∃x2 : set, x2 ∈ SNoR y ∧ (u + v * x2) ≤ v * y + x * x2)))
Hypothesis H5 : SNoLev z ∈ SNoLev (x * y)
Hypothesis H6 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → (u * y + x * v) < z + u * v))
Hypothesis H7 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → (u * y + x * v) < z + u * v))
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w ∈ SNoLev z
Hypothesis H10 : z < w
Hypothesis H11 : w < x * y
Theorem. (
Conj_mul_SNo_SNoL_interpolate__7__3)
(∃u : set, u ∈ SNoL x ∧ (∃v : set, v ∈ SNoL y ∧ (w + u * v) ≤ u * y + x * v)) ∨ (∃u : set, u ∈ SNoR x ∧ (∃v : set, v ∈ SNoR y ∧ (w + u * v) ≤ u * y + x * v)) → x * y < w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__7__3
Beginning of Section Conj_mul_SNo_SNoL_interpolate__8__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo z
Hypothesis H4 : (∀w : set, w ∈ SNoS_ (SNoLev z) → SNoLev w ∈ SNoLev (x * y) → w < x * y → (∃u : set, u ∈ SNoL x ∧ (∃v : set, v ∈ SNoL y ∧ (w + u * v) ≤ u * y + x * v)) ∨ (∃u : set, u ∈ SNoR x ∧ (∃v : set, v ∈ SNoR y ∧ (w + u * v) ≤ u * y + x * v)))
Hypothesis H5 : SNoLev z ∈ SNoLev (x * y)
Hypothesis H6 : z < x * y
Hypothesis H7 : ¬ ((∃w : set, w ∈ SNoL x ∧ (∃u : set, u ∈ SNoL y ∧ (z + w * u) ≤ w * y + x * u)) ∨ (∃w : set, w ∈ SNoR x ∧ (∃u : set, u ∈ SNoR y ∧ (z + w * u) ≤ w * y + x * u)))
Hypothesis H8 : (∀w : set, w ∈ SNoL x → (∀u : set, u ∈ SNoL y → (w * y + x * u) < z + w * u))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__8__1
Beginning of Section Conj_mul_SNo_SNoL_interpolate__9__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : SNo z
Hypothesis H5 : SNoLev z ∈ SNoLev (x * y)
Hypothesis H6 : z < x * y
Hypothesis H7 : ¬ ((∃w : set, w ∈ SNoL x ∧ (∃u : set, u ∈ SNoL y ∧ (z + w * u) ≤ w * y + x * u)) ∨ (∃w : set, w ∈ SNoR x ∧ (∃u : set, u ∈ SNoR y ∧ (z + w * u) ≤ w * y + x * u)))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__9__4
Beginning of Section Conj_mul_SNo_SNoL_interpolate__11__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Theorem. (
Conj_mul_SNo_SNoL_interpolate__11__0)
SNo (x * y) → (∀z : set, z ∈ SNoL (x * y) → (∃w : set, w ∈ SNoL x ∧ (∃u : set, u ∈ SNoL y ∧ (z + w * u) ≤ w * y + x * u)) ∨ (∃w : set, w ∈ SNoR x ∧ (∃u : set, u ∈ SNoR y ∧ (z + w * u) ≤ w * y + x * u)))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoL_interpolate__11__0
Beginning of Section Conj_mul_SNo_SNoR_interpolate__1__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo z
Hypothesis H1 : SNo w
Hypothesis H2 : w < z
Hypothesis H4 : (z + u * v) < w + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoR_interpolate__1__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__3__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL y → (z + x2 * y2) < x2 * y + x * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : w < z
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoL y
Hypothesis H8 : (u * y + x * v) ≤ w + u * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoR_interpolate__3__1
Beginning of Section Conj_mul_SNo_SNoR_interpolate__3__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL y → (z + x2 * y2) < x2 * y + x * y2))
Hypothesis H4 : SNo w
Hypothesis H5 : w < z
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoL y
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoR_interpolate__3__8
Beginning of Section Conj_mul_SNo_SNoR_interpolate__4__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo z
Hypothesis H1 : SNo w
Hypothesis H2 : w < z
Hypothesis H4 : (z + u * v) < w + u * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoR_interpolate__4__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__6__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR y → (z + x2 * y2) < x2 * y + x * y2))
Hypothesis H5 : w < z
Hypothesis H6 : u ∈ SNoL x
Hypothesis H7 : v ∈ SNoR y
Hypothesis H8 : (u * y + x * v) ≤ w + u * v
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoR_interpolate__6__4
Beginning of Section Conj_mul_SNo_SNoR_interpolate__7__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H4 : (∀u : set, u ∈ SNoS_ (SNoLev z) → SNoLev u ∈ SNoLev (x * y) → x * y < u → (∃v : set, v ∈ SNoL x ∧ (∃x2 : set, x2 ∈ SNoR y ∧ (v * y + x * x2) ≤ u + v * x2)) ∨ (∃v : set, v ∈ SNoR x ∧ (∃x2 : set, x2 ∈ SNoL y ∧ (v * y + x * x2) ≤ u + v * x2)))
Hypothesis H5 : SNoLev z ∈ SNoLev (x * y)
Hypothesis H6 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → (z + u * v) < u * y + x * v))
Hypothesis H7 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → (z + u * v) < u * y + x * v))
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w ∈ SNoLev z
Hypothesis H10 : w < z
Hypothesis H11 : x * y < w
Theorem. (
Conj_mul_SNo_SNoR_interpolate__7__3)
(∃u : set, u ∈ SNoL x ∧ (∃v : set, v ∈ SNoR y ∧ (u * y + x * v) ≤ w + u * v)) ∨ (∃u : set, u ∈ SNoR x ∧ (∃v : set, v ∈ SNoL y ∧ (u * y + x * v) ≤ w + u * v)) → w < x * y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoR_interpolate__7__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__8__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo z
Hypothesis H4 : (∀w : set, w ∈ SNoS_ (SNoLev z) → SNoLev w ∈ SNoLev (x * y) → x * y < w → (∃u : set, u ∈ SNoL x ∧ (∃v : set, v ∈ SNoR y ∧ (u * y + x * v) ≤ w + u * v)) ∨ (∃u : set, u ∈ SNoR x ∧ (∃v : set, v ∈ SNoL y ∧ (u * y + x * v) ≤ w + u * v)))
Hypothesis H5 : SNoLev z ∈ SNoLev (x * y)
Hypothesis H6 : x * y < z
Hypothesis H7 : ¬ ((∃w : set, w ∈ SNoL x ∧ (∃u : set, u ∈ SNoR y ∧ (w * y + x * u) ≤ z + w * u)) ∨ (∃w : set, w ∈ SNoR x ∧ (∃u : set, u ∈ SNoL y ∧ (w * y + x * u) ≤ z + w * u)))
Hypothesis H8 : (∀w : set, w ∈ SNoL x → (∀u : set, u ∈ SNoR y → (z + w * u) < w * y + x * u))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_SNoR_interpolate__8__2
Beginning of Section Conj_mul_SNo_oneR__3__0
Variable x : set
Variable y : set
Hypothesis H1 : (∀z : set, z ∈ SNoL x → (∀w : set, w ∈ SNoL (ordsucc Empty) → (z * ordsucc Empty + x * w) < x * ordsucc Empty + z * w))
Hypothesis H2 : Empty ∈ SNoL (ordsucc Empty)
Hypothesis H3 : y ∈ SNoL x
Hypothesis H4 : SNo y
Hypothesis H5 : y * ordsucc Empty + x * Empty = y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_oneR__3__0
Beginning of Section Conj_mul_SNo_com__1__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → x2 * y2 = y2 * x2))
Hypothesis H5 : (∀x2 : set, x2 ∈ w → (∀P : prop, (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → P))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H7 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H8 : (∀x2 : set, x2 ∈ v → (∀P : prop, (∀y2 : set, y2 ∈ SNoL y → (∀z2 : set, z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR y → (∀z2 : set, z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → P))
Hypothesis H9 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Hypothesis H10 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Hypothesis H11 : z = u
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_com__1__0
Beginning of Section Conj_mul_SNo_com__2__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → x2 * y2 = y2 * x2))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ z))
Hypothesis H7 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2) ∈ z))
Hypothesis H8 : (∀x2 : set, x2 ∈ w → (∀P : prop, (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → P))
Hypothesis H9 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H10 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H11 : (∀x2 : set, x2 ∈ u → (∀P : prop, (∀y2 : set, y2 ∈ SNoL y → (∀z2 : set, z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR y → (∀z2 : set, z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → P))
Hypothesis H12 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ u))
Hypothesis H13 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ u))
Hypothesis H14 : (∀x2 : set, x2 ∈ v → (∀P : prop, (∀y2 : set, y2 ∈ SNoL y → (∀z2 : set, z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR y → (∀z2 : set, z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → P))
Hypothesis H15 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Hypothesis H16 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_com__2__5
Beginning of Section Conj_mul_SNo_com__2__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → x2 * y2 = y2 * x2))
Hypothesis H5 : (∀x2 : set, x2 ∈ z → (∀P : prop, (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → P))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ z))
Hypothesis H7 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2) ∈ z))
Hypothesis H8 : (∀x2 : set, x2 ∈ w → (∀P : prop, (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → P))
Hypothesis H10 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H11 : (∀x2 : set, x2 ∈ u → (∀P : prop, (∀y2 : set, y2 ∈ SNoL y → (∀z2 : set, z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR y → (∀z2 : set, z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → P))
Hypothesis H12 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ u))
Hypothesis H13 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ u))
Hypothesis H14 : (∀x2 : set, x2 ∈ v → (∀P : prop, (∀y2 : set, y2 ∈ SNoL y → (∀z2 : set, z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR y → (∀z2 : set, z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → P))
Hypothesis H15 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Hypothesis H16 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_com__2__9
Beginning of Section Conj_mul_SNo_com__2__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → x2 * y2 = y2 * x2))
Hypothesis H5 : (∀x2 : set, x2 ∈ z → (∀P : prop, (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → P))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ z))
Hypothesis H7 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2) ∈ z))
Hypothesis H8 : (∀x2 : set, x2 ∈ w → (∀P : prop, (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → P))
Hypothesis H9 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H10 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H12 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ u))
Hypothesis H13 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ u))
Hypothesis H14 : (∀x2 : set, x2 ∈ v → (∀P : prop, (∀y2 : set, y2 ∈ SNoL y → (∀z2 : set, z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR y → (∀z2 : set, z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → P))
Hypothesis H15 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Hypothesis H16 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_com__2__11
Beginning of Section Conj_mul_SNo_com__2__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → x2 * y = y * x2)
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → x * x2 = x2 * x)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → x2 * y2 = y2 * x2))
Hypothesis H5 : (∀x2 : set, x2 ∈ z → (∀P : prop, (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → P))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ z))
Hypothesis H7 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2) ∈ z))
Hypothesis H8 : (∀x2 : set, x2 ∈ w → (∀P : prop, (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2) → P)) → P))
Hypothesis H9 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H10 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2) ∈ w))
Hypothesis H11 : (∀x2 : set, x2 ∈ u → (∀P : prop, (∀y2 : set, y2 ∈ SNoL y → (∀z2 : set, z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → (∀y2 : set, y2 ∈ SNoR y → (∀z2 : set, z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2) → P)) → P))
Hypothesis H12 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ u))
Hypothesis H13 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ u))
Hypothesis H15 : (∀x2 : set, x2 ∈ SNoL y → (∀y2 : set, y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Hypothesis H16 : (∀x2 : set, x2 ∈ SNoR y → (∀y2 : set, y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2) ∈ v))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_com__2__14
Beginning of Section Conj_mul_SNo_minus_distrL__2__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → - x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → - x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoL (- x) → (∀y2 : set, y2 ∈ SNoR y → x2 * y + - x * y2 + - (x2 * y2) ∈ z))
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoR y
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u ∈ SNoLev x
Hypothesis H11 : x < u
Hypothesis H13 : SNo (- u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__2__12
Beginning of Section Conj_mul_SNo_minus_distrL__4__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → - x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → - x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR (- x) → (∀y2 : set, y2 ∈ SNoL y → x2 * y + - x * y2 + - (x2 * y2) ∈ z))
Hypothesis H6 : u ∈ SNoL x
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H10 : SNo v
Hypothesis H11 : - u ∈ SNoR (- x)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__4__7
Beginning of Section Conj_mul_SNo_minus_distrL__5__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → - x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → - x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR (- x) → (∀y2 : set, y2 ∈ SNoL y → x2 * y + - x * y2 + - (x2 * y2) ∈ z))
Hypothesis H6 : u ∈ SNoL x
Hypothesis H7 : v ∈ SNoL y
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u ∈ SNoLev x
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Hypothesis H13 : SNo (- u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__5__1
Beginning of Section Conj_mul_SNo_minus_distrL__9__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀v : set, v ∈ SNoS_ (SNoLev x) → - v * y = - (v * y))
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev y) → - x * v = - (x * v))
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - v * x2 = - (v * x2)))
Hypothesis H5 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → v * y + x * x2 + - (v * x2) ∈ z))
Hypothesis H6 : u ∈ SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev (- x)
Hypothesis H9 : - x < w
Hypothesis H10 : SNo u
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__9__0
Beginning of Section Conj_mul_SNo_minus_distrL__15__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → - x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → - x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoL (- x) → (∀y2 : set, y2 ∈ SNoL y → x2 * y + - x * y2 + - (x2 * y2) ∈ z))
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoL y
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u ∈ SNoLev x
Hypothesis H12 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__15__11
Beginning of Section Conj_mul_SNo_minus_distrL__18__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → - x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → - x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR (- x) → (∀y2 : set, y2 ∈ SNoR y → x2 * y + - x * y2 + - (x2 * y2) ∈ z))
Hypothesis H6 : u ∈ SNoL x
Hypothesis H7 : v ∈ SNoR y
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u ∈ SNoLev x
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__18__8
Beginning of Section Conj_mul_SNo_minus_distrL__18__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → - x2 * y = - (x2 * y))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - x * x2 = - (x * x2))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → - x2 * y2 = - (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR (- x) → (∀y2 : set, y2 ∈ SNoR y → x2 * y + - x * y2 + - (x2 * y2) ∈ z))
Hypothesis H6 : u ∈ SNoL x
Hypothesis H7 : v ∈ SNoR y
Hypothesis H8 : w = u * y + x * v + - (u * v)
Hypothesis H9 : SNo u
Hypothesis H11 : u < x
Hypothesis H12 : SNo v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__18__10
Beginning of Section Conj_mul_SNo_minus_distrL__19__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀v : set, v ∈ SNoS_ (SNoLev x) → - v * y = - (v * y))
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev y) → - x * v = - (x * v))
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - v * x2 = - (v * x2)))
Hypothesis H6 : u ∈ SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (- w)
Hypothesis H10 : - w ∈ SNoL x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__19__5
Beginning of Section Conj_mul_SNo_minus_distrL__22__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀v : set, v ∈ SNoS_ (SNoLev x) → - v * y = - (v * y))
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev y) → - x * v = - (x * v))
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → - v * x2 = - (v * x2)))
Hypothesis H5 : (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoL y → v * y + x * x2 + - (v * x2) ∈ z))
Hypothesis H6 : u ∈ SNoL y
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (- w)
Hypothesis H10 : - w ∈ SNoR x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__22__7
Beginning of Section Conj_mul_SNo_minus_distrL__26__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z ∈ SNoS_ (SNoLev x) → - z * y = - (z * y))
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev y) → - x * z = - (x * z))
Hypothesis H4 : (∀z : set, z ∈ SNoS_ (SNoLev x) → (∀w : set, w ∈ SNoS_ (SNoLev y) → - z * w = - (z * w)))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_minus_distrL__26__0
Beginning of Section Conj_mul_SNo_distrR__1__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H24 : SNo (w + x * z)
Hypothesis H25 : SNo (u * v + x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__1__23
Beginning of Section Conj_mul_SNo_distrR__2__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__2__24
Beginning of Section Conj_mul_SNo_distrR__6__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__6__9
Beginning of Section Conj_mul_SNo_distrR__6__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__6__16
Beginning of Section Conj_mul_SNo_distrR__6__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__6__19
Beginning of Section Conj_mul_SNo_distrR__6__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__6__20
Beginning of Section Conj_mul_SNo_distrR__10__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__10__4
Beginning of Section Conj_mul_SNo_distrR__13__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__13__1
Beginning of Section Conj_mul_SNo_distrR__14__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__14__14
Beginning of Section Conj_mul_SNo_distrR__15__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__15__1
Beginning of Section Conj_mul_SNo_distrR__16__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__16__5
Beginning of Section Conj_mul_SNo_distrR__16__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__16__14
Beginning of Section Conj_mul_SNo_distrR__17__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__17__1
Beginning of Section Conj_mul_SNo_distrR__17__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__17__2
Beginning of Section Conj_mul_SNo_distrR__17__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H12 : (u * z + y * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__17__11
Beginning of Section Conj_mul_SNo_distrR__20__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__20__1
Beginning of Section Conj_mul_SNo_distrR__20__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__20__2
Beginning of Section Conj_mul_SNo_distrR__20__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__20__6
Beginning of Section Conj_mul_SNo_distrR__20__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__20__20
Beginning of Section Conj_mul_SNo_distrR__25__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__25__5
Beginning of Section Conj_mul_SNo_distrR__27__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__27__13
Beginning of Section Conj_mul_SNo_distrR__27__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__27__16
Beginning of Section Conj_mul_SNo_distrR__29__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Hypothesis H25 : SNo (u * v + y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__29__11
Beginning of Section Conj_mul_SNo_distrR__30__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__30__18
Beginning of Section Conj_mul_SNo_distrR__31__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__31__15
Beginning of Section Conj_mul_SNo_distrR__31__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__31__19
Beginning of Section Conj_mul_SNo_distrR__32__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__32__11
Beginning of Section Conj_mul_SNo_distrR__32__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__32__14
Beginning of Section Conj_mul_SNo_distrR__32__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__32__16
Beginning of Section Conj_mul_SNo_distrR__32__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__32__22
Beginning of Section Conj_mul_SNo_distrR__33__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__33__1
Beginning of Section Conj_mul_SNo_distrR__33__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__33__10
Beginning of Section Conj_mul_SNo_distrR__33__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__33__11
Beginning of Section Conj_mul_SNo_distrR__34__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__34__15
Beginning of Section Conj_mul_SNo_distrR__35__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__35__17
Beginning of Section Conj_mul_SNo_distrR__36__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (u * z + x * v) ≤ w + u * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__36__16
Beginning of Section Conj_mul_SNo_distrR__37__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__37__12
Beginning of Section Conj_mul_SNo_distrR__39__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + x * z)
Hypothesis H25 : SNo (u * v + x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__39__5
Beginning of Section Conj_mul_SNo_distrR__40__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + x * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__40__1
Beginning of Section Conj_mul_SNo_distrR__40__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__40__24
Beginning of Section Conj_mul_SNo_distrR__41__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__41__10
Beginning of Section Conj_mul_SNo_distrR__41__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__41__14
Beginning of Section Conj_mul_SNo_distrR__42__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__42__19
Beginning of Section Conj_mul_SNo_distrR__44__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__44__4
Beginning of Section Conj_mul_SNo_distrR__45__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__45__16
Beginning of Section Conj_mul_SNo_distrR__47__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__47__17
Beginning of Section Conj_mul_SNo_distrR__48__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__48__11
Beginning of Section Conj_mul_SNo_distrR__48__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR y
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : y < u
Hypothesis H16 : z < v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__48__15
Beginning of Section Conj_mul_SNo_distrR__49__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + x * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__49__2
Beginning of Section Conj_mul_SNo_distrR__52__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__52__2
Beginning of Section Conj_mul_SNo_distrR__52__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__52__9
Beginning of Section Conj_mul_SNo_distrR__52__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__52__13
Beginning of Section Conj_mul_SNo_distrR__52__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__52__19
Beginning of Section Conj_mul_SNo_distrR__52__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__52__21
Beginning of Section Conj_mul_SNo_distrR__53__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (x + u)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__53__19
Beginning of Section Conj_mul_SNo_distrR__56__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__56__5
Beginning of Section Conj_mul_SNo_distrR__56__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__56__15
Beginning of Section Conj_mul_SNo_distrR__57__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + y * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < y
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__57__7
Beginning of Section Conj_mul_SNo_distrR__58__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__58__19
Beginning of Section Conj_mul_SNo_distrR__60__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__60__18
Beginning of Section Conj_mul_SNo_distrR__61__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__61__21
Beginning of Section Conj_mul_SNo_distrR__63__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__63__2
Beginning of Section Conj_mul_SNo_distrR__64__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : x < u
Hypothesis H15 : SNo v
Hypothesis H16 : z < v
Hypothesis H18 : SNo (u + y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__64__17
Beginning of Section Conj_mul_SNo_distrR__67__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Hypothesis H25 : SNo (u * v + y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__67__6
Beginning of Section Conj_mul_SNo_distrR__67__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H24 : SNo (w + y * z)
Hypothesis H25 : SNo (u * v + y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__67__23
Beginning of Section Conj_mul_SNo_distrR__68__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__68__11
Beginning of Section Conj_mul_SNo_distrR__68__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Hypothesis H24 : SNo (w + y * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__68__13
Beginning of Section Conj_mul_SNo_distrR__69__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__69__4
Beginning of Section Conj_mul_SNo_distrR__69__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Hypothesis H23 : SNo (y * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__69__8
Beginning of Section Conj_mul_SNo_distrR__70__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__70__19
Beginning of Section Conj_mul_SNo_distrR__70__20
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H21 : SNo (u * z)
Hypothesis H22 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__70__20
Beginning of Section Conj_mul_SNo_distrR__71__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Hypothesis H19 : SNo (w + u * v)
Hypothesis H20 : SNo ((x + y) * v)
Hypothesis H21 : SNo (u * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__71__13
Beginning of Section Conj_mul_SNo_distrR__73__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__73__19
Beginning of Section Conj_mul_SNo_distrR__74__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u + y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__74__5
Beginning of Section Conj_mul_SNo_distrR__75__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : (w + u * v) ≤ u * z + x * v
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Hypothesis H17 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__75__5
Beginning of Section Conj_mul_SNo_distrR__76__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + y) * x2 = x * x2 + y * x2)
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo ((x + y) * z)
Hypothesis H8 : SNo (y * z)
Hypothesis H9 : SNo w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoL z
Hypothesis H13 : SNo u
Hypothesis H14 : u < x
Hypothesis H15 : SNo v
Hypothesis H16 : v < z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__76__12
Beginning of Section Conj_mul_SNo_distrR__77__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR y
Hypothesis H18 : (x + v) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__77__2
Beginning of Section Conj_mul_SNo_distrR__77__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR y
Hypothesis H18 : (x + v) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__77__13
Beginning of Section Conj_mul_SNo_distrR__78__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR y
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__78__18
Beginning of Section Conj_mul_SNo_distrR__80__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__80__0
Beginning of Section Conj_mul_SNo_distrR__80__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__80__7
Beginning of Section Conj_mul_SNo_distrR__80__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__80__13
Beginning of Section Conj_mul_SNo_distrR__80__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__80__16
Beginning of Section Conj_mul_SNo_distrR__81__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__81__7
Beginning of Section Conj_mul_SNo_distrR__81__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__81__9
Beginning of Section Conj_mul_SNo_distrR__81__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__81__10
Beginning of Section Conj_mul_SNo_distrR__81__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__81__19
Beginning of Section Conj_mul_SNo_distrR__82__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__82__13
Beginning of Section Conj_mul_SNo_distrR__83__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoR (x + y)
Hypothesis H12 : u ∈ SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Hypothesis H21 : SNo (w * z + x * u + y * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__83__8
Beginning of Section Conj_mul_SNo_distrR__85__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoR (x + y)
Hypothesis H12 : u ∈ SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H19 : SNo ((x + y) * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__85__18
Beginning of Section Conj_mul_SNo_distrR__90__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoR (x + y)
Hypothesis H13 : u ∈ SNoL z
Hypothesis H14 : SNo w
Hypothesis H16 : u < z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__90__15
Beginning of Section Conj_mul_SNo_distrR__92__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoL y
Hypothesis H18 : w ≤ x + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__92__5
Beginning of Section Conj_mul_SNo_distrR__92__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H17 : v ∈ SNoL y
Hypothesis H18 : w ≤ x + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__92__16
Beginning of Section Conj_mul_SNo_distrR__93__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoL y
Hypothesis H18 : w ≤ x + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__93__0
Beginning of Section Conj_mul_SNo_distrR__94__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoL x
Hypothesis H18 : w ≤ v + y
Hypothesis H19 : SNo v
Hypothesis H20 : v < x
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__94__0
Beginning of Section Conj_mul_SNo_distrR__94__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoL x
Hypothesis H18 : w ≤ v + y
Hypothesis H19 : SNo v
Hypothesis H20 : v < x
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__94__22
Beginning of Section Conj_mul_SNo_distrR__95__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoL x
Hypothesis H18 : w ≤ v + y
Hypothesis H19 : SNo v
Hypothesis H20 : v < x
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__95__12
Beginning of Section Conj_mul_SNo_distrR__97__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoL (x + y)
Hypothesis H12 : u ∈ SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Hypothesis H21 : SNo (w * z + x * u + y * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__97__18
Beginning of Section Conj_mul_SNo_distrR__98__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H11 : w ∈ SNoL (x + y)
Hypothesis H12 : u ∈ SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__98__10
Beginning of Section Conj_mul_SNo_distrR__100__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoL (x + y)
Hypothesis H12 : u ∈ SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__100__6
Beginning of Section Conj_mul_SNo_distrR__100__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoL (x + y)
Hypothesis H12 : u ∈ SNoR z
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__100__13
Beginning of Section Conj_mul_SNo_distrR__101__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoL (x + y)
Hypothesis H13 : u ∈ SNoR z
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Hypothesis H19 : SNo (w * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__101__14
Beginning of Section Conj_mul_SNo_distrR__104__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoL (x + y)
Hypothesis H13 : u ∈ SNoR z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__104__2
Beginning of Section Conj_mul_SNo_distrR__105__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR y
Hypothesis H18 : (x + v) ≤ w
Hypothesis H20 : y < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__105__19
Beginning of Section Conj_mul_SNo_distrR__107__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR y
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__107__18
Beginning of Section Conj_mul_SNo_distrR__108__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__108__2
Beginning of Section Conj_mul_SNo_distrR__108__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__108__9
Beginning of Section Conj_mul_SNo_distrR__109__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__109__8
Beginning of Section Conj_mul_SNo_distrR__109__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__109__18
Beginning of Section Conj_mul_SNo_distrR__110__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H17 : v ∈ SNoR x
Hypothesis H18 : (v + y) ≤ w
Hypothesis H19 : SNo v
Hypothesis H20 : x < v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__110__16
Beginning of Section Conj_mul_SNo_distrR__111__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoR (x + y)
Hypothesis H12 : u ∈ SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Hypothesis H21 : SNo (w * z + x * u + y * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__111__6
Beginning of Section Conj_mul_SNo_distrR__112__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoR (x + y)
Hypothesis H12 : u ∈ SNoR z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : z < u
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__112__16
Beginning of Section Conj_mul_SNo_distrR__115__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoR (x + y)
Hypothesis H13 : u ∈ SNoR z
Hypothesis H14 : SNo w
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Hypothesis H19 : SNo (w * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__115__15
Beginning of Section Conj_mul_SNo_distrR__116__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoR (x + y)
Hypothesis H13 : u ∈ SNoR z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__116__7
Beginning of Section Conj_mul_SNo_distrR__116__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoR (x + y)
Hypothesis H13 : u ∈ SNoR z
Hypothesis H14 : SNo w
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__116__15
Beginning of Section Conj_mul_SNo_distrR__117__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H13 : u ∈ SNoR z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Hypothesis H17 : SNo (x * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__117__12
Beginning of Section Conj_mul_SNo_distrR__118__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H13 : u ∈ SNoR z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : z < u
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__118__12
Beginning of Section Conj_mul_SNo_distrR__119__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoL y
Hypothesis H18 : w ≤ x + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (v * u)
Hypothesis H22 : SNo (v * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__119__9
Beginning of Section Conj_mul_SNo_distrR__120__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (x + x2) * z = x * z + x2 * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H17 : v ∈ SNoL y
Hypothesis H18 : w ≤ x + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__120__16
Beginning of Section Conj_mul_SNo_distrR__121__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x + x2) * y2 = x * y2 + x2 * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H10 : u < z
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoL y
Hypothesis H18 : w ≤ x + v
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__121__3
Beginning of Section Conj_mul_SNo_distrR__123__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (x2 + y) * z = x2 * z + y * z)
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, y2 ∈ SNoS_ (SNoLev z) → (x2 + y) * y2 = x2 * y2 + y * y2))
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (y * z)
Hypothesis H7 : u ∈ SNoL z
Hypothesis H8 : SNo w
Hypothesis H9 : SNo u
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (y * u)
Hypothesis H13 : SNo (w * z)
Hypothesis H14 : SNo (w * u)
Hypothesis H15 : SNo (w * z + x * u + y * u)
Hypothesis H16 : SNo (x * z + y * z + w * u)
Hypothesis H17 : v ∈ SNoL x
Hypothesis H18 : w ≤ v + y
Hypothesis H19 : SNo v
Hypothesis H20 : v < x
Hypothesis H21 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__123__10
Beginning of Section Conj_mul_SNo_distrR__125__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoL (x + y)
Hypothesis H12 : u ∈ SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Hypothesis H21 : SNo (w * z + x * u + y * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__125__15
Beginning of Section Conj_mul_SNo_distrR__126__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoL (x + y)
Hypothesis H12 : u ∈ SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__126__9
Beginning of Section Conj_mul_SNo_distrR__126__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H12 : u ∈ SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Hypothesis H20 : SNo (w * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__126__11
Beginning of Section Conj_mul_SNo_distrR__127__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoL (x + y)
Hypothesis H12 : u ∈ SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H15 : u < z
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__127__7
Beginning of Section Conj_mul_SNo_distrR__128__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (y * z)
Hypothesis H10 : SNo (x * z + y * z)
Hypothesis H11 : w ∈ SNoL (x + y)
Hypothesis H12 : u ∈ SNoL z
Hypothesis H13 : SNo w
Hypothesis H14 : SNo u
Hypothesis H16 : SNo (x * u)
Hypothesis H17 : SNo (y * u)
Hypothesis H18 : SNo (w * z)
Hypothesis H19 : SNo ((x + y) * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__128__15
Beginning of Section Conj_mul_SNo_distrR__129__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoL (x + y)
Hypothesis H13 : u ∈ SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Hypothesis H19 : SNo (w * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__129__10
Beginning of Section Conj_mul_SNo_distrR__130__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoL (x + y)
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Hypothesis H17 : SNo (x * u)
Hypothesis H18 : SNo (y * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__130__13
Beginning of Section Conj_mul_SNo_distrR__131__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H13 : u ∈ SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Hypothesis H17 : SNo (x * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__131__12
Beginning of Section Conj_mul_SNo_distrR__131__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoL (x + y)
Hypothesis H13 : u ∈ SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__131__17
Beginning of Section Conj_mul_SNo_distrR__132__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoL (x + y)
Hypothesis H13 : u ∈ SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Hypothesis H16 : u < z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__132__4
Beginning of Section Conj_mul_SNo_distrR__132__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNo (x + y)
Hypothesis H9 : SNo (x * z)
Hypothesis H10 : SNo (y * z)
Hypothesis H11 : SNo (x * z + y * z)
Hypothesis H12 : w ∈ SNoL (x + y)
Hypothesis H13 : u ∈ SNoL z
Hypothesis H14 : SNo w
Hypothesis H15 : SNo u
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__132__16
Beginning of Section Conj_mul_SNo_distrR__133__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H10 : (∀v : set, v ∈ u → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H12 : SNo (x + y)
Hypothesis H13 : SNo ((x + y) * z)
Hypothesis H14 : SNo (x * z)
Hypothesis H15 : SNo (y * z)
Hypothesis H16 : SNo (x * z + y * z)
Theorem. (
Conj_mul_SNo_distrR__133__11)
x * z + y * z = SNoCut (binunion (Repl (SNoL (x * z)) (λv : set ⇒ v + y * z)) (Repl (SNoL (y * z)) (add_SNo (x * z)))) (binunion (Repl (SNoR (x * z)) (λv : set ⇒ v + y * z)) (Repl (SNoR (y * z)) (add_SNo (x * z)))) → (x + y) * z = x * z + y * z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__133__11
Beginning of Section Conj_mul_SNo_distrR__135__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H10 : (∀v : set, v ∈ u → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Hypothesis H12 : SNo (x + y)
Hypothesis H13 : SNo ((x + y) * z)
Hypothesis H14 : SNo (x * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__135__6
Beginning of Section Conj_mul_SNo_distrR__136__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H10 : (∀v : set, v ∈ u → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Hypothesis H12 : SNo (x + y)
Hypothesis H13 : SNo ((x + y) * z)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__136__5
Beginning of Section Conj_mul_SNo_distrR__137__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H10 : (∀v : set, v ∈ u → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Hypothesis H12 : SNo (x + y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__137__3
Beginning of Section Conj_mul_SNo_distrR__137__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H6 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (v + y) * x2 = v * x2 + y * x2))
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H10 : (∀v : set, v ∈ u → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Hypothesis H12 : SNo (x + y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__137__4
Beginning of Section Conj_mul_SNo_distrR__138__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (v + y) * z = v * z + y * z)
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (x + v) * z = x * z + v * z)
Hypothesis H5 : (∀v : set, v ∈ SNoS_ (SNoLev z) → (x + y) * v = x * v + y * v)
Hypothesis H7 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev z) → (x + v) * x2 = x * x2 + v * x2))
Hypothesis H8 : SNoCutP w u
Hypothesis H9 : (∀v : set, v ∈ w → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H10 : (∀v : set, v ∈ u → (∀P : prop, (∀x2 : set, x2 ∈ SNoL (x + y) → (∀y2 : set, y2 ∈ SNoR z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → (∀x2 : set, x2 ∈ SNoR (x + y) → (∀y2 : set, y2 ∈ SNoL z → v = x2 * z + (x + y) * y2 + - (x2 * y2) → P)) → P))
Hypothesis H11 : (x + y) * z = SNoCut w u
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_distrR__138__6
Beginning of Section Conj_mul_SNo_assoc_lem1__1__7
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u ∈ SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Hypothesis H41 : SNo (g u (g y z) + g x (g x2 z) + g x (g y y2) + g u v + g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__1__7
Beginning of Section Conj_mul_SNo_assoc_lem1__1__33
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u ∈ SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Hypothesis H41 : SNo (g u (g y z) + g x (g x2 z) + g x (g y y2) + g u v + g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__1__33
Beginning of Section Conj_mul_SNo_assoc_lem1__2__27
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u ∈ SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Hypothesis H41 : SNo (g u v + g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__2__27
Beginning of Section Conj_mul_SNo_assoc_lem1__3__17
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u ∈ SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H38 : SNo (g u (g x2 y2))
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__3__17
Beginning of Section Conj_mul_SNo_assoc_lem1__3__38
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H2 : SNo x
Hypothesis H3 : SNo z
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H11 : SNo (g x y)
Hypothesis H12 : SNo (g (g x y) z)
Hypothesis H13 : u ∈ SNoS_ (SNoLev x)
Hypothesis H14 : SNo v
Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H17 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H18 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H19 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H20 : SNo u
Hypothesis H21 : SNo y2
Hypothesis H22 : SNo (g u (g y z))
Hypothesis H23 : SNo (g x v)
Hypothesis H24 : SNo (g x x2)
Hypothesis H25 : SNo (g u v)
Hypothesis H26 : SNo (g u x2)
Hypothesis H27 : SNo (g u y)
Hypothesis H28 : SNo (g x2 z)
Hypothesis H29 : SNo (g y y2)
Hypothesis H30 : SNo (g u (g x2 z))
Hypothesis H31 : SNo (g u (g y y2))
Hypothesis H32 : SNo (g x2 y2)
Hypothesis H33 : SNo (g x (g x2 y2))
Hypothesis H34 : SNo (g x (g x2 z))
Hypothesis H35 : SNo (g x (g y y2))
Hypothesis H36 : SNo (g u (g y z) + g x v)
Hypothesis H37 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (v + g x2 y2))
Hypothesis H40 : SNo (g u (g x2 z + g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__3__38
Beginning of Section Conj_mul_SNo_assoc_lem1__4__1
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__4__1
Beginning of Section Conj_mul_SNo_assoc_lem1__4__8
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__4__8
Beginning of Section Conj_mul_SNo_assoc_lem1__4__18
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__4__18
Beginning of Section Conj_mul_SNo_assoc_lem1__4__27
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Hypothesis H40 : SNo (g u (v + g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__4__27
Beginning of Section Conj_mul_SNo_assoc_lem1__6__15
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__6__15
Beginning of Section Conj_mul_SNo_assoc_lem1__6__31
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Hypothesis H39 : SNo (g u (g x2 y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__6__31
Beginning of Section Conj_mul_SNo_assoc_lem1__6__39
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Hypothesis H37 : SNo (g u (g y z) + g x v)
Hypothesis H38 : SNo (g (g x y) z + g u v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__6__39
Beginning of Section Conj_mul_SNo_assoc_lem1__9__22
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Hypothesis H36 : SNo (g x (g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__9__22
Beginning of Section Conj_mul_SNo_assoc_lem1__10__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__10__14
Beginning of Section Conj_mul_SNo_assoc_lem1__10__16
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__10__16
Beginning of Section Conj_mul_SNo_assoc_lem1__10__19
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__10__19
Beginning of Section Conj_mul_SNo_assoc_lem1__10__26
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Hypothesis H34 : SNo (g x (g x2 y2))
Hypothesis H35 : SNo (g x (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__10__26
Beginning of Section Conj_mul_SNo_assoc_lem1__12__2
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__12__2
Beginning of Section Conj_mul_SNo_assoc_lem1__12__16
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__12__16
Beginning of Section Conj_mul_SNo_assoc_lem1__12__17
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo y2
Hypothesis H23 : SNo (g u (g y z))
Hypothesis H24 : SNo (g x v)
Hypothesis H25 : SNo (g x x2)
Hypothesis H26 : SNo (g u v)
Hypothesis H27 : SNo (g u x2)
Hypothesis H28 : SNo (g u y)
Hypothesis H29 : SNo (g x2 z)
Hypothesis H30 : SNo (g y y2)
Hypothesis H31 : SNo (g u (g x2 z))
Hypothesis H32 : SNo (g u (g y y2))
Hypothesis H33 : SNo (g x2 y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__12__17
Beginning of Section Conj_mul_SNo_assoc_lem1__13__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Hypothesis H33 : SNo (g u (g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__13__6
Beginning of Section Conj_mul_SNo_assoc_lem1__13__12
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Hypothesis H33 : SNo (g u (g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__13__12
Beginning of Section Conj_mul_SNo_assoc_lem1__13__26
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Hypothesis H33 : SNo (g u (g y y2))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__13__26
Beginning of Section Conj_mul_SNo_assoc_lem1__14__12
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__14__12
Beginning of Section Conj_mul_SNo_assoc_lem1__14__21
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Hypothesis H32 : SNo (g u (g x2 z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__14__21
Beginning of Section Conj_mul_SNo_assoc_lem1__15__6
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo z
Hypothesis H5 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H12 : SNo (g x y)
Hypothesis H13 : SNo (g (g x y) z)
Hypothesis H14 : u ∈ SNoS_ (SNoLev x)
Hypothesis H15 : SNo v
Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H18 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H19 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H20 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H21 : SNo u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNo y2
Hypothesis H24 : SNo (g u (g y z))
Hypothesis H25 : SNo (g x v)
Hypothesis H26 : SNo (g x x2)
Hypothesis H27 : SNo (g u v)
Hypothesis H28 : SNo (g u x2)
Hypothesis H29 : SNo (g u y)
Hypothesis H30 : SNo (g x2 z)
Hypothesis H31 : SNo (g y y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__15__6
Beginning of Section Conj_mul_SNo_assoc_lem1__17__0
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Hypothesis H30 : SNo (g u y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__17__0
Beginning of Section Conj_mul_SNo_assoc_lem1__17__2
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Hypothesis H30 : SNo (g u y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__17__2
Beginning of Section Conj_mul_SNo_assoc_lem1__17__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Hypothesis H30 : SNo (g u y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__17__14
Beginning of Section Conj_mul_SNo_assoc_lem1__18__24
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__18__24
Beginning of Section Conj_mul_SNo_assoc_lem1__18__27
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H28 : SNo (g u v)
Hypothesis H29 : SNo (g u x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__18__27
Beginning of Section Conj_mul_SNo_assoc_lem1__19__13
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Hypothesis H28 : SNo (g u v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__19__13
Beginning of Section Conj_mul_SNo_assoc_lem1__20__5
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__20__5
Beginning of Section Conj_mul_SNo_assoc_lem1__20__23
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H14 : SNo (g (g x y) z)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Hypothesis H26 : SNo (g x v)
Hypothesis H27 : SNo (g x x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__20__23
Beginning of Section Conj_mul_SNo_assoc_lem1__22__14
Variable g : (set → (set → set))
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, ∀w2 : set, SNo z2 → SNo w2 → SNo (g z2 w2))
Hypothesis H1 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2) = g z2 w2 + g z2 u2)
Hypothesis H2 : (∀z2 : set, ∀w2 : set, ∀u2 : set, SNo z2 → SNo w2 → SNo u2 → g (z2 + w2) u2 = g z2 u2 + g w2 u2)
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : SNo z
Hypothesis H6 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → g z2 (g y z) = g (g z2 y) z)
Hypothesis H7 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → g x (g z2 z) = g (g x z2) z)
Hypothesis H8 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev z) → g x (g y z2) = g (g x y) z2)
Hypothesis H9 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → g z2 (g w2 z) = g (g z2 w2) z))
Hypothesis H10 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g z2 (g y w2) = g (g z2 y) w2))
Hypothesis H11 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev z) → g x (g z2 w2) = g (g x z2) w2))
Hypothesis H12 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, w2 ∈ SNoS_ (SNoLev y) → (∀u2 : set, u2 ∈ SNoS_ (SNoLev z) → g z2 (g w2 u2) = g (g z2 w2) u2)))
Hypothesis H13 : SNo (g x y)
Hypothesis H15 : u ∈ SNoS_ (SNoLev x)
Hypothesis H16 : SNo v
Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z)
Hypothesis H19 : w = g u (g y z) + g x v + - (g u v)
Hypothesis H20 : (g u (g x2 z + g y y2) + g x (v + g x2 y2)) ≤ g x (g x2 z + g y y2) + g u (v + g x2 y2)
Hypothesis H21 : (g (g u y + g x x2) z + g (g x y + g u x2) y2) < g (g x y + g u x2) z + g (g u y + g x x2) y2
Hypothesis H22 : SNo u
Hypothesis H23 : SNo x2
Hypothesis H24 : SNo y2
Hypothesis H25 : SNo (g u (g y z))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_assoc_lem1__22__14