Beginning of Section Conj_mul_SNo_Lt__23__10
L12 Hypothesis H3 : SNo (x * y )
L13 Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L14 Hypothesis H5 : SNo (z * y )
L15 Hypothesis H6 : SNo (x * w )
L16 Hypothesis H7 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L17 Hypothesis H8 : SNo (z * w )
L18 Hypothesis H9 : SNo (z * y + x * w )
L19 Hypothesis H11 : z ∈ SNoL x
L20 Hypothesis H12 : SNo u
L21 Hypothesis H13 : w < u
L22 Hypothesis H14 : SNoLev u ∈ SNoLev w
L23 Hypothesis H15 : u ∈ SNoL y
L24
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__23__10
Beginning of Section Conj_mul_SNo_Lt__24__6
L39 Hypothesis H4 : SNo (x * y )
L40 Hypothesis H5 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L41 Hypothesis H7 : SNo (x * w )
L42 Hypothesis H8 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L43 Hypothesis H9 : SNo (z * w )
L44 Hypothesis H10 : SNo (z * y + x * w )
L45 Hypothesis H11 : SNo (x * y + z * w )
L46 Hypothesis H12 : z ∈ SNoL x
L47 Hypothesis H13 : SNo u
L48 Hypothesis H14 : w < u
L49 Hypothesis H15 : u < y
L50 Hypothesis H16 : SNoLev u ∈ SNoLev w
L51 Hypothesis H17 : SNoLev u ∈ SNoLev y
L52
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__24__6
Beginning of Section Conj_mul_SNo_Lt__24__9
L67 Hypothesis H4 : SNo (x * y )
L68 Hypothesis H5 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L69 Hypothesis H6 : SNo (z * y )
L70 Hypothesis H7 : SNo (x * w )
L71 Hypothesis H8 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L72 Hypothesis H10 : SNo (z * y + x * w )
L73 Hypothesis H11 : SNo (x * y + z * w )
L74 Hypothesis H12 : z ∈ SNoL x
L75 Hypothesis H13 : SNo u
L76 Hypothesis H14 : w < u
L77 Hypothesis H15 : u < y
L78 Hypothesis H16 : SNoLev u ∈ SNoLev w
L79 Hypothesis H17 : SNoLev u ∈ SNoLev y
L80
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__24__9
Beginning of Section Conj_mul_SNo_Lt__26__4
L91 Hypothesis H0 : SNo (x * y )
L92 Hypothesis H1 : SNo (z * y )
L93 Hypothesis H2 : SNo (x * w )
L94 Hypothesis H3 : SNo (z * w )
L95 Hypothesis H5 : SNo (z * y + x * w )
L96 Hypothesis H6 : SNo (x * y + z * w )
L97 Hypothesis H7 : u ∈ SNoR z
L98 Hypothesis H8 : SNo (u * y )
L99 Hypothesis H9 : SNo (u * w )
L100 Hypothesis H10 : SNo (z * w + u * y )
L101 Hypothesis H11 : SNo (u * w + x * y )
L102 Hypothesis H12 : SNo (x * w + u * y )
L103 Hypothesis H13 : SNo (u * w + z * y )
L104 Hypothesis H14 : y ∈ SNoR w
L105 Hypothesis H15 : (x * w + u * y ) < u * w + x * y
L106
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__26__4
Beginning of Section Conj_mul_SNo_Lt__27__13
L117 Hypothesis H0 : SNo (x * y )
L118 Hypothesis H1 : SNo (z * y )
L119 Hypothesis H2 : SNo (x * w )
L120 Hypothesis H3 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L121 Hypothesis H4 : SNo (z * w )
L122 Hypothesis H5 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L123 Hypothesis H6 : SNo (z * y + x * w )
L124 Hypothesis H7 : SNo (x * y + z * w )
L125 Hypothesis H8 : u ∈ SNoL x
L126 Hypothesis H9 : u ∈ SNoR z
L127 Hypothesis H10 : SNo (u * y )
L128 Hypothesis H11 : SNo (u * w )
L129 Hypothesis H12 : SNo (z * w + u * y )
L130 Hypothesis H14 : SNo (x * w + u * y )
L131 Hypothesis H15 : SNo (u * w + z * y )
L132 Hypothesis H16 : y ∈ SNoR w
L133
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__27__13
Beginning of Section Conj_mul_SNo_Lt__29__0
L144 Hypothesis H1 : SNo (z * y )
L145 Hypothesis H2 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L146 Hypothesis H3 : SNo (x * w )
L147 Hypothesis H4 : SNo (z * w )
L148 Hypothesis H5 : SNo (z * y + x * w )
L149 Hypothesis H6 : SNo (x * y + z * w )
L150 Hypothesis H7 : u ∈ SNoR z
L151 Hypothesis H8 : SNo (u * y )
L152 Hypothesis H9 : SNo (u * w )
L153 Hypothesis H10 : SNo (u * y + x * w )
L154 Hypothesis H11 : SNo (u * y + z * w )
L155 Hypothesis H12 : SNo (x * y + u * w )
L156 Hypothesis H13 : SNo (z * y + u * w )
L157 Hypothesis H14 : w ∈ SNoL y
L158 Hypothesis H15 : (u * y + x * w ) < x * y + u * w
L159
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__29__0
Beginning of Section Conj_mul_SNo_Lt__29__6
L170 Hypothesis H0 : SNo (x * y )
L171 Hypothesis H1 : SNo (z * y )
L172 Hypothesis H2 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L173 Hypothesis H3 : SNo (x * w )
L174 Hypothesis H4 : SNo (z * w )
L175 Hypothesis H5 : SNo (z * y + x * w )
L176 Hypothesis H7 : u ∈ SNoR z
L177 Hypothesis H8 : SNo (u * y )
L178 Hypothesis H9 : SNo (u * w )
L179 Hypothesis H10 : SNo (u * y + x * w )
L180 Hypothesis H11 : SNo (u * y + z * w )
L181 Hypothesis H12 : SNo (x * y + u * w )
L182 Hypothesis H13 : SNo (z * y + u * w )
L183 Hypothesis H14 : w ∈ SNoL y
L184 Hypothesis H15 : (u * y + x * w ) < x * y + u * w
L185
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__29__6
Beginning of Section Conj_mul_SNo_Lt__29__10
L196 Hypothesis H0 : SNo (x * y )
L197 Hypothesis H1 : SNo (z * y )
L198 Hypothesis H2 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L199 Hypothesis H3 : SNo (x * w )
L200 Hypothesis H4 : SNo (z * w )
L201 Hypothesis H5 : SNo (z * y + x * w )
L202 Hypothesis H6 : SNo (x * y + z * w )
L203 Hypothesis H7 : u ∈ SNoR z
L204 Hypothesis H8 : SNo (u * y )
L205 Hypothesis H9 : SNo (u * w )
L206 Hypothesis H11 : SNo (u * y + z * w )
L207 Hypothesis H12 : SNo (x * y + u * w )
L208 Hypothesis H13 : SNo (z * y + u * w )
L209 Hypothesis H14 : w ∈ SNoL y
L210 Hypothesis H15 : (u * y + x * w ) < x * y + u * w
L211
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__29__10
Beginning of Section Conj_mul_SNo_Lt__31__9
L222 Hypothesis H0 : SNo y
L223 Hypothesis H1 : SNo w
L224 Hypothesis H2 : w < y
L225 Hypothesis H3 : SNo (x * y )
L226 Hypothesis H4 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L227 Hypothesis H5 : SNo (z * y )
L228 Hypothesis H6 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L229 Hypothesis H7 : SNo (x * w )
L230 Hypothesis H8 : SNo (z * w )
L231 Hypothesis H10 : SNo (x * y + z * w )
L232 Hypothesis H11 : u ∈ SNoL x
L233 Hypothesis H12 : u ∈ SNoR z
L234 Hypothesis H13 : SNo (u * y )
L235 Hypothesis H14 : SNo (u * w )
L236 Hypothesis H15 : SNo (u * y + x * w )
L237 Hypothesis H16 : SNo (u * y + z * w )
L238 Hypothesis H17 : SNo (x * y + u * w )
L239 Hypothesis H18 : SNo (z * y + u * w )
L240 Hypothesis H19 : SNoLev w ∈ SNoLev y
L241
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__31__9
Beginning of Section Conj_mul_SNo_Lt__32__13
L253 Hypothesis H0 : SNo (x * y )
L254 Hypothesis H1 : SNo (z * y )
L255 Hypothesis H2 : SNo (x * w )
L256 Hypothesis H3 : SNo (z * w )
L257 Hypothesis H4 : SNo (z * y + x * w )
L258 Hypothesis H5 : SNo (x * y + z * w )
L259 Hypothesis H6 : SNo (u * y )
L260 Hypothesis H7 : SNo (u * w )
L261 Hypothesis H8 : SNo (x * v )
L262 Hypothesis H9 : SNo (z * v )
L263 Hypothesis H10 : SNo (u * v )
L264 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L265 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L266 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L267 Hypothesis H15 : SNo (u * v + u * v )
L268 Hypothesis H16 : SNo (u * y + z * v )
L269 Hypothesis H17 : SNo (u * w + x * v )
L270 Hypothesis H18 : SNo (z * y + u * v )
L271 Hypothesis H19 : SNo (x * w + u * v )
L272 Hypothesis H20 : SNo (u * w + z * v )
L273 Hypothesis H21 : SNo (u * y + x * v )
L274 Hypothesis H22 : SNo (x * y + u * v )
L275 Theorem. (
Conj_mul_SNo_Lt__32__13 )
SNo (z * w + u * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__32__13
Beginning of Section Conj_mul_SNo_Lt__33__2
L287 Hypothesis H0 : SNo (x * y )
L288 Hypothesis H1 : SNo (z * y )
L289 Hypothesis H3 : SNo (z * w )
L290 Hypothesis H4 : SNo (z * y + x * w )
L291 Hypothesis H5 : SNo (x * y + z * w )
L292 Hypothesis H6 : SNo (u * y )
L293 Hypothesis H7 : SNo (u * w )
L294 Hypothesis H8 : SNo (x * v )
L295 Hypothesis H9 : SNo (z * v )
L296 Hypothesis H10 : SNo (u * v )
L297 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L298 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L299 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L300 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L301 Hypothesis H15 : SNo (u * v + u * v )
L302 Hypothesis H16 : SNo (u * y + z * v )
L303 Hypothesis H17 : SNo (u * w + x * v )
L304 Hypothesis H18 : SNo (z * y + u * v )
L305 Hypothesis H19 : SNo (x * w + u * v )
L306 Hypothesis H20 : SNo (u * w + z * v )
L307 Hypothesis H21 : SNo (u * y + x * v )
L308 Theorem. (
Conj_mul_SNo_Lt__33__2 )
SNo (x * y + u * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__33__2
Beginning of Section Conj_mul_SNo_Lt__33__21
L320 Hypothesis H0 : SNo (x * y )
L321 Hypothesis H1 : SNo (z * y )
L322 Hypothesis H2 : SNo (x * w )
L323 Hypothesis H3 : SNo (z * w )
L324 Hypothesis H4 : SNo (z * y + x * w )
L325 Hypothesis H5 : SNo (x * y + z * w )
L326 Hypothesis H6 : SNo (u * y )
L327 Hypothesis H7 : SNo (u * w )
L328 Hypothesis H8 : SNo (x * v )
L329 Hypothesis H9 : SNo (z * v )
L330 Hypothesis H10 : SNo (u * v )
L331 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L332 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L333 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L334 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L335 Hypothesis H15 : SNo (u * v + u * v )
L336 Hypothesis H16 : SNo (u * y + z * v )
L337 Hypothesis H17 : SNo (u * w + x * v )
L338 Hypothesis H18 : SNo (z * y + u * v )
L339 Hypothesis H19 : SNo (x * w + u * v )
L340 Hypothesis H20 : SNo (u * w + z * v )
L341 Theorem. (
Conj_mul_SNo_Lt__33__21 )
SNo (x * y + u * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__33__21
Beginning of Section Conj_mul_SNo_Lt__34__7
L353 Hypothesis H0 : SNo (x * y )
L354 Hypothesis H1 : SNo (z * y )
L355 Hypothesis H2 : SNo (x * w )
L356 Hypothesis H3 : SNo (z * w )
L357 Hypothesis H4 : SNo (z * y + x * w )
L358 Hypothesis H5 : SNo (x * y + z * w )
L359 Hypothesis H6 : SNo (u * y )
L360 Hypothesis H8 : SNo (x * v )
L361 Hypothesis H9 : SNo (z * v )
L362 Hypothesis H10 : SNo (u * v )
L363 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L364 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L365 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L366 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L367 Hypothesis H15 : SNo (u * v + u * v )
L368 Hypothesis H16 : SNo (u * y + z * v )
L369 Hypothesis H17 : SNo (u * w + x * v )
L370 Hypothesis H18 : SNo (z * y + u * v )
L371 Hypothesis H19 : SNo (x * w + u * v )
L372 Hypothesis H20 : SNo (u * w + z * v )
L373 Theorem. (
Conj_mul_SNo_Lt__34__7 )
SNo (u * y + x * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__34__7
Beginning of Section Conj_mul_SNo_Lt__35__7
L385 Hypothesis H0 : SNo (x * y )
L386 Hypothesis H1 : SNo (z * y )
L387 Hypothesis H2 : SNo (x * w )
L388 Hypothesis H3 : SNo (z * w )
L389 Hypothesis H4 : SNo (z * y + x * w )
L390 Hypothesis H5 : SNo (x * y + z * w )
L391 Hypothesis H6 : SNo (u * y )
L392 Hypothesis H8 : SNo (x * v )
L393 Hypothesis H9 : SNo (z * v )
L394 Hypothesis H10 : SNo (u * v )
L395 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L396 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L397 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L398 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L399 Hypothesis H15 : SNo (u * v + u * v )
L400 Hypothesis H16 : SNo (u * y + z * v )
L401 Hypothesis H17 : SNo (u * w + x * v )
L402 Hypothesis H18 : SNo (z * y + u * v )
L403 Hypothesis H19 : SNo (x * w + u * v )
L404 Hypothesis H20 : SNo (u * w + z * v )
L405 Theorem. (
Conj_mul_SNo_Lt__35__7 )
SNo (x * y + x * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__35__7
Beginning of Section Conj_mul_SNo_Lt__35__18
L417 Hypothesis H0 : SNo (x * y )
L418 Hypothesis H1 : SNo (z * y )
L419 Hypothesis H2 : SNo (x * w )
L420 Hypothesis H3 : SNo (z * w )
L421 Hypothesis H4 : SNo (z * y + x * w )
L422 Hypothesis H5 : SNo (x * y + z * w )
L423 Hypothesis H6 : SNo (u * y )
L424 Hypothesis H7 : SNo (u * w )
L425 Hypothesis H8 : SNo (x * v )
L426 Hypothesis H9 : SNo (z * v )
L427 Hypothesis H10 : SNo (u * v )
L428 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L429 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L430 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L431 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L432 Hypothesis H15 : SNo (u * v + u * v )
L433 Hypothesis H16 : SNo (u * y + z * v )
L434 Hypothesis H17 : SNo (u * w + x * v )
L435 Hypothesis H19 : SNo (x * w + u * v )
L436 Hypothesis H20 : SNo (u * w + z * v )
L437 Theorem. (
Conj_mul_SNo_Lt__35__18 )
SNo (x * y + x * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__35__18
Beginning of Section Conj_mul_SNo_Lt__36__19
L449 Hypothesis H0 : SNo (x * y )
L450 Hypothesis H1 : SNo (z * y )
L451 Hypothesis H2 : SNo (x * w )
L452 Hypothesis H3 : SNo (z * w )
L453 Hypothesis H4 : SNo (z * y + x * w )
L454 Hypothesis H5 : SNo (x * y + z * w )
L455 Hypothesis H6 : SNo (u * y )
L456 Hypothesis H7 : SNo (u * w )
L457 Hypothesis H8 : SNo (x * v )
L458 Hypothesis H9 : SNo (z * v )
L459 Hypothesis H10 : SNo (u * v )
L460 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L461 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L462 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L463 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L464 Hypothesis H15 : SNo (u * v + u * v )
L465 Hypothesis H16 : SNo (u * y + z * v )
L466 Hypothesis H17 : SNo (u * w + x * v )
L467 Hypothesis H18 : SNo (z * y + u * v )
L468 Theorem. (
Conj_mul_SNo_Lt__36__19 )
SNo (u * w + z * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__36__19
Beginning of Section Conj_mul_SNo_Lt__37__3
L480 Hypothesis H0 : SNo (x * y )
L481 Hypothesis H1 : SNo (z * y )
L482 Hypothesis H2 : SNo (x * w )
L483 Hypothesis H4 : SNo (z * y + x * w )
L484 Hypothesis H5 : SNo (x * y + z * w )
L485 Hypothesis H6 : SNo (u * y )
L486 Hypothesis H7 : SNo (u * w )
L487 Hypothesis H8 : SNo (x * v )
L488 Hypothesis H9 : SNo (z * v )
L489 Hypothesis H10 : SNo (u * v )
L490 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L491 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L492 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L493 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L494 Hypothesis H15 : SNo (u * v + u * v )
L495 Hypothesis H16 : SNo (u * y + z * v )
L496 Hypothesis H17 : SNo (u * w + x * v )
L497 Hypothesis H18 : SNo (z * y + u * v )
L498 Theorem. (
Conj_mul_SNo_Lt__37__3 )
SNo (x * w + u * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__37__3
Beginning of Section Conj_mul_SNo_Lt__37__17
L510 Hypothesis H0 : SNo (x * y )
L511 Hypothesis H1 : SNo (z * y )
L512 Hypothesis H2 : SNo (x * w )
L513 Hypothesis H3 : SNo (z * w )
L514 Hypothesis H4 : SNo (z * y + x * w )
L515 Hypothesis H5 : SNo (x * y + z * w )
L516 Hypothesis H6 : SNo (u * y )
L517 Hypothesis H7 : SNo (u * w )
L518 Hypothesis H8 : SNo (x * v )
L519 Hypothesis H9 : SNo (z * v )
L520 Hypothesis H10 : SNo (u * v )
L521 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L522 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L523 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L524 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L525 Hypothesis H15 : SNo (u * v + u * v )
L526 Hypothesis H16 : SNo (u * y + z * v )
L527 Hypothesis H18 : SNo (z * y + u * v )
L528 Theorem. (
Conj_mul_SNo_Lt__37__17 )
SNo (x * w + u * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__37__17
Beginning of Section Conj_mul_SNo_Lt__38__15
L540 Hypothesis H0 : SNo (x * y )
L541 Hypothesis H1 : SNo (z * y )
L542 Hypothesis H2 : SNo (x * w )
L543 Hypothesis H3 : SNo (z * w )
L544 Hypothesis H4 : SNo (z * y + x * w )
L545 Hypothesis H5 : SNo (x * y + z * w )
L546 Hypothesis H6 : SNo (u * y )
L547 Hypothesis H7 : SNo (u * w )
L548 Hypothesis H8 : SNo (x * v )
L549 Hypothesis H9 : SNo (z * v )
L550 Hypothesis H10 : SNo (u * v )
L551 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L552 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L553 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L554 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L555 Hypothesis H16 : SNo (u * y + z * v )
L556 Hypothesis H17 : SNo (u * w + x * v )
L557 Theorem. (
Conj_mul_SNo_Lt__38__15 )
SNo (z * y + u * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__38__15
Beginning of Section Conj_mul_SNo_Lt__39__12
L569 Hypothesis H0 : SNo (x * y )
L570 Hypothesis H1 : SNo (z * y )
L571 Hypothesis H2 : SNo (x * w )
L572 Hypothesis H3 : SNo (z * w )
L573 Hypothesis H4 : SNo (z * y + x * w )
L574 Hypothesis H5 : SNo (x * y + z * w )
L575 Hypothesis H6 : SNo (u * y )
L576 Hypothesis H7 : SNo (u * w )
L577 Hypothesis H8 : SNo (x * v )
L578 Hypothesis H9 : SNo (z * v )
L579 Hypothesis H10 : SNo (u * v )
L580 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L581 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L582 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L583 Hypothesis H15 : SNo (u * v + u * v )
L584 Hypothesis H16 : SNo (u * y + z * v )
L585 Theorem. (
Conj_mul_SNo_Lt__39__12 )
SNo (u * w + x * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__39__12
Beginning of Section Conj_mul_SNo_Lt__40__13
L597 Hypothesis H0 : SNo (x * y )
L598 Hypothesis H1 : SNo (z * y )
L599 Hypothesis H2 : SNo (x * w )
L600 Hypothesis H3 : SNo (z * w )
L601 Hypothesis H4 : SNo (z * y + x * w )
L602 Hypothesis H5 : SNo (x * y + z * w )
L603 Hypothesis H6 : SNo (u * y )
L604 Hypothesis H7 : SNo (u * w )
L605 Hypothesis H8 : SNo (x * v )
L606 Hypothesis H9 : SNo (z * v )
L607 Hypothesis H10 : SNo (u * v )
L608 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L609 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L610 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L611 Hypothesis H15 : SNo (u * v + u * v )
L612 Theorem. (
Conj_mul_SNo_Lt__40__13 )
SNo (u * y + z * v ) → ((z * y + x * w ) + u * v + u * v ) < (x * y + z * w ) + u * v + u * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__40__13
Beginning of Section Conj_mul_SNo_Lt__41__1
L624 Hypothesis H0 : SNo (x * y )
L625 Hypothesis H2 : SNo (x * w )
L626 Hypothesis H3 : SNo (z * w )
L627 Hypothesis H4 : SNo (z * y + x * w )
L628 Hypothesis H5 : SNo (x * y + z * w )
L629 Hypothesis H6 : SNo (u * y )
L630 Hypothesis H7 : SNo (u * w )
L631 Hypothesis H8 : SNo (x * v )
L632 Hypothesis H9 : SNo (z * v )
L633 Hypothesis H10 : SNo (u * v )
L634 Hypothesis H11 : (u * y + x * v ) < x * y + u * v
L635 Hypothesis H12 : (u * w + z * v ) < z * w + u * v
L636 Hypothesis H13 : (x * w + u * v ) < u * w + x * v
L637 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L638
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__41__1
Beginning of Section Conj_mul_SNo_Lt__42__12
L650 Hypothesis H0 : SNo (x * y )
L651 Hypothesis H1 : SNo (z * y )
L652 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoL y → (z * y + x2 * y2 ) < x2 * y + z * y2 ) )
L653 Hypothesis H3 : SNo (x * w )
L654 Hypothesis H4 : SNo (z * w )
L655 Hypothesis H5 : SNo (z * y + x * w )
L656 Hypothesis H6 : SNo (x * y + z * w )
L657 Hypothesis H7 : u ∈ SNoR z
L658 Hypothesis H8 : SNo (u * y )
L659 Hypothesis H9 : SNo (u * w )
L660 Hypothesis H10 : v ∈ SNoL y
L661 Hypothesis H11 : SNo (x * v )
L662 Hypothesis H13 : SNo (u * v )
L663 Hypothesis H14 : (u * y + x * v ) < x * y + u * v
L664 Hypothesis H15 : (u * w + z * v ) < z * w + u * v
L665 Hypothesis H16 : (x * w + u * v ) < u * w + x * v
L666
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__42__12
Beginning of Section Conj_mul_SNo_Lt__44__1
L678 Hypothesis H0 : SNo (x * y )
L679 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoL y → (z * y + x2 * y2 ) < x2 * y + z * y2 ) )
L680 Hypothesis H3 : SNo (x * w )
L681 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR w → (x * w + x2 * y2 ) < x2 * w + x * y2 ) )
L682 Hypothesis H5 : SNo (z * w )
L683 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoR w → (x2 * w + z * y2 ) < z * w + x2 * y2 ) )
L684 Hypothesis H7 : SNo (z * y + x * w )
L685 Hypothesis H8 : SNo (x * y + z * w )
L686 Hypothesis H9 : u ∈ SNoL x
L687 Hypothesis H10 : u ∈ SNoR z
L688 Hypothesis H11 : SNo (u * y )
L689 Hypothesis H12 : SNo (u * w )
L690 Hypothesis H13 : v ∈ SNoL y
L691 Hypothesis H14 : v ∈ SNoR w
L692 Hypothesis H15 : SNo (x * v )
L693 Hypothesis H16 : SNo (z * v )
L694 Hypothesis H17 : SNo (u * v )
L695 Hypothesis H18 : (u * y + x * v ) < x * y + u * v
L696
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__44__1
Beginning of Section Conj_mul_SNo_Lt__44__18
L708 Hypothesis H0 : SNo (x * y )
L709 Hypothesis H1 : SNo (z * y )
L710 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoL y → (z * y + x2 * y2 ) < x2 * y + z * y2 ) )
L711 Hypothesis H3 : SNo (x * w )
L712 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR w → (x * w + x2 * y2 ) < x2 * w + x * y2 ) )
L713 Hypothesis H5 : SNo (z * w )
L714 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoR w → (x2 * w + z * y2 ) < z * w + x2 * y2 ) )
L715 Hypothesis H7 : SNo (z * y + x * w )
L716 Hypothesis H8 : SNo (x * y + z * w )
L717 Hypothesis H9 : u ∈ SNoL x
L718 Hypothesis H10 : u ∈ SNoR z
L719 Hypothesis H11 : SNo (u * y )
L720 Hypothesis H12 : SNo (u * w )
L721 Hypothesis H13 : v ∈ SNoL y
L722 Hypothesis H14 : v ∈ SNoR w
L723 Hypothesis H15 : SNo (x * v )
L724 Hypothesis H16 : SNo (z * v )
L725 Hypothesis H17 : SNo (u * v )
L726
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__44__18
Beginning of Section Conj_mul_SNo_Lt__48__2
L738 Hypothesis H0 : SNo x
L739 Hypothesis H1 : SNo z
L740 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → (x2 * y + x * y2 ) < x * y + x2 * y2 ) )
L741 Hypothesis H4 : SNo (z * y )
L742 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoL y → (z * y + x2 * y2 ) < x2 * y + z * y2 ) )
L743 Hypothesis H6 : SNo (x * w )
L744 Hypothesis H7 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR w → (x * w + x2 * y2 ) < x2 * w + x * y2 ) )
L745 Hypothesis H8 : SNo (z * w )
L746 Hypothesis H9 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoR w → (x2 * w + z * y2 ) < z * w + x2 * y2 ) )
L747 Hypothesis H10 : SNo (z * y + x * w )
L748 Hypothesis H11 : SNo (x * y + z * w )
L749 Hypothesis H12 : SNo u
L750 Hypothesis H13 : u ∈ SNoL x
L751 Hypothesis H14 : u ∈ SNoR z
L752 Hypothesis H15 : SNo (u * y )
L753 Hypothesis H16 : SNo (u * w )
L754 Hypothesis H17 : SNo v
L755 Hypothesis H18 : v ∈ SNoL y
L756 Hypothesis H19 : v ∈ SNoR w
L757
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__48__2
Beginning of Section Conj_mul_SNo_Lt__49__1
L769 Hypothesis H0 : SNo x
L770 Hypothesis H2 : SNo w
L771 Hypothesis H3 : SNo (x * y )
L772 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → (x2 * y + x * y2 ) < x * y + x2 * y2 ) )
L773 Hypothesis H5 : SNo (z * y )
L774 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoL y → (z * y + x2 * y2 ) < x2 * y + z * y2 ) )
L775 Hypothesis H7 : SNo (x * w )
L776 Hypothesis H8 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR w → (x * w + x2 * y2 ) < x2 * w + x * y2 ) )
L777 Hypothesis H9 : SNo (z * w )
L778 Hypothesis H10 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoR w → (x2 * w + z * y2 ) < z * w + x2 * y2 ) )
L779 Hypothesis H11 : SNo (z * y + x * w )
L780 Hypothesis H12 : SNo (x * y + z * w )
L781 Hypothesis H13 : SNo u
L782 Hypothesis H14 : u ∈ SNoL x
L783 Hypothesis H15 : u ∈ SNoR z
L784 Hypothesis H16 : SNo (u * y )
L785 Hypothesis H17 : SNo (u * w )
L786 Hypothesis H18 : SNo v
L787 Hypothesis H19 : w < v
L788 Hypothesis H20 : SNoLev v ∈ SNoLev w
L789 Hypothesis H21 : v ∈ SNoL y
L790
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__49__1
Beginning of Section Conj_mul_SNo_Lt__49__12
L802 Hypothesis H0 : SNo x
L803 Hypothesis H1 : SNo z
L804 Hypothesis H2 : SNo w
L805 Hypothesis H3 : SNo (x * y )
L806 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → (x2 * y + x * y2 ) < x * y + x2 * y2 ) )
L807 Hypothesis H5 : SNo (z * y )
L808 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoL y → (z * y + x2 * y2 ) < x2 * y + z * y2 ) )
L809 Hypothesis H7 : SNo (x * w )
L810 Hypothesis H8 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR w → (x * w + x2 * y2 ) < x2 * w + x * y2 ) )
L811 Hypothesis H9 : SNo (z * w )
L812 Hypothesis H10 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoR w → (x2 * w + z * y2 ) < z * w + x2 * y2 ) )
L813 Hypothesis H11 : SNo (z * y + x * w )
L814 Hypothesis H13 : SNo u
L815 Hypothesis H14 : u ∈ SNoL x
L816 Hypothesis H15 : u ∈ SNoR z
L817 Hypothesis H16 : SNo (u * y )
L818 Hypothesis H17 : SNo (u * w )
L819 Hypothesis H18 : SNo v
L820 Hypothesis H19 : w < v
L821 Hypothesis H20 : SNoLev v ∈ SNoLev w
L822 Hypothesis H21 : v ∈ SNoL y
L823
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__49__12
Beginning of Section Conj_mul_SNo_Lt__49__20
L835 Hypothesis H0 : SNo x
L836 Hypothesis H1 : SNo z
L837 Hypothesis H2 : SNo w
L838 Hypothesis H3 : SNo (x * y )
L839 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → (x2 * y + x * y2 ) < x * y + x2 * y2 ) )
L840 Hypothesis H5 : SNo (z * y )
L841 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoL y → (z * y + x2 * y2 ) < x2 * y + z * y2 ) )
L842 Hypothesis H7 : SNo (x * w )
L843 Hypothesis H8 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR w → (x * w + x2 * y2 ) < x2 * w + x * y2 ) )
L844 Hypothesis H9 : SNo (z * w )
L845 Hypothesis H10 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoR w → (x2 * w + z * y2 ) < z * w + x2 * y2 ) )
L846 Hypothesis H11 : SNo (z * y + x * w )
L847 Hypothesis H12 : SNo (x * y + z * w )
L848 Hypothesis H13 : SNo u
L849 Hypothesis H14 : u ∈ SNoL x
L850 Hypothesis H15 : u ∈ SNoR z
L851 Hypothesis H16 : SNo (u * y )
L852 Hypothesis H17 : SNo (u * w )
L853 Hypothesis H18 : SNo v
L854 Hypothesis H19 : w < v
L855 Hypothesis H21 : v ∈ SNoL y
L856
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__49__20
Beginning of Section Conj_mul_SNo_Lt__50__16
L868 Hypothesis H0 : SNo x
L869 Hypothesis H1 : SNo y
L870 Hypothesis H2 : SNo z
L871 Hypothesis H3 : SNo w
L872 Hypothesis H4 : SNo (x * y )
L873 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → (x2 * y + x * y2 ) < x * y + x2 * y2 ) )
L874 Hypothesis H6 : SNo (z * y )
L875 Hypothesis H7 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoL y → (z * y + x2 * y2 ) < x2 * y + z * y2 ) )
L876 Hypothesis H8 : SNo (x * w )
L877 Hypothesis H9 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR w → (x * w + x2 * y2 ) < x2 * w + x * y2 ) )
L878 Hypothesis H10 : SNo (z * w )
L879 Hypothesis H11 : (∀x2 : set , x2 ∈ SNoR z → (∀y2 : set , y2 ∈ SNoR w → (x2 * w + z * y2 ) < z * w + x2 * y2 ) )
L880 Hypothesis H12 : SNo (z * y + x * w )
L881 Hypothesis H13 : SNo (x * y + z * w )
L882 Hypothesis H14 : SNo u
L883 Hypothesis H15 : u ∈ SNoL x
L884 Hypothesis H17 : SNo (u * y )
L885 Hypothesis H18 : SNo (u * w )
L886 Hypothesis H19 : SNo v
L887 Hypothesis H20 : w < v
L888 Hypothesis H21 : v < y
L889 Hypothesis H22 : SNoLev v ∈ SNoLev w
L890 Hypothesis H23 : SNoLev v ∈ SNoLev y
L891
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__50__16
Beginning of Section Conj_mul_SNo_Lt__52__23
L902 Hypothesis H0 : SNo x
L903 Hypothesis H1 : SNo y
L904 Hypothesis H2 : SNo z
L905 Hypothesis H3 : SNo w
L906 Hypothesis H4 : w < y
L907 Hypothesis H5 : SNo (x * y )
L908 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L909 Hypothesis H7 : SNo (z * y )
L910 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L911 Hypothesis H9 : SNo (x * w )
L912 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L913 Hypothesis H11 : SNo (z * w )
L914 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L915 Hypothesis H13 : SNo (z * y + x * w )
L916 Hypothesis H14 : SNo (x * y + z * w )
L917 Hypothesis H15 : SNo u
L918 Hypothesis H16 : u ∈ SNoL x
L919 Hypothesis H17 : u ∈ SNoR z
L920 Hypothesis H18 : SNo (u * y )
L921 Hypothesis H19 : SNo (u * w )
L922 Hypothesis H20 : SNo (u * y + x * w )
L923 Hypothesis H21 : SNo (u * y + z * w )
L924 Hypothesis H22 : SNo (x * y + u * w )
L925 Hypothesis H24 : SNo (z * w + u * y )
L926 Hypothesis H25 : SNo (u * w + x * y )
L927
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__52__23
Beginning of Section Conj_mul_SNo_Lt__53__23
L938 Hypothesis H0 : SNo x
L939 Hypothesis H1 : SNo y
L940 Hypothesis H2 : SNo z
L941 Hypothesis H3 : SNo w
L942 Hypothesis H4 : w < y
L943 Hypothesis H5 : SNo (x * y )
L944 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L945 Hypothesis H7 : SNo (z * y )
L946 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L947 Hypothesis H9 : SNo (x * w )
L948 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L949 Hypothesis H11 : SNo (z * w )
L950 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L951 Hypothesis H13 : SNo (z * y + x * w )
L952 Hypothesis H14 : SNo (x * y + z * w )
L953 Hypothesis H15 : SNo u
L954 Hypothesis H16 : u ∈ SNoL x
L955 Hypothesis H17 : u ∈ SNoR z
L956 Hypothesis H18 : SNo (u * y )
L957 Hypothesis H19 : SNo (u * w )
L958 Hypothesis H20 : SNo (u * y + x * w )
L959 Hypothesis H21 : SNo (u * y + z * w )
L960 Hypothesis H22 : SNo (x * y + u * w )
L961 Hypothesis H24 : SNo (z * w + u * y )
L962
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__53__23
Beginning of Section Conj_mul_SNo_Lt__53__24
L973 Hypothesis H0 : SNo x
L974 Hypothesis H1 : SNo y
L975 Hypothesis H2 : SNo z
L976 Hypothesis H3 : SNo w
L977 Hypothesis H4 : w < y
L978 Hypothesis H5 : SNo (x * y )
L979 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L980 Hypothesis H7 : SNo (z * y )
L981 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L982 Hypothesis H9 : SNo (x * w )
L983 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L984 Hypothesis H11 : SNo (z * w )
L985 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L986 Hypothesis H13 : SNo (z * y + x * w )
L987 Hypothesis H14 : SNo (x * y + z * w )
L988 Hypothesis H15 : SNo u
L989 Hypothesis H16 : u ∈ SNoL x
L990 Hypothesis H17 : u ∈ SNoR z
L991 Hypothesis H18 : SNo (u * y )
L992 Hypothesis H19 : SNo (u * w )
L993 Hypothesis H20 : SNo (u * y + x * w )
L994 Hypothesis H21 : SNo (u * y + z * w )
L995 Hypothesis H22 : SNo (x * y + u * w )
L996 Hypothesis H23 : SNo (z * y + u * w )
L997
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__53__24
Beginning of Section Conj_mul_SNo_Lt__54__4
L1008 Hypothesis H0 : SNo x
L1009 Hypothesis H1 : SNo y
L1010 Hypothesis H2 : SNo z
L1011 Hypothesis H3 : SNo w
L1012 Hypothesis H5 : SNo (x * y )
L1013 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L1014 Hypothesis H7 : SNo (z * y )
L1015 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1016 Hypothesis H9 : SNo (x * w )
L1017 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1018 Hypothesis H11 : SNo (z * w )
L1019 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L1020 Hypothesis H13 : SNo (z * y + x * w )
L1021 Hypothesis H14 : SNo (x * y + z * w )
L1022 Hypothesis H15 : SNo u
L1023 Hypothesis H16 : u ∈ SNoL x
L1024 Hypothesis H17 : u ∈ SNoR z
L1025 Hypothesis H18 : SNo (u * y )
L1026 Hypothesis H19 : SNo (u * w )
L1027 Hypothesis H20 : SNo (u * y + x * w )
L1028 Hypothesis H21 : SNo (u * y + z * w )
L1029 Hypothesis H22 : SNo (x * y + u * w )
L1030 Hypothesis H23 : SNo (z * y + u * w )
L1031
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__54__4
Beginning of Section Conj_mul_SNo_Lt__54__22
L1042 Hypothesis H0 : SNo x
L1043 Hypothesis H1 : SNo y
L1044 Hypothesis H2 : SNo z
L1045 Hypothesis H3 : SNo w
L1046 Hypothesis H4 : w < y
L1047 Hypothesis H5 : SNo (x * y )
L1048 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L1049 Hypothesis H7 : SNo (z * y )
L1050 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1051 Hypothesis H9 : SNo (x * w )
L1052 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1053 Hypothesis H11 : SNo (z * w )
L1054 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L1055 Hypothesis H13 : SNo (z * y + x * w )
L1056 Hypothesis H14 : SNo (x * y + z * w )
L1057 Hypothesis H15 : SNo u
L1058 Hypothesis H16 : u ∈ SNoL x
L1059 Hypothesis H17 : u ∈ SNoR z
L1060 Hypothesis H18 : SNo (u * y )
L1061 Hypothesis H19 : SNo (u * w )
L1062 Hypothesis H20 : SNo (u * y + x * w )
L1063 Hypothesis H21 : SNo (u * y + z * w )
L1064 Hypothesis H23 : SNo (z * y + u * w )
L1065
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__54__22
Beginning of Section Conj_mul_SNo_Lt__55__12
L1076 Hypothesis H0 : SNo x
L1077 Hypothesis H1 : SNo y
L1078 Hypothesis H2 : SNo z
L1079 Hypothesis H3 : SNo w
L1080 Hypothesis H4 : w < y
L1081 Hypothesis H5 : SNo (x * y )
L1082 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L1083 Hypothesis H7 : SNo (z * y )
L1084 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1085 Hypothesis H9 : SNo (x * w )
L1086 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1087 Hypothesis H11 : SNo (z * w )
L1088 Hypothesis H13 : SNo (z * y + x * w )
L1089 Hypothesis H14 : SNo (x * y + z * w )
L1090 Hypothesis H15 : SNo u
L1091 Hypothesis H16 : u ∈ SNoL x
L1092 Hypothesis H17 : u ∈ SNoR z
L1093 Hypothesis H18 : SNo (u * y )
L1094 Hypothesis H19 : SNo (u * w )
L1095 Hypothesis H20 : SNo (u * y + x * w )
L1096 Hypothesis H21 : SNo (u * y + z * w )
L1097 Hypothesis H22 : SNo (x * y + u * w )
L1098
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__55__12
Beginning of Section Conj_mul_SNo_Lt__55__22
L1109 Hypothesis H0 : SNo x
L1110 Hypothesis H1 : SNo y
L1111 Hypothesis H2 : SNo z
L1112 Hypothesis H3 : SNo w
L1113 Hypothesis H4 : w < y
L1114 Hypothesis H5 : SNo (x * y )
L1115 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L1116 Hypothesis H7 : SNo (z * y )
L1117 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1118 Hypothesis H9 : SNo (x * w )
L1119 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1120 Hypothesis H11 : SNo (z * w )
L1121 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L1122 Hypothesis H13 : SNo (z * y + x * w )
L1123 Hypothesis H14 : SNo (x * y + z * w )
L1124 Hypothesis H15 : SNo u
L1125 Hypothesis H16 : u ∈ SNoL x
L1126 Hypothesis H17 : u ∈ SNoR z
L1127 Hypothesis H18 : SNo (u * y )
L1128 Hypothesis H19 : SNo (u * w )
L1129 Hypothesis H20 : SNo (u * y + x * w )
L1130 Hypothesis H21 : SNo (u * y + z * w )
L1131
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__55__22
Beginning of Section Conj_mul_SNo_Lt__57__1
L1142 Hypothesis H0 : SNo x
L1143 Hypothesis H2 : SNo z
L1144 Hypothesis H3 : SNo w
L1145 Hypothesis H4 : w < y
L1146 Hypothesis H5 : SNo (x * y )
L1147 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L1148 Hypothesis H7 : SNo (z * y )
L1149 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1150 Hypothesis H9 : SNo (x * w )
L1151 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1152 Hypothesis H11 : SNo (z * w )
L1153 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L1154 Hypothesis H13 : SNo (z * y + x * w )
L1155 Hypothesis H14 : SNo (x * y + z * w )
L1156 Hypothesis H15 : SNo u
L1157 Hypothesis H16 : u ∈ SNoL x
L1158 Hypothesis H17 : u ∈ SNoR z
L1159 Hypothesis H18 : SNo (u * y )
L1160 Hypothesis H19 : SNo (u * w )
L1161 Hypothesis H20 : SNo (u * y + x * w )
L1162
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__57__1
Beginning of Section Conj_mul_SNo_Lt__57__6
L1173 Hypothesis H0 : SNo x
L1174 Hypothesis H1 : SNo y
L1175 Hypothesis H2 : SNo z
L1176 Hypothesis H3 : SNo w
L1177 Hypothesis H4 : w < y
L1178 Hypothesis H5 : SNo (x * y )
L1179 Hypothesis H7 : SNo (z * y )
L1180 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1181 Hypothesis H9 : SNo (x * w )
L1182 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1183 Hypothesis H11 : SNo (z * w )
L1184 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L1185 Hypothesis H13 : SNo (z * y + x * w )
L1186 Hypothesis H14 : SNo (x * y + z * w )
L1187 Hypothesis H15 : SNo u
L1188 Hypothesis H16 : u ∈ SNoL x
L1189 Hypothesis H17 : u ∈ SNoR z
L1190 Hypothesis H18 : SNo (u * y )
L1191 Hypothesis H19 : SNo (u * w )
L1192 Hypothesis H20 : SNo (u * y + x * w )
L1193
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__57__6
Beginning of Section Conj_mul_SNo_Lt__57__11
L1204 Hypothesis H0 : SNo x
L1205 Hypothesis H1 : SNo y
L1206 Hypothesis H2 : SNo z
L1207 Hypothesis H3 : SNo w
L1208 Hypothesis H4 : w < y
L1209 Hypothesis H5 : SNo (x * y )
L1210 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L1211 Hypothesis H7 : SNo (z * y )
L1212 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1213 Hypothesis H9 : SNo (x * w )
L1214 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1215 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L1216 Hypothesis H13 : SNo (z * y + x * w )
L1217 Hypothesis H14 : SNo (x * y + z * w )
L1218 Hypothesis H15 : SNo u
L1219 Hypothesis H16 : u ∈ SNoL x
L1220 Hypothesis H17 : u ∈ SNoR z
L1221 Hypothesis H18 : SNo (u * y )
L1222 Hypothesis H19 : SNo (u * w )
L1223 Hypothesis H20 : SNo (u * y + x * w )
L1224
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__57__11
Beginning of Section Conj_mul_SNo_Lt__60__17
L1235 Hypothesis H0 : SNo x
L1236 Hypothesis H1 : SNo y
L1237 Hypothesis H2 : SNo z
L1238 Hypothesis H3 : SNo w
L1239 Hypothesis H4 : w < y
L1240 Hypothesis H5 : SNo (x * y )
L1241 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L1242 Hypothesis H7 : SNo (z * y )
L1243 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1244 Hypothesis H9 : SNo (x * w )
L1245 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1246 Hypothesis H11 : SNo (z * w )
L1247 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L1248 Hypothesis H13 : SNo (z * y + x * w )
L1249 Hypothesis H14 : SNo (x * y + z * w )
L1250 Hypothesis H15 : SNo u
L1251 Hypothesis H16 : u ∈ SNoL x
L1252
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__60__17
Beginning of Section Conj_mul_SNo_Lt__61__14
L1263 Hypothesis H0 : SNo x
L1264 Hypothesis H1 : SNo y
L1265 Hypothesis H2 : SNo z
L1266 Hypothesis H3 : SNo w
L1267 Hypothesis H4 : w < y
L1268 Hypothesis H5 : SNo (x * y )
L1269 Hypothesis H6 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → (v * y + x * x2 ) < x * y + v * x2 ) )
L1270 Hypothesis H7 : SNo (z * y )
L1271 Hypothesis H8 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoL y → (z * y + v * x2 ) < v * y + z * x2 ) )
L1272 Hypothesis H9 : SNo (x * w )
L1273 Hypothesis H10 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoR w → (x * w + v * x2 ) < v * w + x * x2 ) )
L1274 Hypothesis H11 : SNo (z * w )
L1275 Hypothesis H12 : (∀v : set , v ∈ SNoR z → (∀x2 : set , x2 ∈ SNoR w → (v * w + z * x2 ) < z * w + v * x2 ) )
L1276 Hypothesis H13 : SNo (z * y + x * w )
L1277 Hypothesis H15 : SNo u
L1278 Hypothesis H16 : z < u
L1279 Hypothesis H17 : SNoLev u ∈ SNoLev z
L1280 Hypothesis H18 : u ∈ SNoL x
L1281
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__61__14
Beginning of Section Conj_mul_SNo_SNoL_interpolate__2__2
L1293 Hypothesis H0 : SNo x
L1294 Hypothesis H1 : SNo y
L1295 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoR y → (x2 * y + x * y2 ) < z + x2 * y2 ) )
L1296 Hypothesis H4 : SNo w
L1297 Hypothesis H5 : z < w
L1298 Hypothesis H6 : u ∈ SNoR x
L1299 Hypothesis H7 : v ∈ SNoR y
L1300 Hypothesis H8 : (w + u * v ) ≤ u * y + x * v
L1301 Hypothesis H9 : SNo u
L1302 Hypothesis H10 : SNo v
L1303 Hypothesis H11 : SNo (u * v )
L1304
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__2__2
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__1
L1316 Hypothesis H0 : SNo x
L1317 Hypothesis H2 : SNo z
L1318 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoR y → (x2 * y + x * y2 ) < z + x2 * y2 ) )
L1319 Hypothesis H4 : SNo w
L1320 Hypothesis H5 : z < w
L1321 Hypothesis H6 : u ∈ SNoR x
L1322 Hypothesis H7 : v ∈ SNoR y
L1323 Hypothesis H8 : (w + u * v ) ≤ u * y + x * v
L1324 Hypothesis H9 : SNo u
L1325 Hypothesis H10 : SNo v
L1326
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__3__1
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__2
L1338 Hypothesis H0 : SNo x
L1339 Hypothesis H1 : SNo y
L1340 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoR y → (x2 * y + x * y2 ) < z + x2 * y2 ) )
L1341 Hypothesis H4 : SNo w
L1342 Hypothesis H5 : z < w
L1343 Hypothesis H6 : u ∈ SNoR x
L1344 Hypothesis H7 : v ∈ SNoR y
L1345 Hypothesis H8 : (w + u * v ) ≤ u * y + x * v
L1346 Hypothesis H9 : SNo u
L1347 Hypothesis H10 : SNo v
L1348
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__3__2
Beginning of Section Conj_mul_SNo_SNoL_interpolate__3__5
L1360 Hypothesis H0 : SNo x
L1361 Hypothesis H1 : SNo y
L1362 Hypothesis H2 : SNo z
L1363 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoR y → (x2 * y + x * y2 ) < z + x2 * y2 ) )
L1364 Hypothesis H4 : SNo w
L1365 Hypothesis H6 : u ∈ SNoR x
L1366 Hypothesis H7 : v ∈ SNoR y
L1367 Hypothesis H8 : (w + u * v ) ≤ u * y + x * v
L1368 Hypothesis H9 : SNo u
L1369 Hypothesis H10 : SNo v
L1370
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__3__5
Beginning of Section Conj_mul_SNo_SNoL_interpolate__5__9
L1382 Hypothesis H0 : SNo x
L1383 Hypothesis H1 : SNo y
L1384 Hypothesis H2 : SNo z
L1385 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → (x2 * y + x * y2 ) < z + x2 * y2 ) )
L1386 Hypothesis H4 : SNo w
L1387 Hypothesis H5 : z < w
L1388 Hypothesis H6 : u ∈ SNoL x
L1389 Hypothesis H7 : v ∈ SNoL y
L1390 Hypothesis H8 : (w + u * v ) ≤ u * y + x * v
L1391 Hypothesis H10 : SNo v
L1392 Hypothesis H11 : SNo (u * v )
L1393
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__5__9
Beginning of Section Conj_mul_SNo_SNoL_interpolate__7__3
L1403 Hypothesis H0 : SNo x
L1404 Hypothesis H1 : SNo y
L1405 Hypothesis H2 : SNo (x * y )
L1406 Hypothesis H4 : (∀u : set , u ∈ SNoS_ (SNoLev z ) → SNoLev u ∈ SNoLev (x * y ) → u < x * y → (∃v : set , v ∈ SNoL x ∧ (∃x2 : set , x2 ∈ SNoL y ∧ (u + v * x2 ) ≤ v * y + x * x2 ) ) ∨ (∃v : set , v ∈ SNoR x ∧ (∃x2 : set , x2 ∈ SNoR y ∧ (u + v * x2 ) ≤ v * y + x * x2 ) ) )
L1407 Hypothesis H5 : SNoLev z ∈ SNoLev (x * y )
L1408 Hypothesis H6 : (∀u : set , u ∈ SNoL x → (∀v : set , v ∈ SNoL y → (u * y + x * v ) < z + u * v ) )
L1409 Hypothesis H7 : (∀u : set , u ∈ SNoR x → (∀v : set , v ∈ SNoR y → (u * y + x * v ) < z + u * v ) )
L1410 Hypothesis H8 : SNo w
L1411 Hypothesis H9 : SNoLev w ∈ SNoLev z
L1412 Hypothesis H10 : z < w
L1413 Hypothesis H11 : w < x * y
L1414 Theorem. (
Conj_mul_SNo_SNoL_interpolate__7__3 )
(∃u : set , u ∈ SNoL x ∧ (∃v : set , v ∈ SNoL y ∧ (w + u * v ) ≤ u * y + x * v ) ) ∨ (∃u : set , u ∈ SNoR x ∧ (∃v : set , v ∈ SNoR y ∧ (w + u * v ) ≤ u * y + x * v ) ) → x * y < w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__7__3
Beginning of Section Conj_mul_SNo_SNoL_interpolate__8__1
L1423 Hypothesis H0 : SNo x
L1424 Hypothesis H2 : SNo (x * y )
L1425 Hypothesis H3 : SNo z
L1426 Hypothesis H4 : (∀w : set , w ∈ SNoS_ (SNoLev z ) → SNoLev w ∈ SNoLev (x * y ) → w < x * y → (∃u : set , u ∈ SNoL x ∧ (∃v : set , v ∈ SNoL y ∧ (w + u * v ) ≤ u * y + x * v ) ) ∨ (∃u : set , u ∈ SNoR x ∧ (∃v : set , v ∈ SNoR y ∧ (w + u * v ) ≤ u * y + x * v ) ) )
L1427 Hypothesis H5 : SNoLev z ∈ SNoLev (x * y )
L1428 Hypothesis H6 : z < x * y
L1429 Hypothesis H7 : ¬ ((∃w : set , w ∈ SNoL x ∧ (∃u : set , u ∈ SNoL y ∧ (z + w * u ) ≤ w * y + x * u ) ) ∨ (∃w : set , w ∈ SNoR x ∧ (∃u : set , u ∈ SNoR y ∧ (z + w * u ) ≤ w * y + x * u ) ) )
L1430 Hypothesis H8 : (∀w : set , w ∈ SNoL x → (∀u : set , u ∈ SNoL y → (w * y + x * u ) < z + w * u ) )
L1431
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__8__1
Beginning of Section Conj_mul_SNo_SNoL_interpolate__9__4
L1440 Hypothesis H0 : SNo x
L1441 Hypothesis H1 : SNo y
L1442 Hypothesis H2 : SNo (x * y )
L1443 Hypothesis H3 : SNo z
L1444 Hypothesis H5 : SNoLev z ∈ SNoLev (x * y )
L1445 Hypothesis H6 : z < x * y
L1446 Hypothesis H7 : ¬ ((∃w : set , w ∈ SNoL x ∧ (∃u : set , u ∈ SNoL y ∧ (z + w * u ) ≤ w * y + x * u ) ) ∨ (∃w : set , w ∈ SNoR x ∧ (∃u : set , u ∈ SNoR y ∧ (z + w * u ) ≤ w * y + x * u ) ) )
L1447
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__9__4
Beginning of Section Conj_mul_SNo_SNoL_interpolate__11__0
L1455 Hypothesis H1 : SNo y
L1456 Theorem. (
Conj_mul_SNo_SNoL_interpolate__11__0 )
SNo (x * y ) → (∀z : set , z ∈ SNoL (x * y ) → (∃w : set , w ∈ SNoL x ∧ (∃u : set , u ∈ SNoL y ∧ (z + w * u ) ≤ w * y + x * u ) ) ∨ (∃w : set , w ∈ SNoR x ∧ (∃u : set , u ∈ SNoR y ∧ (z + w * u ) ≤ w * y + x * u ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoL_interpolate__11__0
Beginning of Section Conj_mul_SNo_SNoR_interpolate__1__3
L1468 Hypothesis H0 : SNo z
L1469 Hypothesis H1 : SNo w
L1470 Hypothesis H2 : w < z
L1471 Hypothesis H4 : (z + u * v ) < w + u * v
L1472
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__1__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__3__1
L1484 Hypothesis H0 : SNo x
L1485 Hypothesis H2 : SNo z
L1486 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL y → (z + x2 * y2 ) < x2 * y + x * y2 ) )
L1487 Hypothesis H4 : SNo w
L1488 Hypothesis H5 : w < z
L1489 Hypothesis H6 : u ∈ SNoR x
L1490 Hypothesis H7 : v ∈ SNoL y
L1491 Hypothesis H8 : (u * y + x * v ) ≤ w + u * v
L1492 Hypothesis H9 : SNo u
L1493 Hypothesis H10 : SNo v
L1494
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__3__1
Beginning of Section Conj_mul_SNo_SNoR_interpolate__3__8
L1506 Hypothesis H0 : SNo x
L1507 Hypothesis H1 : SNo y
L1508 Hypothesis H2 : SNo z
L1509 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL y → (z + x2 * y2 ) < x2 * y + x * y2 ) )
L1510 Hypothesis H4 : SNo w
L1511 Hypothesis H5 : w < z
L1512 Hypothesis H6 : u ∈ SNoR x
L1513 Hypothesis H7 : v ∈ SNoL y
L1514 Hypothesis H9 : SNo u
L1515 Hypothesis H10 : SNo v
L1516
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__3__8
Beginning of Section Conj_mul_SNo_SNoR_interpolate__4__3
L1528 Hypothesis H0 : SNo z
L1529 Hypothesis H1 : SNo w
L1530 Hypothesis H2 : w < z
L1531 Hypothesis H4 : (z + u * v ) < w + u * v
L1532
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__4__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__6__4
L1544 Hypothesis H0 : SNo x
L1545 Hypothesis H1 : SNo y
L1546 Hypothesis H2 : SNo z
L1547 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR y → (z + x2 * y2 ) < x2 * y + x * y2 ) )
L1548 Hypothesis H5 : w < z
L1549 Hypothesis H6 : u ∈ SNoL x
L1550 Hypothesis H7 : v ∈ SNoR y
L1551 Hypothesis H8 : (u * y + x * v ) ≤ w + u * v
L1552 Hypothesis H9 : SNo u
L1553 Hypothesis H10 : SNo v
L1554
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__6__4
Beginning of Section Conj_mul_SNo_SNoR_interpolate__7__3
L1564 Hypothesis H0 : SNo x
L1565 Hypothesis H1 : SNo y
L1566 Hypothesis H2 : SNo (x * y )
L1567 Hypothesis H4 : (∀u : set , u ∈ SNoS_ (SNoLev z ) → SNoLev u ∈ SNoLev (x * y ) → x * y < u → (∃v : set , v ∈ SNoL x ∧ (∃x2 : set , x2 ∈ SNoR y ∧ (v * y + x * x2 ) ≤ u + v * x2 ) ) ∨ (∃v : set , v ∈ SNoR x ∧ (∃x2 : set , x2 ∈ SNoL y ∧ (v * y + x * x2 ) ≤ u + v * x2 ) ) )
L1568 Hypothesis H5 : SNoLev z ∈ SNoLev (x * y )
L1569 Hypothesis H6 : (∀u : set , u ∈ SNoL x → (∀v : set , v ∈ SNoR y → (z + u * v ) < u * y + x * v ) )
L1570 Hypothesis H7 : (∀u : set , u ∈ SNoR x → (∀v : set , v ∈ SNoL y → (z + u * v ) < u * y + x * v ) )
L1571 Hypothesis H8 : SNo w
L1572 Hypothesis H9 : SNoLev w ∈ SNoLev z
L1573 Hypothesis H10 : w < z
L1574 Hypothesis H11 : x * y < w
L1575 Theorem. (
Conj_mul_SNo_SNoR_interpolate__7__3 )
(∃u : set , u ∈ SNoL x ∧ (∃v : set , v ∈ SNoR y ∧ (u * y + x * v ) ≤ w + u * v ) ) ∨ (∃u : set , u ∈ SNoR x ∧ (∃v : set , v ∈ SNoL y ∧ (u * y + x * v ) ≤ w + u * v ) ) → w < x * y
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__7__3
Beginning of Section Conj_mul_SNo_SNoR_interpolate__8__2
L1584 Hypothesis H0 : SNo x
L1585 Hypothesis H1 : SNo y
L1586 Hypothesis H3 : SNo z
L1587 Hypothesis H4 : (∀w : set , w ∈ SNoS_ (SNoLev z ) → SNoLev w ∈ SNoLev (x * y ) → x * y < w → (∃u : set , u ∈ SNoL x ∧ (∃v : set , v ∈ SNoR y ∧ (u * y + x * v ) ≤ w + u * v ) ) ∨ (∃u : set , u ∈ SNoR x ∧ (∃v : set , v ∈ SNoL y ∧ (u * y + x * v ) ≤ w + u * v ) ) )
L1588 Hypothesis H5 : SNoLev z ∈ SNoLev (x * y )
L1589 Hypothesis H6 : x * y < z
L1590 Hypothesis H7 : ¬ ((∃w : set , w ∈ SNoL x ∧ (∃u : set , u ∈ SNoR y ∧ (w * y + x * u ) ≤ z + w * u ) ) ∨ (∃w : set , w ∈ SNoR x ∧ (∃u : set , u ∈ SNoL y ∧ (w * y + x * u ) ≤ z + w * u ) ) )
L1591 Hypothesis H8 : (∀w : set , w ∈ SNoL x → (∀u : set , u ∈ SNoR y → (z + w * u ) < w * y + x * u ) )
L1592
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_SNoR_interpolate__8__2
Beginning of Section Conj_mul_SNo_oneR__3__0
L1600 Hypothesis H1 : (∀z : set , z ∈ SNoL x → (∀w : set , w ∈ SNoL (ordsucc Empty ) → (z * ordsucc Empty + x * w ) < x * ordsucc Empty + z * w ) )
L1601 Hypothesis H2 : Empty ∈ SNoL (ordsucc Empty )
L1602 Hypothesis H3 : y ∈ SNoL x
L1603 Hypothesis H4 : SNo y
L1604 Hypothesis H5 : y * ordsucc Empty + x * Empty = y
L1605
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_oneR__3__0
Beginning of Section Conj_mul_SNo_com__1__0
L1617 Hypothesis H1 : SNo y
L1618 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → x2 * y = y * x2 )
L1619 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → x * x2 = x2 * x )
L1620 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x2 * y2 = y2 * x2 ) )
L1621 Hypothesis H5 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1622 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1623 Hypothesis H7 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1624 Hypothesis H8 : (∀x2 : set , x2 ∈ v → (∀P : prop , (∀y2 : set , y2 ∈ SNoL y → (∀z2 : set , z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR y → (∀z2 : set , z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1625 Hypothesis H9 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1626 Hypothesis H10 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1627 Hypothesis H11 : z = u
L1628
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_com__1__0
Beginning of Section Conj_mul_SNo_com__2__5
L1640 Hypothesis H0 : SNo x
L1641 Hypothesis H1 : SNo y
L1642 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → x2 * y = y * x2 )
L1643 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → x * x2 = x2 * x )
L1644 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x2 * y2 = y2 * x2 ) )
L1645 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ z ) )
L1646 Hypothesis H7 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2 ) ∈ z ) )
L1647 Hypothesis H8 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1648 Hypothesis H9 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1649 Hypothesis H10 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1650 Hypothesis H11 : (∀x2 : set , x2 ∈ u → (∀P : prop , (∀y2 : set , y2 ∈ SNoL y → (∀z2 : set , z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR y → (∀z2 : set , z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1651 Hypothesis H12 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ u ) )
L1652 Hypothesis H13 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ u ) )
L1653 Hypothesis H14 : (∀x2 : set , x2 ∈ v → (∀P : prop , (∀y2 : set , y2 ∈ SNoL y → (∀z2 : set , z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR y → (∀z2 : set , z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1654 Hypothesis H15 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1655 Hypothesis H16 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1656
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_com__2__5
Beginning of Section Conj_mul_SNo_com__2__9
L1668 Hypothesis H0 : SNo x
L1669 Hypothesis H1 : SNo y
L1670 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → x2 * y = y * x2 )
L1671 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → x * x2 = x2 * x )
L1672 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x2 * y2 = y2 * x2 ) )
L1673 Hypothesis H5 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1674 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ z ) )
L1675 Hypothesis H7 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2 ) ∈ z ) )
L1676 Hypothesis H8 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1677 Hypothesis H10 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1678 Hypothesis H11 : (∀x2 : set , x2 ∈ u → (∀P : prop , (∀y2 : set , y2 ∈ SNoL y → (∀z2 : set , z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR y → (∀z2 : set , z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1679 Hypothesis H12 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ u ) )
L1680 Hypothesis H13 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ u ) )
L1681 Hypothesis H14 : (∀x2 : set , x2 ∈ v → (∀P : prop , (∀y2 : set , y2 ∈ SNoL y → (∀z2 : set , z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR y → (∀z2 : set , z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1682 Hypothesis H15 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1683 Hypothesis H16 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1684
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_com__2__9
Beginning of Section Conj_mul_SNo_com__2__11
L1696 Hypothesis H0 : SNo x
L1697 Hypothesis H1 : SNo y
L1698 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → x2 * y = y * x2 )
L1699 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → x * x2 = x2 * x )
L1700 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x2 * y2 = y2 * x2 ) )
L1701 Hypothesis H5 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1702 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ z ) )
L1703 Hypothesis H7 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2 ) ∈ z ) )
L1704 Hypothesis H8 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1705 Hypothesis H9 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1706 Hypothesis H10 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1707 Hypothesis H12 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ u ) )
L1708 Hypothesis H13 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ u ) )
L1709 Hypothesis H14 : (∀x2 : set , x2 ∈ v → (∀P : prop , (∀y2 : set , y2 ∈ SNoL y → (∀z2 : set , z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR y → (∀z2 : set , z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1710 Hypothesis H15 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1711 Hypothesis H16 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1712
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_com__2__11
Beginning of Section Conj_mul_SNo_com__2__14
L1724 Hypothesis H0 : SNo x
L1725 Hypothesis H1 : SNo y
L1726 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → x2 * y = y * x2 )
L1727 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → x * x2 = x2 * x )
L1728 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → x2 * y2 = y2 * x2 ) )
L1729 Hypothesis H5 : (∀x2 : set , x2 ∈ z → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1730 Hypothesis H6 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ z ) )
L1731 Hypothesis H7 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2 ) ∈ z ) )
L1732 Hypothesis H8 : (∀x2 : set , x2 ∈ w → (∀P : prop , (∀y2 : set , y2 ∈ SNoL x → (∀z2 : set , z2 ∈ SNoR y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR x → (∀z2 : set , z2 ∈ SNoL y → x2 = y2 * y + x * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1733 Hypothesis H9 : (∀x2 : set , x2 ∈ SNoL x → (∀y2 : set , y2 ∈ SNoR y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1734 Hypothesis H10 : (∀x2 : set , x2 ∈ SNoR x → (∀y2 : set , y2 ∈ SNoL y → x2 * y + x * y2 + - (x2 * y2 ) ∈ w ) )
L1735 Hypothesis H11 : (∀x2 : set , x2 ∈ u → (∀P : prop , (∀y2 : set , y2 ∈ SNoL y → (∀z2 : set , z2 ∈ SNoL x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → (∀y2 : set , y2 ∈ SNoR y → (∀z2 : set , z2 ∈ SNoR x → x2 = y2 * x + y * z2 + - (y2 * z2 ) → P ) ) → P ) )
L1736 Hypothesis H12 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ u ) )
L1737 Hypothesis H13 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ u ) )
L1738 Hypothesis H15 : (∀x2 : set , x2 ∈ SNoL y → (∀y2 : set , y2 ∈ SNoR x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1739 Hypothesis H16 : (∀x2 : set , x2 ∈ SNoR y → (∀y2 : set , y2 ∈ SNoL x → x2 * x + y * y2 + - (x2 * y2 ) ∈ v ) )
L1740
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_com__2__14
Beginning of Section Conj_mul_SNo_minus_distrL__2__12
L1752 Hypothesis H0 : SNo x
L1753 Hypothesis H1 : SNo y
L1754 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → - x2 * y = - (x2 * y ) )
L1755 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - x * x2 = - (x * x2 ) )
L1756 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → - x2 * y2 = - (x2 * y2 ) ) )
L1757 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL (- x ) → (∀y2 : set , y2 ∈ SNoR y → x2 * y + - x * y2 + - (x2 * y2 ) ∈ z ) )
L1758 Hypothesis H6 : u ∈ SNoR x
L1759 Hypothesis H7 : v ∈ SNoR y
L1760 Hypothesis H8 : w = u * y + x * v + - (u * v )
L1761 Hypothesis H9 : SNo u
L1762 Hypothesis H10 : SNoLev u ∈ SNoLev x
L1763 Hypothesis H11 : x < u
L1764 Hypothesis H13 : SNo (- u )
L1765
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__2__12
Beginning of Section Conj_mul_SNo_minus_distrL__4__7
L1777 Hypothesis H0 : SNo x
L1778 Hypothesis H1 : SNo y
L1779 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → - x2 * y = - (x2 * y ) )
L1780 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - x * x2 = - (x * x2 ) )
L1781 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → - x2 * y2 = - (x2 * y2 ) ) )
L1782 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoR (- x ) → (∀y2 : set , y2 ∈ SNoL y → x2 * y + - x * y2 + - (x2 * y2 ) ∈ z ) )
L1783 Hypothesis H6 : u ∈ SNoL x
L1784 Hypothesis H8 : w = u * y + x * v + - (u * v )
L1785 Hypothesis H9 : SNo u
L1786 Hypothesis H10 : SNo v
L1787 Hypothesis H11 : - u ∈ SNoR (- x )
L1788
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__4__7
Beginning of Section Conj_mul_SNo_minus_distrL__5__1
L1800 Hypothesis H0 : SNo x
L1801 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → - x2 * y = - (x2 * y ) )
L1802 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - x * x2 = - (x * x2 ) )
L1803 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → - x2 * y2 = - (x2 * y2 ) ) )
L1804 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoR (- x ) → (∀y2 : set , y2 ∈ SNoL y → x2 * y + - x * y2 + - (x2 * y2 ) ∈ z ) )
L1805 Hypothesis H6 : u ∈ SNoL x
L1806 Hypothesis H7 : v ∈ SNoL y
L1807 Hypothesis H8 : w = u * y + x * v + - (u * v )
L1808 Hypothesis H9 : SNo u
L1809 Hypothesis H10 : SNoLev u ∈ SNoLev x
L1810 Hypothesis H11 : u < x
L1811 Hypothesis H12 : SNo v
L1812 Hypothesis H13 : SNo (- u )
L1813
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__5__1
Beginning of Section Conj_mul_SNo_minus_distrL__9__0
L1824 Hypothesis H1 : SNo y
L1825 Hypothesis H2 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → - v * y = - (v * y ) )
L1826 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → - x * v = - (x * v ) )
L1827 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - v * x2 = - (v * x2 ) ) )
L1828 Hypothesis H5 : (∀v : set , v ∈ SNoL x → (∀x2 : set , x2 ∈ SNoL y → v * y + x * x2 + - (v * x2 ) ∈ z ) )
L1829 Hypothesis H6 : u ∈ SNoL y
L1830 Hypothesis H7 : SNo w
L1831 Hypothesis H8 : SNoLev w ∈ SNoLev (- x )
L1832 Hypothesis H9 : - x < w
L1833 Hypothesis H10 : SNo u
L1834
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__9__0
Beginning of Section Conj_mul_SNo_minus_distrL__15__11
L1846 Hypothesis H0 : SNo x
L1847 Hypothesis H1 : SNo y
L1848 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → - x2 * y = - (x2 * y ) )
L1849 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - x * x2 = - (x * x2 ) )
L1850 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → - x2 * y2 = - (x2 * y2 ) ) )
L1851 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoL (- x ) → (∀y2 : set , y2 ∈ SNoL y → x2 * y + - x * y2 + - (x2 * y2 ) ∈ z ) )
L1852 Hypothesis H6 : u ∈ SNoR x
L1853 Hypothesis H7 : v ∈ SNoL y
L1854 Hypothesis H8 : w = u * y + x * v + - (u * v )
L1855 Hypothesis H9 : SNo u
L1856 Hypothesis H10 : SNoLev u ∈ SNoLev x
L1857 Hypothesis H12 : SNo v
L1858
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__15__11
Beginning of Section Conj_mul_SNo_minus_distrL__18__8
L1870 Hypothesis H0 : SNo x
L1871 Hypothesis H1 : SNo y
L1872 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → - x2 * y = - (x2 * y ) )
L1873 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - x * x2 = - (x * x2 ) )
L1874 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → - x2 * y2 = - (x2 * y2 ) ) )
L1875 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoR (- x ) → (∀y2 : set , y2 ∈ SNoR y → x2 * y + - x * y2 + - (x2 * y2 ) ∈ z ) )
L1876 Hypothesis H6 : u ∈ SNoL x
L1877 Hypothesis H7 : v ∈ SNoR y
L1878 Hypothesis H9 : SNo u
L1879 Hypothesis H10 : SNoLev u ∈ SNoLev x
L1880 Hypothesis H11 : u < x
L1881 Hypothesis H12 : SNo v
L1882
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__18__8
Beginning of Section Conj_mul_SNo_minus_distrL__18__10
L1894 Hypothesis H0 : SNo x
L1895 Hypothesis H1 : SNo y
L1896 Hypothesis H2 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → - x2 * y = - (x2 * y ) )
L1897 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - x * x2 = - (x * x2 ) )
L1898 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev y ) → - x2 * y2 = - (x2 * y2 ) ) )
L1899 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoR (- x ) → (∀y2 : set , y2 ∈ SNoR y → x2 * y + - x * y2 + - (x2 * y2 ) ∈ z ) )
L1900 Hypothesis H6 : u ∈ SNoL x
L1901 Hypothesis H7 : v ∈ SNoR y
L1902 Hypothesis H8 : w = u * y + x * v + - (u * v )
L1903 Hypothesis H9 : SNo u
L1904 Hypothesis H11 : u < x
L1905 Hypothesis H12 : SNo v
L1906
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__18__10
Beginning of Section Conj_mul_SNo_minus_distrL__19__5
L1917 Hypothesis H0 : SNo x
L1918 Hypothesis H1 : SNo y
L1919 Hypothesis H2 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → - v * y = - (v * y ) )
L1920 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → - x * v = - (x * v ) )
L1921 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - v * x2 = - (v * x2 ) ) )
L1922 Hypothesis H6 : u ∈ SNoR y
L1923 Hypothesis H7 : SNo w
L1924 Hypothesis H8 : SNo u
L1925 Hypothesis H9 : SNo (- w )
L1926 Hypothesis H10 : - w ∈ SNoL x
L1927
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__19__5
Beginning of Section Conj_mul_SNo_minus_distrL__22__7
L1938 Hypothesis H0 : SNo x
L1939 Hypothesis H1 : SNo y
L1940 Hypothesis H2 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → - v * y = - (v * y ) )
L1941 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → - x * v = - (x * v ) )
L1942 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → - v * x2 = - (v * x2 ) ) )
L1943 Hypothesis H5 : (∀v : set , v ∈ SNoR x → (∀x2 : set , x2 ∈ SNoL y → v * y + x * x2 + - (v * x2 ) ∈ z ) )
L1944 Hypothesis H6 : u ∈ SNoL y
L1945 Hypothesis H8 : SNo u
L1946 Hypothesis H9 : SNo (- w )
L1947 Hypothesis H10 : - w ∈ SNoR x
L1948
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__22__7
Beginning of Section Conj_mul_SNo_minus_distrL__26__0
L1956 Hypothesis H1 : SNo y
L1957 Hypothesis H2 : (∀z : set , z ∈ SNoS_ (SNoLev x ) → - z * y = - (z * y ) )
L1958 Hypothesis H3 : (∀z : set , z ∈ SNoS_ (SNoLev y ) → - x * z = - (x * z ) )
L1959 Hypothesis H4 : (∀z : set , z ∈ SNoS_ (SNoLev x ) → (∀w : set , w ∈ SNoS_ (SNoLev y ) → - z * w = - (z * w ) ) )
L1960
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_minus_distrL__26__0
Beginning of Section Conj_mul_SNo_distrR__1__23
L1972 Hypothesis H0 : SNo x
L1973 Hypothesis H1 : SNo y
L1974 Hypothesis H2 : SNo z
L1975 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L1976 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L1977 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L1978 Hypothesis H6 : SNo (x + y )
L1979 Hypothesis H7 : SNo ((x + y ) * z )
L1980 Hypothesis H8 : SNo (x * z )
L1981 Hypothesis H9 : SNo w
L1982 Hypothesis H10 : u ∈ SNoR y
L1983 Hypothesis H11 : v ∈ SNoL z
L1984 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L1985 Hypothesis H13 : SNo u
L1986 Hypothesis H14 : y < u
L1987 Hypothesis H15 : SNo v
L1988 Hypothesis H16 : v < z
L1989 Hypothesis H17 : SNo (u * v )
L1990 Hypothesis H18 : SNo (x + u )
L1991 Hypothesis H19 : SNo (w + u * v )
L1992 Hypothesis H20 : SNo ((x + y ) * v )
L1993 Hypothesis H21 : SNo (u * z )
L1994 Hypothesis H22 : SNo (x * v )
L1995 Hypothesis H24 : SNo (w + x * z )
L1996 Hypothesis H25 : SNo (u * v + x * v )
L1997
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__1__23
Beginning of Section Conj_mul_SNo_distrR__2__24
L2009 Hypothesis H0 : SNo x
L2010 Hypothesis H1 : SNo y
L2011 Hypothesis H2 : SNo z
L2012 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2013 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2014 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2015 Hypothesis H6 : SNo (x + y )
L2016 Hypothesis H7 : SNo ((x + y ) * z )
L2017 Hypothesis H8 : SNo (x * z )
L2018 Hypothesis H9 : SNo w
L2019 Hypothesis H10 : u ∈ SNoR y
L2020 Hypothesis H11 : v ∈ SNoL z
L2021 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2022 Hypothesis H13 : SNo u
L2023 Hypothesis H14 : y < u
L2024 Hypothesis H15 : SNo v
L2025 Hypothesis H16 : v < z
L2026 Hypothesis H17 : SNo (u * v )
L2027 Hypothesis H18 : SNo (x + u )
L2028 Hypothesis H19 : SNo (w + u * v )
L2029 Hypothesis H20 : SNo ((x + y ) * v )
L2030 Hypothesis H21 : SNo (u * z )
L2031 Hypothesis H22 : SNo (x * v )
L2032 Hypothesis H23 : SNo (y * v )
L2033
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__2__24
Beginning of Section Conj_mul_SNo_distrR__6__9
L2045 Hypothesis H0 : SNo x
L2046 Hypothesis H1 : SNo y
L2047 Hypothesis H2 : SNo z
L2048 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2049 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2050 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2051 Hypothesis H6 : SNo (x + y )
L2052 Hypothesis H7 : SNo ((x + y ) * z )
L2053 Hypothesis H8 : SNo (x * z )
L2054 Hypothesis H10 : u ∈ SNoR y
L2055 Hypothesis H11 : v ∈ SNoL z
L2056 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2057 Hypothesis H13 : SNo u
L2058 Hypothesis H14 : y < u
L2059 Hypothesis H15 : SNo v
L2060 Hypothesis H16 : v < z
L2061 Hypothesis H17 : SNo (u * v )
L2062 Hypothesis H18 : SNo (x + u )
L2063 Hypothesis H19 : SNo (w + u * v )
L2064 Hypothesis H20 : SNo ((x + y ) * v )
L2065
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__6__9
Beginning of Section Conj_mul_SNo_distrR__6__16
L2077 Hypothesis H0 : SNo x
L2078 Hypothesis H1 : SNo y
L2079 Hypothesis H2 : SNo z
L2080 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2081 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2082 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2083 Hypothesis H6 : SNo (x + y )
L2084 Hypothesis H7 : SNo ((x + y ) * z )
L2085 Hypothesis H8 : SNo (x * z )
L2086 Hypothesis H9 : SNo w
L2087 Hypothesis H10 : u ∈ SNoR y
L2088 Hypothesis H11 : v ∈ SNoL z
L2089 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2090 Hypothesis H13 : SNo u
L2091 Hypothesis H14 : y < u
L2092 Hypothesis H15 : SNo v
L2093 Hypothesis H17 : SNo (u * v )
L2094 Hypothesis H18 : SNo (x + u )
L2095 Hypothesis H19 : SNo (w + u * v )
L2096 Hypothesis H20 : SNo ((x + y ) * v )
L2097
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__6__16
Beginning of Section Conj_mul_SNo_distrR__6__19
L2109 Hypothesis H0 : SNo x
L2110 Hypothesis H1 : SNo y
L2111 Hypothesis H2 : SNo z
L2112 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2113 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2114 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2115 Hypothesis H6 : SNo (x + y )
L2116 Hypothesis H7 : SNo ((x + y ) * z )
L2117 Hypothesis H8 : SNo (x * z )
L2118 Hypothesis H9 : SNo w
L2119 Hypothesis H10 : u ∈ SNoR y
L2120 Hypothesis H11 : v ∈ SNoL z
L2121 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2122 Hypothesis H13 : SNo u
L2123 Hypothesis H14 : y < u
L2124 Hypothesis H15 : SNo v
L2125 Hypothesis H16 : v < z
L2126 Hypothesis H17 : SNo (u * v )
L2127 Hypothesis H18 : SNo (x + u )
L2128 Hypothesis H20 : SNo ((x + y ) * v )
L2129
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__6__19
Beginning of Section Conj_mul_SNo_distrR__6__20
L2141 Hypothesis H0 : SNo x
L2142 Hypothesis H1 : SNo y
L2143 Hypothesis H2 : SNo z
L2144 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2145 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2146 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2147 Hypothesis H6 : SNo (x + y )
L2148 Hypothesis H7 : SNo ((x + y ) * z )
L2149 Hypothesis H8 : SNo (x * z )
L2150 Hypothesis H9 : SNo w
L2151 Hypothesis H10 : u ∈ SNoR y
L2152 Hypothesis H11 : v ∈ SNoL z
L2153 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2154 Hypothesis H13 : SNo u
L2155 Hypothesis H14 : y < u
L2156 Hypothesis H15 : SNo v
L2157 Hypothesis H16 : v < z
L2158 Hypothesis H17 : SNo (u * v )
L2159 Hypothesis H18 : SNo (x + u )
L2160 Hypothesis H19 : SNo (w + u * v )
L2161
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__6__20
Beginning of Section Conj_mul_SNo_distrR__10__4
L2173 Hypothesis H0 : SNo x
L2174 Hypothesis H1 : SNo y
L2175 Hypothesis H2 : SNo z
L2176 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2177 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2178 Hypothesis H6 : SNo (x + y )
L2179 Hypothesis H7 : SNo ((x + y ) * z )
L2180 Hypothesis H8 : SNo (x * z )
L2181 Hypothesis H9 : SNo w
L2182 Hypothesis H10 : u ∈ SNoR y
L2183 Hypothesis H11 : v ∈ SNoL z
L2184 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2185 Hypothesis H13 : SNo u
L2186 Hypothesis H14 : y < u
L2187 Hypothesis H15 : SNo v
L2188 Hypothesis H16 : v < z
L2189
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__10__4
Beginning of Section Conj_mul_SNo_distrR__13__1
L2201 Hypothesis H0 : SNo x
L2202 Hypothesis H2 : SNo z
L2203 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2204 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2205 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2206 Hypothesis H6 : SNo (x + y )
L2207 Hypothesis H7 : SNo ((x + y ) * z )
L2208 Hypothesis H8 : SNo (x * z )
L2209 Hypothesis H9 : SNo w
L2210 Hypothesis H10 : u ∈ SNoL y
L2211 Hypothesis H11 : v ∈ SNoR z
L2212 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2213 Hypothesis H13 : SNo u
L2214 Hypothesis H14 : u < y
L2215 Hypothesis H15 : SNo v
L2216 Hypothesis H16 : z < v
L2217 Hypothesis H17 : SNo (u * v )
L2218 Hypothesis H18 : SNo (x + u )
L2219 Hypothesis H19 : SNo (w + u * v )
L2220 Hypothesis H20 : SNo ((x + y ) * v )
L2221 Hypothesis H21 : SNo (u * z )
L2222 Hypothesis H22 : SNo (x * v )
L2223
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__13__1
Beginning of Section Conj_mul_SNo_distrR__14__14
L2235 Hypothesis H0 : SNo x
L2236 Hypothesis H1 : SNo y
L2237 Hypothesis H2 : SNo z
L2238 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2239 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2240 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2241 Hypothesis H6 : SNo (x + y )
L2242 Hypothesis H7 : SNo ((x + y ) * z )
L2243 Hypothesis H8 : SNo (x * z )
L2244 Hypothesis H9 : SNo w
L2245 Hypothesis H10 : u ∈ SNoL y
L2246 Hypothesis H11 : v ∈ SNoR z
L2247 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2248 Hypothesis H13 : SNo u
L2249 Hypothesis H15 : SNo v
L2250 Hypothesis H16 : z < v
L2251 Hypothesis H17 : SNo (u * v )
L2252 Hypothesis H18 : SNo (x + u )
L2253 Hypothesis H19 : SNo (w + u * v )
L2254 Hypothesis H20 : SNo ((x + y ) * v )
L2255 Hypothesis H21 : SNo (u * z )
L2256
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__14__14
Beginning of Section Conj_mul_SNo_distrR__15__1
L2268 Hypothesis H0 : SNo x
L2269 Hypothesis H2 : SNo z
L2270 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2271 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2272 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2273 Hypothesis H6 : SNo (x + y )
L2274 Hypothesis H7 : SNo ((x + y ) * z )
L2275 Hypothesis H8 : SNo (x * z )
L2276 Hypothesis H9 : SNo w
L2277 Hypothesis H10 : u ∈ SNoL y
L2278 Hypothesis H11 : v ∈ SNoR z
L2279 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2280 Hypothesis H13 : SNo u
L2281 Hypothesis H14 : u < y
L2282 Hypothesis H15 : SNo v
L2283 Hypothesis H16 : z < v
L2284 Hypothesis H17 : SNo (u * v )
L2285 Hypothesis H18 : SNo (x + u )
L2286 Hypothesis H19 : SNo (w + u * v )
L2287 Hypothesis H20 : SNo ((x + y ) * v )
L2288
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__15__1
Beginning of Section Conj_mul_SNo_distrR__16__5
L2300 Hypothesis H0 : SNo x
L2301 Hypothesis H1 : SNo y
L2302 Hypothesis H2 : SNo z
L2303 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2304 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2305 Hypothesis H6 : SNo (x + y )
L2306 Hypothesis H7 : SNo ((x + y ) * z )
L2307 Hypothesis H8 : SNo (x * z )
L2308 Hypothesis H9 : SNo w
L2309 Hypothesis H10 : u ∈ SNoL y
L2310 Hypothesis H11 : v ∈ SNoR z
L2311 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2312 Hypothesis H13 : SNo u
L2313 Hypothesis H14 : u < y
L2314 Hypothesis H15 : SNo v
L2315 Hypothesis H16 : z < v
L2316 Hypothesis H17 : SNo (u * v )
L2317 Hypothesis H18 : SNo (x + u )
L2318 Hypothesis H19 : SNo (w + u * v )
L2319
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__16__5
Beginning of Section Conj_mul_SNo_distrR__16__14
L2331 Hypothesis H0 : SNo x
L2332 Hypothesis H1 : SNo y
L2333 Hypothesis H2 : SNo z
L2334 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2335 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2336 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2337 Hypothesis H6 : SNo (x + y )
L2338 Hypothesis H7 : SNo ((x + y ) * z )
L2339 Hypothesis H8 : SNo (x * z )
L2340 Hypothesis H9 : SNo w
L2341 Hypothesis H10 : u ∈ SNoL y
L2342 Hypothesis H11 : v ∈ SNoR z
L2343 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2344 Hypothesis H13 : SNo u
L2345 Hypothesis H15 : SNo v
L2346 Hypothesis H16 : z < v
L2347 Hypothesis H17 : SNo (u * v )
L2348 Hypothesis H18 : SNo (x + u )
L2349 Hypothesis H19 : SNo (w + u * v )
L2350
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__16__14
Beginning of Section Conj_mul_SNo_distrR__17__1
L2362 Hypothesis H0 : SNo x
L2363 Hypothesis H2 : SNo z
L2364 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2365 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2366 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2367 Hypothesis H6 : SNo (x + y )
L2368 Hypothesis H7 : SNo ((x + y ) * z )
L2369 Hypothesis H8 : SNo (x * z )
L2370 Hypothesis H9 : SNo w
L2371 Hypothesis H10 : u ∈ SNoL y
L2372 Hypothesis H11 : v ∈ SNoR z
L2373 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2374 Hypothesis H13 : SNo u
L2375 Hypothesis H14 : u < y
L2376 Hypothesis H15 : SNo v
L2377 Hypothesis H16 : z < v
L2378 Hypothesis H17 : SNo (u * v )
L2379 Hypothesis H18 : SNo (x + u )
L2380
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__17__1
Beginning of Section Conj_mul_SNo_distrR__17__2
L2392 Hypothesis H0 : SNo x
L2393 Hypothesis H1 : SNo y
L2394 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2395 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2396 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2397 Hypothesis H6 : SNo (x + y )
L2398 Hypothesis H7 : SNo ((x + y ) * z )
L2399 Hypothesis H8 : SNo (x * z )
L2400 Hypothesis H9 : SNo w
L2401 Hypothesis H10 : u ∈ SNoL y
L2402 Hypothesis H11 : v ∈ SNoR z
L2403 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2404 Hypothesis H13 : SNo u
L2405 Hypothesis H14 : u < y
L2406 Hypothesis H15 : SNo v
L2407 Hypothesis H16 : z < v
L2408 Hypothesis H17 : SNo (u * v )
L2409 Hypothesis H18 : SNo (x + u )
L2410
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__17__2
Beginning of Section Conj_mul_SNo_distrR__17__11
L2422 Hypothesis H0 : SNo x
L2423 Hypothesis H1 : SNo y
L2424 Hypothesis H2 : SNo z
L2425 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L2426 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2427 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L2428 Hypothesis H6 : SNo (x + y )
L2429 Hypothesis H7 : SNo ((x + y ) * z )
L2430 Hypothesis H8 : SNo (x * z )
L2431 Hypothesis H9 : SNo w
L2432 Hypothesis H10 : u ∈ SNoL y
L2433 Hypothesis H12 : (u * z + y * v ) ≤ w + u * v
L2434 Hypothesis H13 : SNo u
L2435 Hypothesis H14 : u < y
L2436 Hypothesis H15 : SNo v
L2437 Hypothesis H16 : z < v
L2438 Hypothesis H17 : SNo (u * v )
L2439 Hypothesis H18 : SNo (x + u )
L2440
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__17__11
Beginning of Section Conj_mul_SNo_distrR__20__1
L2452 Hypothesis H0 : SNo x
L2453 Hypothesis H2 : SNo z
L2454 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2455 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2456 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2457 Hypothesis H6 : SNo (x + y )
L2458 Hypothesis H7 : SNo ((x + y ) * z )
L2459 Hypothesis H8 : SNo (y * z )
L2460 Hypothesis H9 : SNo w
L2461 Hypothesis H10 : u ∈ SNoR x
L2462 Hypothesis H11 : v ∈ SNoL z
L2463 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2464 Hypothesis H13 : SNo u
L2465 Hypothesis H14 : x < u
L2466 Hypothesis H15 : SNo v
L2467 Hypothesis H16 : v < z
L2468 Hypothesis H17 : SNo (u * v )
L2469 Hypothesis H18 : SNo (u + y )
L2470 Hypothesis H19 : SNo (w + u * v )
L2471 Hypothesis H20 : SNo ((x + y ) * v )
L2472 Hypothesis H21 : SNo (u * z )
L2473 Hypothesis H22 : SNo (x * v )
L2474 Hypothesis H23 : SNo (y * v )
L2475 Hypothesis H24 : SNo (w + y * z )
L2476
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__20__1
Beginning of Section Conj_mul_SNo_distrR__20__2
L2488 Hypothesis H0 : SNo x
L2489 Hypothesis H1 : SNo y
L2490 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2491 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2492 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2493 Hypothesis H6 : SNo (x + y )
L2494 Hypothesis H7 : SNo ((x + y ) * z )
L2495 Hypothesis H8 : SNo (y * z )
L2496 Hypothesis H9 : SNo w
L2497 Hypothesis H10 : u ∈ SNoR x
L2498 Hypothesis H11 : v ∈ SNoL z
L2499 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2500 Hypothesis H13 : SNo u
L2501 Hypothesis H14 : x < u
L2502 Hypothesis H15 : SNo v
L2503 Hypothesis H16 : v < z
L2504 Hypothesis H17 : SNo (u * v )
L2505 Hypothesis H18 : SNo (u + y )
L2506 Hypothesis H19 : SNo (w + u * v )
L2507 Hypothesis H20 : SNo ((x + y ) * v )
L2508 Hypothesis H21 : SNo (u * z )
L2509 Hypothesis H22 : SNo (x * v )
L2510 Hypothesis H23 : SNo (y * v )
L2511 Hypothesis H24 : SNo (w + y * z )
L2512
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__20__2
Beginning of Section Conj_mul_SNo_distrR__20__6
L2524 Hypothesis H0 : SNo x
L2525 Hypothesis H1 : SNo y
L2526 Hypothesis H2 : SNo z
L2527 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2528 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2529 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2530 Hypothesis H7 : SNo ((x + y ) * z )
L2531 Hypothesis H8 : SNo (y * z )
L2532 Hypothesis H9 : SNo w
L2533 Hypothesis H10 : u ∈ SNoR x
L2534 Hypothesis H11 : v ∈ SNoL z
L2535 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2536 Hypothesis H13 : SNo u
L2537 Hypothesis H14 : x < u
L2538 Hypothesis H15 : SNo v
L2539 Hypothesis H16 : v < z
L2540 Hypothesis H17 : SNo (u * v )
L2541 Hypothesis H18 : SNo (u + y )
L2542 Hypothesis H19 : SNo (w + u * v )
L2543 Hypothesis H20 : SNo ((x + y ) * v )
L2544 Hypothesis H21 : SNo (u * z )
L2545 Hypothesis H22 : SNo (x * v )
L2546 Hypothesis H23 : SNo (y * v )
L2547 Hypothesis H24 : SNo (w + y * z )
L2548
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__20__6
Beginning of Section Conj_mul_SNo_distrR__20__20
L2560 Hypothesis H0 : SNo x
L2561 Hypothesis H1 : SNo y
L2562 Hypothesis H2 : SNo z
L2563 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2564 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2565 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2566 Hypothesis H6 : SNo (x + y )
L2567 Hypothesis H7 : SNo ((x + y ) * z )
L2568 Hypothesis H8 : SNo (y * z )
L2569 Hypothesis H9 : SNo w
L2570 Hypothesis H10 : u ∈ SNoR x
L2571 Hypothesis H11 : v ∈ SNoL z
L2572 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2573 Hypothesis H13 : SNo u
L2574 Hypothesis H14 : x < u
L2575 Hypothesis H15 : SNo v
L2576 Hypothesis H16 : v < z
L2577 Hypothesis H17 : SNo (u * v )
L2578 Hypothesis H18 : SNo (u + y )
L2579 Hypothesis H19 : SNo (w + u * v )
L2580 Hypothesis H21 : SNo (u * z )
L2581 Hypothesis H22 : SNo (x * v )
L2582 Hypothesis H23 : SNo (y * v )
L2583 Hypothesis H24 : SNo (w + y * z )
L2584
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__20__20
Beginning of Section Conj_mul_SNo_distrR__25__5
L2596 Hypothesis H0 : SNo x
L2597 Hypothesis H1 : SNo y
L2598 Hypothesis H2 : SNo z
L2599 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2600 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2601 Hypothesis H6 : SNo (x + y )
L2602 Hypothesis H7 : SNo ((x + y ) * z )
L2603 Hypothesis H8 : SNo (y * z )
L2604 Hypothesis H9 : SNo w
L2605 Hypothesis H10 : u ∈ SNoR x
L2606 Hypothesis H11 : v ∈ SNoL z
L2607 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2608 Hypothesis H13 : SNo u
L2609 Hypothesis H14 : x < u
L2610 Hypothesis H15 : SNo v
L2611 Hypothesis H16 : v < z
L2612 Hypothesis H17 : SNo (u * v )
L2613 Hypothesis H18 : SNo (u + y )
L2614 Hypothesis H19 : SNo (w + u * v )
L2615
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__25__5
Beginning of Section Conj_mul_SNo_distrR__27__13
L2627 Hypothesis H0 : SNo x
L2628 Hypothesis H1 : SNo y
L2629 Hypothesis H2 : SNo z
L2630 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2631 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2632 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2633 Hypothesis H6 : SNo (x + y )
L2634 Hypothesis H7 : SNo ((x + y ) * z )
L2635 Hypothesis H8 : SNo (y * z )
L2636 Hypothesis H9 : SNo w
L2637 Hypothesis H10 : u ∈ SNoR x
L2638 Hypothesis H11 : v ∈ SNoL z
L2639 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2640 Hypothesis H14 : x < u
L2641 Hypothesis H15 : SNo v
L2642 Hypothesis H16 : v < z
L2643 Hypothesis H17 : SNo (u * v )
L2644
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__27__13
Beginning of Section Conj_mul_SNo_distrR__27__16
L2656 Hypothesis H0 : SNo x
L2657 Hypothesis H1 : SNo y
L2658 Hypothesis H2 : SNo z
L2659 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2660 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2661 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2662 Hypothesis H6 : SNo (x + y )
L2663 Hypothesis H7 : SNo ((x + y ) * z )
L2664 Hypothesis H8 : SNo (y * z )
L2665 Hypothesis H9 : SNo w
L2666 Hypothesis H10 : u ∈ SNoR x
L2667 Hypothesis H11 : v ∈ SNoL z
L2668 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2669 Hypothesis H13 : SNo u
L2670 Hypothesis H14 : x < u
L2671 Hypothesis H15 : SNo v
L2672 Hypothesis H17 : SNo (u * v )
L2673
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__27__16
Beginning of Section Conj_mul_SNo_distrR__29__11
L2685 Hypothesis H0 : SNo x
L2686 Hypothesis H1 : SNo y
L2687 Hypothesis H2 : SNo z
L2688 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2689 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2690 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2691 Hypothesis H6 : SNo (x + y )
L2692 Hypothesis H7 : SNo ((x + y ) * z )
L2693 Hypothesis H8 : SNo (y * z )
L2694 Hypothesis H9 : SNo w
L2695 Hypothesis H10 : u ∈ SNoL x
L2696 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2697 Hypothesis H13 : SNo u
L2698 Hypothesis H14 : u < x
L2699 Hypothesis H15 : SNo v
L2700 Hypothesis H16 : z < v
L2701 Hypothesis H17 : SNo (u * v )
L2702 Hypothesis H18 : SNo (u + y )
L2703 Hypothesis H19 : SNo (w + u * v )
L2704 Hypothesis H20 : SNo ((x + y ) * v )
L2705 Hypothesis H21 : SNo (u * z )
L2706 Hypothesis H22 : SNo (x * v )
L2707 Hypothesis H23 : SNo (y * v )
L2708 Hypothesis H24 : SNo (w + y * z )
L2709 Hypothesis H25 : SNo (u * v + y * v )
L2710
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__29__11
Beginning of Section Conj_mul_SNo_distrR__30__18
L2722 Hypothesis H0 : SNo x
L2723 Hypothesis H1 : SNo y
L2724 Hypothesis H2 : SNo z
L2725 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2726 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2727 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2728 Hypothesis H6 : SNo (x + y )
L2729 Hypothesis H7 : SNo ((x + y ) * z )
L2730 Hypothesis H8 : SNo (y * z )
L2731 Hypothesis H9 : SNo w
L2732 Hypothesis H10 : u ∈ SNoL x
L2733 Hypothesis H11 : v ∈ SNoR z
L2734 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2735 Hypothesis H13 : SNo u
L2736 Hypothesis H14 : u < x
L2737 Hypothesis H15 : SNo v
L2738 Hypothesis H16 : z < v
L2739 Hypothesis H17 : SNo (u * v )
L2740 Hypothesis H19 : SNo (w + u * v )
L2741 Hypothesis H20 : SNo ((x + y ) * v )
L2742 Hypothesis H21 : SNo (u * z )
L2743 Hypothesis H22 : SNo (x * v )
L2744 Hypothesis H23 : SNo (y * v )
L2745 Hypothesis H24 : SNo (w + y * z )
L2746
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__30__18
Beginning of Section Conj_mul_SNo_distrR__31__15
L2758 Hypothesis H0 : SNo x
L2759 Hypothesis H1 : SNo y
L2760 Hypothesis H2 : SNo z
L2761 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2762 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2763 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2764 Hypothesis H6 : SNo (x + y )
L2765 Hypothesis H7 : SNo ((x + y ) * z )
L2766 Hypothesis H8 : SNo (y * z )
L2767 Hypothesis H9 : SNo w
L2768 Hypothesis H10 : u ∈ SNoL x
L2769 Hypothesis H11 : v ∈ SNoR z
L2770 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2771 Hypothesis H13 : SNo u
L2772 Hypothesis H14 : u < x
L2773 Hypothesis H16 : z < v
L2774 Hypothesis H17 : SNo (u * v )
L2775 Hypothesis H18 : SNo (u + y )
L2776 Hypothesis H19 : SNo (w + u * v )
L2777 Hypothesis H20 : SNo ((x + y ) * v )
L2778 Hypothesis H21 : SNo (u * z )
L2779 Hypothesis H22 : SNo (x * v )
L2780 Hypothesis H23 : SNo (y * v )
L2781
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__31__15
Beginning of Section Conj_mul_SNo_distrR__31__19
L2793 Hypothesis H0 : SNo x
L2794 Hypothesis H1 : SNo y
L2795 Hypothesis H2 : SNo z
L2796 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2797 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2798 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2799 Hypothesis H6 : SNo (x + y )
L2800 Hypothesis H7 : SNo ((x + y ) * z )
L2801 Hypothesis H8 : SNo (y * z )
L2802 Hypothesis H9 : SNo w
L2803 Hypothesis H10 : u ∈ SNoL x
L2804 Hypothesis H11 : v ∈ SNoR z
L2805 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2806 Hypothesis H13 : SNo u
L2807 Hypothesis H14 : u < x
L2808 Hypothesis H15 : SNo v
L2809 Hypothesis H16 : z < v
L2810 Hypothesis H17 : SNo (u * v )
L2811 Hypothesis H18 : SNo (u + y )
L2812 Hypothesis H20 : SNo ((x + y ) * v )
L2813 Hypothesis H21 : SNo (u * z )
L2814 Hypothesis H22 : SNo (x * v )
L2815 Hypothesis H23 : SNo (y * v )
L2816
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__31__19
Beginning of Section Conj_mul_SNo_distrR__32__11
L2828 Hypothesis H0 : SNo x
L2829 Hypothesis H1 : SNo y
L2830 Hypothesis H2 : SNo z
L2831 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2832 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2833 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2834 Hypothesis H6 : SNo (x + y )
L2835 Hypothesis H7 : SNo ((x + y ) * z )
L2836 Hypothesis H8 : SNo (y * z )
L2837 Hypothesis H9 : SNo w
L2838 Hypothesis H10 : u ∈ SNoL x
L2839 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2840 Hypothesis H13 : SNo u
L2841 Hypothesis H14 : u < x
L2842 Hypothesis H15 : SNo v
L2843 Hypothesis H16 : z < v
L2844 Hypothesis H17 : SNo (u * v )
L2845 Hypothesis H18 : SNo (u + y )
L2846 Hypothesis H19 : SNo (w + u * v )
L2847 Hypothesis H20 : SNo ((x + y ) * v )
L2848 Hypothesis H21 : SNo (u * z )
L2849 Hypothesis H22 : SNo (x * v )
L2850
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__32__11
Beginning of Section Conj_mul_SNo_distrR__32__14
L2862 Hypothesis H0 : SNo x
L2863 Hypothesis H1 : SNo y
L2864 Hypothesis H2 : SNo z
L2865 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2866 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2867 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2868 Hypothesis H6 : SNo (x + y )
L2869 Hypothesis H7 : SNo ((x + y ) * z )
L2870 Hypothesis H8 : SNo (y * z )
L2871 Hypothesis H9 : SNo w
L2872 Hypothesis H10 : u ∈ SNoL x
L2873 Hypothesis H11 : v ∈ SNoR z
L2874 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2875 Hypothesis H13 : SNo u
L2876 Hypothesis H15 : SNo v
L2877 Hypothesis H16 : z < v
L2878 Hypothesis H17 : SNo (u * v )
L2879 Hypothesis H18 : SNo (u + y )
L2880 Hypothesis H19 : SNo (w + u * v )
L2881 Hypothesis H20 : SNo ((x + y ) * v )
L2882 Hypothesis H21 : SNo (u * z )
L2883 Hypothesis H22 : SNo (x * v )
L2884
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__32__14
Beginning of Section Conj_mul_SNo_distrR__32__16
L2896 Hypothesis H0 : SNo x
L2897 Hypothesis H1 : SNo y
L2898 Hypothesis H2 : SNo z
L2899 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2900 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2901 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2902 Hypothesis H6 : SNo (x + y )
L2903 Hypothesis H7 : SNo ((x + y ) * z )
L2904 Hypothesis H8 : SNo (y * z )
L2905 Hypothesis H9 : SNo w
L2906 Hypothesis H10 : u ∈ SNoL x
L2907 Hypothesis H11 : v ∈ SNoR z
L2908 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2909 Hypothesis H13 : SNo u
L2910 Hypothesis H14 : u < x
L2911 Hypothesis H15 : SNo v
L2912 Hypothesis H17 : SNo (u * v )
L2913 Hypothesis H18 : SNo (u + y )
L2914 Hypothesis H19 : SNo (w + u * v )
L2915 Hypothesis H20 : SNo ((x + y ) * v )
L2916 Hypothesis H21 : SNo (u * z )
L2917 Hypothesis H22 : SNo (x * v )
L2918
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__32__16
Beginning of Section Conj_mul_SNo_distrR__32__22
L2930 Hypothesis H0 : SNo x
L2931 Hypothesis H1 : SNo y
L2932 Hypothesis H2 : SNo z
L2933 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2934 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2935 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2936 Hypothesis H6 : SNo (x + y )
L2937 Hypothesis H7 : SNo ((x + y ) * z )
L2938 Hypothesis H8 : SNo (y * z )
L2939 Hypothesis H9 : SNo w
L2940 Hypothesis H10 : u ∈ SNoL x
L2941 Hypothesis H11 : v ∈ SNoR z
L2942 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2943 Hypothesis H13 : SNo u
L2944 Hypothesis H14 : u < x
L2945 Hypothesis H15 : SNo v
L2946 Hypothesis H16 : z < v
L2947 Hypothesis H17 : SNo (u * v )
L2948 Hypothesis H18 : SNo (u + y )
L2949 Hypothesis H19 : SNo (w + u * v )
L2950 Hypothesis H20 : SNo ((x + y ) * v )
L2951 Hypothesis H21 : SNo (u * z )
L2952
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__32__22
Beginning of Section Conj_mul_SNo_distrR__33__1
L2964 Hypothesis H0 : SNo x
L2965 Hypothesis H2 : SNo z
L2966 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L2967 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L2968 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L2969 Hypothesis H6 : SNo (x + y )
L2970 Hypothesis H7 : SNo ((x + y ) * z )
L2971 Hypothesis H8 : SNo (y * z )
L2972 Hypothesis H9 : SNo w
L2973 Hypothesis H10 : u ∈ SNoL x
L2974 Hypothesis H11 : v ∈ SNoR z
L2975 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L2976 Hypothesis H13 : SNo u
L2977 Hypothesis H14 : u < x
L2978 Hypothesis H15 : SNo v
L2979 Hypothesis H16 : z < v
L2980 Hypothesis H17 : SNo (u * v )
L2981 Hypothesis H18 : SNo (u + y )
L2982 Hypothesis H19 : SNo (w + u * v )
L2983 Hypothesis H20 : SNo ((x + y ) * v )
L2984 Hypothesis H21 : SNo (u * z )
L2985
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__33__1
Beginning of Section Conj_mul_SNo_distrR__33__10
L2997 Hypothesis H0 : SNo x
L2998 Hypothesis H1 : SNo y
L2999 Hypothesis H2 : SNo z
L3000 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3001 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3002 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3003 Hypothesis H6 : SNo (x + y )
L3004 Hypothesis H7 : SNo ((x + y ) * z )
L3005 Hypothesis H8 : SNo (y * z )
L3006 Hypothesis H9 : SNo w
L3007 Hypothesis H11 : v ∈ SNoR z
L3008 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L3009 Hypothesis H13 : SNo u
L3010 Hypothesis H14 : u < x
L3011 Hypothesis H15 : SNo v
L3012 Hypothesis H16 : z < v
L3013 Hypothesis H17 : SNo (u * v )
L3014 Hypothesis H18 : SNo (u + y )
L3015 Hypothesis H19 : SNo (w + u * v )
L3016 Hypothesis H20 : SNo ((x + y ) * v )
L3017 Hypothesis H21 : SNo (u * z )
L3018
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__33__10
Beginning of Section Conj_mul_SNo_distrR__33__11
L3030 Hypothesis H0 : SNo x
L3031 Hypothesis H1 : SNo y
L3032 Hypothesis H2 : SNo z
L3033 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3034 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3035 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3036 Hypothesis H6 : SNo (x + y )
L3037 Hypothesis H7 : SNo ((x + y ) * z )
L3038 Hypothesis H8 : SNo (y * z )
L3039 Hypothesis H9 : SNo w
L3040 Hypothesis H10 : u ∈ SNoL x
L3041 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L3042 Hypothesis H13 : SNo u
L3043 Hypothesis H14 : u < x
L3044 Hypothesis H15 : SNo v
L3045 Hypothesis H16 : z < v
L3046 Hypothesis H17 : SNo (u * v )
L3047 Hypothesis H18 : SNo (u + y )
L3048 Hypothesis H19 : SNo (w + u * v )
L3049 Hypothesis H20 : SNo ((x + y ) * v )
L3050 Hypothesis H21 : SNo (u * z )
L3051
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__33__11
Beginning of Section Conj_mul_SNo_distrR__34__15
L3063 Hypothesis H0 : SNo x
L3064 Hypothesis H1 : SNo y
L3065 Hypothesis H2 : SNo z
L3066 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3067 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3068 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3069 Hypothesis H6 : SNo (x + y )
L3070 Hypothesis H7 : SNo ((x + y ) * z )
L3071 Hypothesis H8 : SNo (y * z )
L3072 Hypothesis H9 : SNo w
L3073 Hypothesis H10 : u ∈ SNoL x
L3074 Hypothesis H11 : v ∈ SNoR z
L3075 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L3076 Hypothesis H13 : SNo u
L3077 Hypothesis H14 : u < x
L3078 Hypothesis H16 : z < v
L3079 Hypothesis H17 : SNo (u * v )
L3080 Hypothesis H18 : SNo (u + y )
L3081 Hypothesis H19 : SNo (w + u * v )
L3082 Hypothesis H20 : SNo ((x + y ) * v )
L3083
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__34__15
Beginning of Section Conj_mul_SNo_distrR__35__17
L3095 Hypothesis H0 : SNo x
L3096 Hypothesis H1 : SNo y
L3097 Hypothesis H2 : SNo z
L3098 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3099 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3100 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3101 Hypothesis H6 : SNo (x + y )
L3102 Hypothesis H7 : SNo ((x + y ) * z )
L3103 Hypothesis H8 : SNo (y * z )
L3104 Hypothesis H9 : SNo w
L3105 Hypothesis H10 : u ∈ SNoL x
L3106 Hypothesis H11 : v ∈ SNoR z
L3107 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L3108 Hypothesis H13 : SNo u
L3109 Hypothesis H14 : u < x
L3110 Hypothesis H15 : SNo v
L3111 Hypothesis H16 : z < v
L3112 Hypothesis H18 : SNo (u + y )
L3113 Hypothesis H19 : SNo (w + u * v )
L3114
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__35__17
Beginning of Section Conj_mul_SNo_distrR__36__16
L3126 Hypothesis H0 : SNo x
L3127 Hypothesis H1 : SNo y
L3128 Hypothesis H2 : SNo z
L3129 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3130 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3131 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3132 Hypothesis H6 : SNo (x + y )
L3133 Hypothesis H7 : SNo ((x + y ) * z )
L3134 Hypothesis H8 : SNo (y * z )
L3135 Hypothesis H9 : SNo w
L3136 Hypothesis H10 : u ∈ SNoL x
L3137 Hypothesis H11 : v ∈ SNoR z
L3138 Hypothesis H12 : (u * z + x * v ) ≤ w + u * v
L3139 Hypothesis H13 : SNo u
L3140 Hypothesis H14 : u < x
L3141 Hypothesis H15 : SNo v
L3142 Hypothesis H17 : SNo (u * v )
L3143 Hypothesis H18 : SNo (u + y )
L3144
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__36__16
Beginning of Section Conj_mul_SNo_distrR__37__12
L3156 Hypothesis H0 : SNo x
L3157 Hypothesis H1 : SNo y
L3158 Hypothesis H2 : SNo z
L3159 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3160 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3161 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3162 Hypothesis H6 : SNo (x + y )
L3163 Hypothesis H7 : SNo ((x + y ) * z )
L3164 Hypothesis H8 : SNo (y * z )
L3165 Hypothesis H9 : SNo w
L3166 Hypothesis H10 : u ∈ SNoL x
L3167 Hypothesis H11 : v ∈ SNoR z
L3168 Hypothesis H13 : SNo u
L3169 Hypothesis H14 : u < x
L3170 Hypothesis H15 : SNo v
L3171 Hypothesis H16 : z < v
L3172 Hypothesis H17 : SNo (u * v )
L3173
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__37__12
Beginning of Section Conj_mul_SNo_distrR__39__5
L3185 Hypothesis H0 : SNo x
L3186 Hypothesis H1 : SNo y
L3187 Hypothesis H2 : SNo z
L3188 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3189 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3190 Hypothesis H6 : SNo (x + y )
L3191 Hypothesis H7 : SNo ((x + y ) * z )
L3192 Hypothesis H8 : SNo (x * z )
L3193 Hypothesis H9 : SNo w
L3194 Hypothesis H10 : u ∈ SNoR y
L3195 Hypothesis H11 : v ∈ SNoR z
L3196 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3197 Hypothesis H13 : SNo u
L3198 Hypothesis H14 : y < u
L3199 Hypothesis H15 : SNo v
L3200 Hypothesis H16 : z < v
L3201 Hypothesis H17 : SNo (u * v )
L3202 Hypothesis H18 : SNo (x + u )
L3203 Hypothesis H19 : SNo (w + u * v )
L3204 Hypothesis H20 : SNo ((x + y ) * v )
L3205 Hypothesis H21 : SNo (u * z )
L3206 Hypothesis H22 : SNo (x * v )
L3207 Hypothesis H23 : SNo (y * v )
L3208 Hypothesis H24 : SNo (w + x * z )
L3209 Hypothesis H25 : SNo (u * v + x * v )
L3210
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__39__5
Beginning of Section Conj_mul_SNo_distrR__40__1
L3222 Hypothesis H0 : SNo x
L3223 Hypothesis H2 : SNo z
L3224 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3225 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3226 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3227 Hypothesis H6 : SNo (x + y )
L3228 Hypothesis H7 : SNo ((x + y ) * z )
L3229 Hypothesis H8 : SNo (x * z )
L3230 Hypothesis H9 : SNo w
L3231 Hypothesis H10 : u ∈ SNoR y
L3232 Hypothesis H11 : v ∈ SNoR z
L3233 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3234 Hypothesis H13 : SNo u
L3235 Hypothesis H14 : y < u
L3236 Hypothesis H15 : SNo v
L3237 Hypothesis H16 : z < v
L3238 Hypothesis H17 : SNo (u * v )
L3239 Hypothesis H18 : SNo (x + u )
L3240 Hypothesis H19 : SNo (w + u * v )
L3241 Hypothesis H20 : SNo ((x + y ) * v )
L3242 Hypothesis H21 : SNo (u * z )
L3243 Hypothesis H22 : SNo (x * v )
L3244 Hypothesis H23 : SNo (y * v )
L3245 Hypothesis H24 : SNo (w + x * z )
L3246
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__40__1
Beginning of Section Conj_mul_SNo_distrR__40__24
L3258 Hypothesis H0 : SNo x
L3259 Hypothesis H1 : SNo y
L3260 Hypothesis H2 : SNo z
L3261 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3262 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3263 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3264 Hypothesis H6 : SNo (x + y )
L3265 Hypothesis H7 : SNo ((x + y ) * z )
L3266 Hypothesis H8 : SNo (x * z )
L3267 Hypothesis H9 : SNo w
L3268 Hypothesis H10 : u ∈ SNoR y
L3269 Hypothesis H11 : v ∈ SNoR z
L3270 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3271 Hypothesis H13 : SNo u
L3272 Hypothesis H14 : y < u
L3273 Hypothesis H15 : SNo v
L3274 Hypothesis H16 : z < v
L3275 Hypothesis H17 : SNo (u * v )
L3276 Hypothesis H18 : SNo (x + u )
L3277 Hypothesis H19 : SNo (w + u * v )
L3278 Hypothesis H20 : SNo ((x + y ) * v )
L3279 Hypothesis H21 : SNo (u * z )
L3280 Hypothesis H22 : SNo (x * v )
L3281 Hypothesis H23 : SNo (y * v )
L3282
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__40__24
Beginning of Section Conj_mul_SNo_distrR__41__10
L3294 Hypothesis H0 : SNo x
L3295 Hypothesis H1 : SNo y
L3296 Hypothesis H2 : SNo z
L3297 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3298 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3299 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3300 Hypothesis H6 : SNo (x + y )
L3301 Hypothesis H7 : SNo ((x + y ) * z )
L3302 Hypothesis H8 : SNo (x * z )
L3303 Hypothesis H9 : SNo w
L3304 Hypothesis H11 : v ∈ SNoR z
L3305 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3306 Hypothesis H13 : SNo u
L3307 Hypothesis H14 : y < u
L3308 Hypothesis H15 : SNo v
L3309 Hypothesis H16 : z < v
L3310 Hypothesis H17 : SNo (u * v )
L3311 Hypothesis H18 : SNo (x + u )
L3312 Hypothesis H19 : SNo (w + u * v )
L3313 Hypothesis H20 : SNo ((x + y ) * v )
L3314 Hypothesis H21 : SNo (u * z )
L3315 Hypothesis H22 : SNo (x * v )
L3316 Hypothesis H23 : SNo (y * v )
L3317
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__41__10
Beginning of Section Conj_mul_SNo_distrR__41__14
L3329 Hypothesis H0 : SNo x
L3330 Hypothesis H1 : SNo y
L3331 Hypothesis H2 : SNo z
L3332 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3333 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3334 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3335 Hypothesis H6 : SNo (x + y )
L3336 Hypothesis H7 : SNo ((x + y ) * z )
L3337 Hypothesis H8 : SNo (x * z )
L3338 Hypothesis H9 : SNo w
L3339 Hypothesis H10 : u ∈ SNoR y
L3340 Hypothesis H11 : v ∈ SNoR z
L3341 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3342 Hypothesis H13 : SNo u
L3343 Hypothesis H15 : SNo v
L3344 Hypothesis H16 : z < v
L3345 Hypothesis H17 : SNo (u * v )
L3346 Hypothesis H18 : SNo (x + u )
L3347 Hypothesis H19 : SNo (w + u * v )
L3348 Hypothesis H20 : SNo ((x + y ) * v )
L3349 Hypothesis H21 : SNo (u * z )
L3350 Hypothesis H22 : SNo (x * v )
L3351 Hypothesis H23 : SNo (y * v )
L3352
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__41__14
Beginning of Section Conj_mul_SNo_distrR__42__19
L3364 Hypothesis H0 : SNo x
L3365 Hypothesis H1 : SNo y
L3366 Hypothesis H2 : SNo z
L3367 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3368 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3369 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3370 Hypothesis H6 : SNo (x + y )
L3371 Hypothesis H7 : SNo ((x + y ) * z )
L3372 Hypothesis H8 : SNo (x * z )
L3373 Hypothesis H9 : SNo w
L3374 Hypothesis H10 : u ∈ SNoR y
L3375 Hypothesis H11 : v ∈ SNoR z
L3376 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3377 Hypothesis H13 : SNo u
L3378 Hypothesis H14 : y < u
L3379 Hypothesis H15 : SNo v
L3380 Hypothesis H16 : z < v
L3381 Hypothesis H17 : SNo (u * v )
L3382 Hypothesis H18 : SNo (x + u )
L3383 Hypothesis H20 : SNo ((x + y ) * v )
L3384 Hypothesis H21 : SNo (u * z )
L3385 Hypothesis H22 : SNo (x * v )
L3386
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__42__19
Beginning of Section Conj_mul_SNo_distrR__44__4
L3398 Hypothesis H0 : SNo x
L3399 Hypothesis H1 : SNo y
L3400 Hypothesis H2 : SNo z
L3401 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3402 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3403 Hypothesis H6 : SNo (x + y )
L3404 Hypothesis H7 : SNo ((x + y ) * z )
L3405 Hypothesis H8 : SNo (x * z )
L3406 Hypothesis H9 : SNo w
L3407 Hypothesis H10 : u ∈ SNoR y
L3408 Hypothesis H11 : v ∈ SNoR z
L3409 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3410 Hypothesis H13 : SNo u
L3411 Hypothesis H14 : y < u
L3412 Hypothesis H15 : SNo v
L3413 Hypothesis H16 : z < v
L3414 Hypothesis H17 : SNo (u * v )
L3415 Hypothesis H18 : SNo (x + u )
L3416 Hypothesis H19 : SNo (w + u * v )
L3417 Hypothesis H20 : SNo ((x + y ) * v )
L3418
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__44__4
Beginning of Section Conj_mul_SNo_distrR__45__16
L3430 Hypothesis H0 : SNo x
L3431 Hypothesis H1 : SNo y
L3432 Hypothesis H2 : SNo z
L3433 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3434 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3435 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3436 Hypothesis H6 : SNo (x + y )
L3437 Hypothesis H7 : SNo ((x + y ) * z )
L3438 Hypothesis H8 : SNo (x * z )
L3439 Hypothesis H9 : SNo w
L3440 Hypothesis H10 : u ∈ SNoR y
L3441 Hypothesis H11 : v ∈ SNoR z
L3442 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3443 Hypothesis H13 : SNo u
L3444 Hypothesis H14 : y < u
L3445 Hypothesis H15 : SNo v
L3446 Hypothesis H17 : SNo (u * v )
L3447 Hypothesis H18 : SNo (x + u )
L3448 Hypothesis H19 : SNo (w + u * v )
L3449
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__45__16
Beginning of Section Conj_mul_SNo_distrR__47__17
L3461 Hypothesis H0 : SNo x
L3462 Hypothesis H1 : SNo y
L3463 Hypothesis H2 : SNo z
L3464 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3465 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3466 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3467 Hypothesis H6 : SNo (x + y )
L3468 Hypothesis H7 : SNo ((x + y ) * z )
L3469 Hypothesis H8 : SNo (x * z )
L3470 Hypothesis H9 : SNo w
L3471 Hypothesis H10 : u ∈ SNoR y
L3472 Hypothesis H11 : v ∈ SNoR z
L3473 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3474 Hypothesis H13 : SNo u
L3475 Hypothesis H14 : y < u
L3476 Hypothesis H15 : SNo v
L3477 Hypothesis H16 : z < v
L3478
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__47__17
Beginning of Section Conj_mul_SNo_distrR__48__11
L3490 Hypothesis H0 : SNo x
L3491 Hypothesis H1 : SNo y
L3492 Hypothesis H2 : SNo z
L3493 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3494 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3495 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3496 Hypothesis H6 : SNo (x + y )
L3497 Hypothesis H7 : SNo ((x + y ) * z )
L3498 Hypothesis H8 : SNo (x * z )
L3499 Hypothesis H9 : SNo w
L3500 Hypothesis H10 : u ∈ SNoR y
L3501 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3502 Hypothesis H13 : SNo u
L3503 Hypothesis H14 : y < u
L3504 Hypothesis H15 : SNo v
L3505 Hypothesis H16 : z < v
L3506
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__48__11
Beginning of Section Conj_mul_SNo_distrR__48__15
L3518 Hypothesis H0 : SNo x
L3519 Hypothesis H1 : SNo y
L3520 Hypothesis H2 : SNo z
L3521 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3522 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3523 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3524 Hypothesis H6 : SNo (x + y )
L3525 Hypothesis H7 : SNo ((x + y ) * z )
L3526 Hypothesis H8 : SNo (x * z )
L3527 Hypothesis H9 : SNo w
L3528 Hypothesis H10 : u ∈ SNoR y
L3529 Hypothesis H11 : v ∈ SNoR z
L3530 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3531 Hypothesis H13 : SNo u
L3532 Hypothesis H14 : y < u
L3533 Hypothesis H16 : z < v
L3534
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__48__15
Beginning of Section Conj_mul_SNo_distrR__49__2
L3546 Hypothesis H0 : SNo x
L3547 Hypothesis H1 : SNo y
L3548 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3549 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3550 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3551 Hypothesis H6 : SNo (x + y )
L3552 Hypothesis H7 : SNo ((x + y ) * z )
L3553 Hypothesis H8 : SNo (x * z )
L3554 Hypothesis H9 : SNo w
L3555 Hypothesis H10 : u ∈ SNoL y
L3556 Hypothesis H11 : v ∈ SNoL z
L3557 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3558 Hypothesis H13 : SNo u
L3559 Hypothesis H14 : u < y
L3560 Hypothesis H15 : SNo v
L3561 Hypothesis H16 : v < z
L3562 Hypothesis H17 : SNo (u * v )
L3563 Hypothesis H18 : SNo (x + u )
L3564 Hypothesis H19 : SNo (w + u * v )
L3565 Hypothesis H20 : SNo ((x + y ) * v )
L3566 Hypothesis H21 : SNo (u * z )
L3567 Hypothesis H22 : SNo (x * v )
L3568 Hypothesis H23 : SNo (y * v )
L3569 Hypothesis H24 : SNo (w + x * z )
L3570
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__49__2
Beginning of Section Conj_mul_SNo_distrR__52__2
L3582 Hypothesis H0 : SNo x
L3583 Hypothesis H1 : SNo y
L3584 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3585 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3586 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3587 Hypothesis H6 : SNo (x + y )
L3588 Hypothesis H7 : SNo ((x + y ) * z )
L3589 Hypothesis H8 : SNo (x * z )
L3590 Hypothesis H9 : SNo w
L3591 Hypothesis H10 : u ∈ SNoL y
L3592 Hypothesis H11 : v ∈ SNoL z
L3593 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3594 Hypothesis H13 : SNo u
L3595 Hypothesis H14 : u < y
L3596 Hypothesis H15 : SNo v
L3597 Hypothesis H16 : v < z
L3598 Hypothesis H17 : SNo (u * v )
L3599 Hypothesis H18 : SNo (x + u )
L3600 Hypothesis H19 : SNo (w + u * v )
L3601 Hypothesis H20 : SNo ((x + y ) * v )
L3602 Hypothesis H21 : SNo (u * z )
L3603
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__2
Beginning of Section Conj_mul_SNo_distrR__52__9
L3615 Hypothesis H0 : SNo x
L3616 Hypothesis H1 : SNo y
L3617 Hypothesis H2 : SNo z
L3618 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3619 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3620 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3621 Hypothesis H6 : SNo (x + y )
L3622 Hypothesis H7 : SNo ((x + y ) * z )
L3623 Hypothesis H8 : SNo (x * z )
L3624 Hypothesis H10 : u ∈ SNoL y
L3625 Hypothesis H11 : v ∈ SNoL z
L3626 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3627 Hypothesis H13 : SNo u
L3628 Hypothesis H14 : u < y
L3629 Hypothesis H15 : SNo v
L3630 Hypothesis H16 : v < z
L3631 Hypothesis H17 : SNo (u * v )
L3632 Hypothesis H18 : SNo (x + u )
L3633 Hypothesis H19 : SNo (w + u * v )
L3634 Hypothesis H20 : SNo ((x + y ) * v )
L3635 Hypothesis H21 : SNo (u * z )
L3636
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__9
Beginning of Section Conj_mul_SNo_distrR__52__13
L3648 Hypothesis H0 : SNo x
L3649 Hypothesis H1 : SNo y
L3650 Hypothesis H2 : SNo z
L3651 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3652 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3653 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3654 Hypothesis H6 : SNo (x + y )
L3655 Hypothesis H7 : SNo ((x + y ) * z )
L3656 Hypothesis H8 : SNo (x * z )
L3657 Hypothesis H9 : SNo w
L3658 Hypothesis H10 : u ∈ SNoL y
L3659 Hypothesis H11 : v ∈ SNoL z
L3660 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3661 Hypothesis H14 : u < y
L3662 Hypothesis H15 : SNo v
L3663 Hypothesis H16 : v < z
L3664 Hypothesis H17 : SNo (u * v )
L3665 Hypothesis H18 : SNo (x + u )
L3666 Hypothesis H19 : SNo (w + u * v )
L3667 Hypothesis H20 : SNo ((x + y ) * v )
L3668 Hypothesis H21 : SNo (u * z )
L3669
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__13
Beginning of Section Conj_mul_SNo_distrR__52__19
L3681 Hypothesis H0 : SNo x
L3682 Hypothesis H1 : SNo y
L3683 Hypothesis H2 : SNo z
L3684 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3685 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3686 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3687 Hypothesis H6 : SNo (x + y )
L3688 Hypothesis H7 : SNo ((x + y ) * z )
L3689 Hypothesis H8 : SNo (x * z )
L3690 Hypothesis H9 : SNo w
L3691 Hypothesis H10 : u ∈ SNoL y
L3692 Hypothesis H11 : v ∈ SNoL z
L3693 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3694 Hypothesis H13 : SNo u
L3695 Hypothesis H14 : u < y
L3696 Hypothesis H15 : SNo v
L3697 Hypothesis H16 : v < z
L3698 Hypothesis H17 : SNo (u * v )
L3699 Hypothesis H18 : SNo (x + u )
L3700 Hypothesis H20 : SNo ((x + y ) * v )
L3701 Hypothesis H21 : SNo (u * z )
L3702
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__19
Beginning of Section Conj_mul_SNo_distrR__52__21
L3714 Hypothesis H0 : SNo x
L3715 Hypothesis H1 : SNo y
L3716 Hypothesis H2 : SNo z
L3717 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3718 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3719 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3720 Hypothesis H6 : SNo (x + y )
L3721 Hypothesis H7 : SNo ((x + y ) * z )
L3722 Hypothesis H8 : SNo (x * z )
L3723 Hypothesis H9 : SNo w
L3724 Hypothesis H10 : u ∈ SNoL y
L3725 Hypothesis H11 : v ∈ SNoL z
L3726 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3727 Hypothesis H13 : SNo u
L3728 Hypothesis H14 : u < y
L3729 Hypothesis H15 : SNo v
L3730 Hypothesis H16 : v < z
L3731 Hypothesis H17 : SNo (u * v )
L3732 Hypothesis H18 : SNo (x + u )
L3733 Hypothesis H19 : SNo (w + u * v )
L3734 Hypothesis H20 : SNo ((x + y ) * v )
L3735
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__52__21
Beginning of Section Conj_mul_SNo_distrR__53__19
L3747 Hypothesis H0 : SNo x
L3748 Hypothesis H1 : SNo y
L3749 Hypothesis H2 : SNo z
L3750 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3751 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3752 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3753 Hypothesis H6 : SNo (x + y )
L3754 Hypothesis H7 : SNo ((x + y ) * z )
L3755 Hypothesis H8 : SNo (x * z )
L3756 Hypothesis H9 : SNo w
L3757 Hypothesis H10 : u ∈ SNoL y
L3758 Hypothesis H11 : v ∈ SNoL z
L3759 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3760 Hypothesis H13 : SNo u
L3761 Hypothesis H14 : u < y
L3762 Hypothesis H15 : SNo v
L3763 Hypothesis H16 : v < z
L3764 Hypothesis H17 : SNo (u * v )
L3765 Hypothesis H18 : SNo (x + u )
L3766 Hypothesis H20 : SNo ((x + y ) * v )
L3767
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__53__19
Beginning of Section Conj_mul_SNo_distrR__56__5
L3779 Hypothesis H0 : SNo x
L3780 Hypothesis H1 : SNo y
L3781 Hypothesis H2 : SNo z
L3782 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3783 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3784 Hypothesis H6 : SNo (x + y )
L3785 Hypothesis H7 : SNo ((x + y ) * z )
L3786 Hypothesis H8 : SNo (x * z )
L3787 Hypothesis H9 : SNo w
L3788 Hypothesis H10 : u ∈ SNoL y
L3789 Hypothesis H11 : v ∈ SNoL z
L3790 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3791 Hypothesis H13 : SNo u
L3792 Hypothesis H14 : u < y
L3793 Hypothesis H15 : SNo v
L3794 Hypothesis H16 : v < z
L3795 Hypothesis H17 : SNo (u * v )
L3796
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__56__5
Beginning of Section Conj_mul_SNo_distrR__56__15
L3808 Hypothesis H0 : SNo x
L3809 Hypothesis H1 : SNo y
L3810 Hypothesis H2 : SNo z
L3811 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3812 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3813 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3814 Hypothesis H6 : SNo (x + y )
L3815 Hypothesis H7 : SNo ((x + y ) * z )
L3816 Hypothesis H8 : SNo (x * z )
L3817 Hypothesis H9 : SNo w
L3818 Hypothesis H10 : u ∈ SNoL y
L3819 Hypothesis H11 : v ∈ SNoL z
L3820 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3821 Hypothesis H13 : SNo u
L3822 Hypothesis H14 : u < y
L3823 Hypothesis H16 : v < z
L3824 Hypothesis H17 : SNo (u * v )
L3825
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__56__15
Beginning of Section Conj_mul_SNo_distrR__57__7
L3837 Hypothesis H0 : SNo x
L3838 Hypothesis H1 : SNo y
L3839 Hypothesis H2 : SNo z
L3840 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L3841 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3842 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L3843 Hypothesis H6 : SNo (x + y )
L3844 Hypothesis H8 : SNo (x * z )
L3845 Hypothesis H9 : SNo w
L3846 Hypothesis H10 : u ∈ SNoL y
L3847 Hypothesis H11 : v ∈ SNoL z
L3848 Hypothesis H12 : (w + u * v ) ≤ u * z + y * v
L3849 Hypothesis H13 : SNo u
L3850 Hypothesis H14 : u < y
L3851 Hypothesis H15 : SNo v
L3852 Hypothesis H16 : v < z
L3853
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__57__7
Beginning of Section Conj_mul_SNo_distrR__58__19
L3865 Hypothesis H0 : SNo x
L3866 Hypothesis H1 : SNo y
L3867 Hypothesis H2 : SNo z
L3868 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3869 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3870 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3871 Hypothesis H6 : SNo (x + y )
L3872 Hypothesis H7 : SNo ((x + y ) * z )
L3873 Hypothesis H8 : SNo (y * z )
L3874 Hypothesis H9 : SNo w
L3875 Hypothesis H10 : u ∈ SNoR x
L3876 Hypothesis H11 : v ∈ SNoR z
L3877 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L3878 Hypothesis H13 : SNo u
L3879 Hypothesis H14 : x < u
L3880 Hypothesis H15 : SNo v
L3881 Hypothesis H16 : z < v
L3882 Hypothesis H17 : SNo (u * v )
L3883 Hypothesis H18 : SNo (u + y )
L3884 Hypothesis H20 : SNo ((x + y ) * v )
L3885 Hypothesis H21 : SNo (u * z )
L3886 Hypothesis H22 : SNo (x * v )
L3887 Hypothesis H23 : SNo (y * v )
L3888 Hypothesis H24 : SNo (w + y * z )
L3889
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__58__19
Beginning of Section Conj_mul_SNo_distrR__60__18
L3901 Hypothesis H0 : SNo x
L3902 Hypothesis H1 : SNo y
L3903 Hypothesis H2 : SNo z
L3904 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3905 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3906 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3907 Hypothesis H6 : SNo (x + y )
L3908 Hypothesis H7 : SNo ((x + y ) * z )
L3909 Hypothesis H8 : SNo (y * z )
L3910 Hypothesis H9 : SNo w
L3911 Hypothesis H10 : u ∈ SNoR x
L3912 Hypothesis H11 : v ∈ SNoR z
L3913 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L3914 Hypothesis H13 : SNo u
L3915 Hypothesis H14 : x < u
L3916 Hypothesis H15 : SNo v
L3917 Hypothesis H16 : z < v
L3918 Hypothesis H17 : SNo (u * v )
L3919 Hypothesis H19 : SNo (w + u * v )
L3920 Hypothesis H20 : SNo ((x + y ) * v )
L3921 Hypothesis H21 : SNo (u * z )
L3922 Hypothesis H22 : SNo (x * v )
L3923
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__60__18
Beginning of Section Conj_mul_SNo_distrR__61__21
L3935 Hypothesis H0 : SNo x
L3936 Hypothesis H1 : SNo y
L3937 Hypothesis H2 : SNo z
L3938 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3939 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3940 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3941 Hypothesis H6 : SNo (x + y )
L3942 Hypothesis H7 : SNo ((x + y ) * z )
L3943 Hypothesis H8 : SNo (y * z )
L3944 Hypothesis H9 : SNo w
L3945 Hypothesis H10 : u ∈ SNoR x
L3946 Hypothesis H11 : v ∈ SNoR z
L3947 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L3948 Hypothesis H13 : SNo u
L3949 Hypothesis H14 : x < u
L3950 Hypothesis H15 : SNo v
L3951 Hypothesis H16 : z < v
L3952 Hypothesis H17 : SNo (u * v )
L3953 Hypothesis H18 : SNo (u + y )
L3954 Hypothesis H19 : SNo (w + u * v )
L3955 Hypothesis H20 : SNo ((x + y ) * v )
L3956
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__61__21
Beginning of Section Conj_mul_SNo_distrR__63__2
L3968 Hypothesis H0 : SNo x
L3969 Hypothesis H1 : SNo y
L3970 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L3971 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L3972 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L3973 Hypothesis H6 : SNo (x + y )
L3974 Hypothesis H7 : SNo ((x + y ) * z )
L3975 Hypothesis H8 : SNo (y * z )
L3976 Hypothesis H9 : SNo w
L3977 Hypothesis H10 : u ∈ SNoR x
L3978 Hypothesis H11 : v ∈ SNoR z
L3979 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L3980 Hypothesis H13 : SNo u
L3981 Hypothesis H14 : x < u
L3982 Hypothesis H15 : SNo v
L3983 Hypothesis H16 : z < v
L3984 Hypothesis H17 : SNo (u * v )
L3985 Hypothesis H18 : SNo (u + y )
L3986 Hypothesis H19 : SNo (w + u * v )
L3987
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__63__2
Beginning of Section Conj_mul_SNo_distrR__64__17
L3999 Hypothesis H0 : SNo x
L4000 Hypothesis H1 : SNo y
L4001 Hypothesis H2 : SNo z
L4002 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4003 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4004 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4005 Hypothesis H6 : SNo (x + y )
L4006 Hypothesis H7 : SNo ((x + y ) * z )
L4007 Hypothesis H8 : SNo (y * z )
L4008 Hypothesis H9 : SNo w
L4009 Hypothesis H10 : u ∈ SNoR x
L4010 Hypothesis H11 : v ∈ SNoR z
L4011 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4012 Hypothesis H13 : SNo u
L4013 Hypothesis H14 : x < u
L4014 Hypothesis H15 : SNo v
L4015 Hypothesis H16 : z < v
L4016 Hypothesis H18 : SNo (u + y )
L4017
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__64__17
Beginning of Section Conj_mul_SNo_distrR__67__6
L4029 Hypothesis H0 : SNo x
L4030 Hypothesis H1 : SNo y
L4031 Hypothesis H2 : SNo z
L4032 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4033 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4034 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4035 Hypothesis H7 : SNo ((x + y ) * z )
L4036 Hypothesis H8 : SNo (y * z )
L4037 Hypothesis H9 : SNo w
L4038 Hypothesis H10 : u ∈ SNoL x
L4039 Hypothesis H11 : v ∈ SNoL z
L4040 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4041 Hypothesis H13 : SNo u
L4042 Hypothesis H14 : u < x
L4043 Hypothesis H15 : SNo v
L4044 Hypothesis H16 : v < z
L4045 Hypothesis H17 : SNo (u * v )
L4046 Hypothesis H18 : SNo (u + y )
L4047 Hypothesis H19 : SNo (w + u * v )
L4048 Hypothesis H20 : SNo ((x + y ) * v )
L4049 Hypothesis H21 : SNo (u * z )
L4050 Hypothesis H22 : SNo (x * v )
L4051 Hypothesis H23 : SNo (y * v )
L4052 Hypothesis H24 : SNo (w + y * z )
L4053 Hypothesis H25 : SNo (u * v + y * v )
L4054
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__67__6
Beginning of Section Conj_mul_SNo_distrR__67__23
L4066 Hypothesis H0 : SNo x
L4067 Hypothesis H1 : SNo y
L4068 Hypothesis H2 : SNo z
L4069 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4070 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4071 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4072 Hypothesis H6 : SNo (x + y )
L4073 Hypothesis H7 : SNo ((x + y ) * z )
L4074 Hypothesis H8 : SNo (y * z )
L4075 Hypothesis H9 : SNo w
L4076 Hypothesis H10 : u ∈ SNoL x
L4077 Hypothesis H11 : v ∈ SNoL z
L4078 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4079 Hypothesis H13 : SNo u
L4080 Hypothesis H14 : u < x
L4081 Hypothesis H15 : SNo v
L4082 Hypothesis H16 : v < z
L4083 Hypothesis H17 : SNo (u * v )
L4084 Hypothesis H18 : SNo (u + y )
L4085 Hypothesis H19 : SNo (w + u * v )
L4086 Hypothesis H20 : SNo ((x + y ) * v )
L4087 Hypothesis H21 : SNo (u * z )
L4088 Hypothesis H22 : SNo (x * v )
L4089 Hypothesis H24 : SNo (w + y * z )
L4090 Hypothesis H25 : SNo (u * v + y * v )
L4091
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__67__23
Beginning of Section Conj_mul_SNo_distrR__68__11
L4103 Hypothesis H0 : SNo x
L4104 Hypothesis H1 : SNo y
L4105 Hypothesis H2 : SNo z
L4106 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4107 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4108 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4109 Hypothesis H6 : SNo (x + y )
L4110 Hypothesis H7 : SNo ((x + y ) * z )
L4111 Hypothesis H8 : SNo (y * z )
L4112 Hypothesis H9 : SNo w
L4113 Hypothesis H10 : u ∈ SNoL x
L4114 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4115 Hypothesis H13 : SNo u
L4116 Hypothesis H14 : u < x
L4117 Hypothesis H15 : SNo v
L4118 Hypothesis H16 : v < z
L4119 Hypothesis H17 : SNo (u * v )
L4120 Hypothesis H18 : SNo (u + y )
L4121 Hypothesis H19 : SNo (w + u * v )
L4122 Hypothesis H20 : SNo ((x + y ) * v )
L4123 Hypothesis H21 : SNo (u * z )
L4124 Hypothesis H22 : SNo (x * v )
L4125 Hypothesis H23 : SNo (y * v )
L4126 Hypothesis H24 : SNo (w + y * z )
L4127
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__68__11
Beginning of Section Conj_mul_SNo_distrR__68__13
L4139 Hypothesis H0 : SNo x
L4140 Hypothesis H1 : SNo y
L4141 Hypothesis H2 : SNo z
L4142 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4143 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4144 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4145 Hypothesis H6 : SNo (x + y )
L4146 Hypothesis H7 : SNo ((x + y ) * z )
L4147 Hypothesis H8 : SNo (y * z )
L4148 Hypothesis H9 : SNo w
L4149 Hypothesis H10 : u ∈ SNoL x
L4150 Hypothesis H11 : v ∈ SNoL z
L4151 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4152 Hypothesis H14 : u < x
L4153 Hypothesis H15 : SNo v
L4154 Hypothesis H16 : v < z
L4155 Hypothesis H17 : SNo (u * v )
L4156 Hypothesis H18 : SNo (u + y )
L4157 Hypothesis H19 : SNo (w + u * v )
L4158 Hypothesis H20 : SNo ((x + y ) * v )
L4159 Hypothesis H21 : SNo (u * z )
L4160 Hypothesis H22 : SNo (x * v )
L4161 Hypothesis H23 : SNo (y * v )
L4162 Hypothesis H24 : SNo (w + y * z )
L4163
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__68__13
Beginning of Section Conj_mul_SNo_distrR__69__4
L4175 Hypothesis H0 : SNo x
L4176 Hypothesis H1 : SNo y
L4177 Hypothesis H2 : SNo z
L4178 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4179 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4180 Hypothesis H6 : SNo (x + y )
L4181 Hypothesis H7 : SNo ((x + y ) * z )
L4182 Hypothesis H8 : SNo (y * z )
L4183 Hypothesis H9 : SNo w
L4184 Hypothesis H10 : u ∈ SNoL x
L4185 Hypothesis H11 : v ∈ SNoL z
L4186 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4187 Hypothesis H13 : SNo u
L4188 Hypothesis H14 : u < x
L4189 Hypothesis H15 : SNo v
L4190 Hypothesis H16 : v < z
L4191 Hypothesis H17 : SNo (u * v )
L4192 Hypothesis H18 : SNo (u + y )
L4193 Hypothesis H19 : SNo (w + u * v )
L4194 Hypothesis H20 : SNo ((x + y ) * v )
L4195 Hypothesis H21 : SNo (u * z )
L4196 Hypothesis H22 : SNo (x * v )
L4197 Hypothesis H23 : SNo (y * v )
L4198
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__69__4
Beginning of Section Conj_mul_SNo_distrR__69__8
L4210 Hypothesis H0 : SNo x
L4211 Hypothesis H1 : SNo y
L4212 Hypothesis H2 : SNo z
L4213 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4214 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4215 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4216 Hypothesis H6 : SNo (x + y )
L4217 Hypothesis H7 : SNo ((x + y ) * z )
L4218 Hypothesis H9 : SNo w
L4219 Hypothesis H10 : u ∈ SNoL x
L4220 Hypothesis H11 : v ∈ SNoL z
L4221 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4222 Hypothesis H13 : SNo u
L4223 Hypothesis H14 : u < x
L4224 Hypothesis H15 : SNo v
L4225 Hypothesis H16 : v < z
L4226 Hypothesis H17 : SNo (u * v )
L4227 Hypothesis H18 : SNo (u + y )
L4228 Hypothesis H19 : SNo (w + u * v )
L4229 Hypothesis H20 : SNo ((x + y ) * v )
L4230 Hypothesis H21 : SNo (u * z )
L4231 Hypothesis H22 : SNo (x * v )
L4232 Hypothesis H23 : SNo (y * v )
L4233
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__69__8
Beginning of Section Conj_mul_SNo_distrR__70__19
L4245 Hypothesis H0 : SNo x
L4246 Hypothesis H1 : SNo y
L4247 Hypothesis H2 : SNo z
L4248 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4249 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4250 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4251 Hypothesis H6 : SNo (x + y )
L4252 Hypothesis H7 : SNo ((x + y ) * z )
L4253 Hypothesis H8 : SNo (y * z )
L4254 Hypothesis H9 : SNo w
L4255 Hypothesis H10 : u ∈ SNoL x
L4256 Hypothesis H11 : v ∈ SNoL z
L4257 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4258 Hypothesis H13 : SNo u
L4259 Hypothesis H14 : u < x
L4260 Hypothesis H15 : SNo v
L4261 Hypothesis H16 : v < z
L4262 Hypothesis H17 : SNo (u * v )
L4263 Hypothesis H18 : SNo (u + y )
L4264 Hypothesis H20 : SNo ((x + y ) * v )
L4265 Hypothesis H21 : SNo (u * z )
L4266 Hypothesis H22 : SNo (x * v )
L4267
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__70__19
Beginning of Section Conj_mul_SNo_distrR__70__20
L4279 Hypothesis H0 : SNo x
L4280 Hypothesis H1 : SNo y
L4281 Hypothesis H2 : SNo z
L4282 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4283 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4284 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4285 Hypothesis H6 : SNo (x + y )
L4286 Hypothesis H7 : SNo ((x + y ) * z )
L4287 Hypothesis H8 : SNo (y * z )
L4288 Hypothesis H9 : SNo w
L4289 Hypothesis H10 : u ∈ SNoL x
L4290 Hypothesis H11 : v ∈ SNoL z
L4291 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4292 Hypothesis H13 : SNo u
L4293 Hypothesis H14 : u < x
L4294 Hypothesis H15 : SNo v
L4295 Hypothesis H16 : v < z
L4296 Hypothesis H17 : SNo (u * v )
L4297 Hypothesis H18 : SNo (u + y )
L4298 Hypothesis H19 : SNo (w + u * v )
L4299 Hypothesis H21 : SNo (u * z )
L4300 Hypothesis H22 : SNo (x * v )
L4301
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__70__20
Beginning of Section Conj_mul_SNo_distrR__71__13
L4313 Hypothesis H0 : SNo x
L4314 Hypothesis H1 : SNo y
L4315 Hypothesis H2 : SNo z
L4316 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4317 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4318 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4319 Hypothesis H6 : SNo (x + y )
L4320 Hypothesis H7 : SNo ((x + y ) * z )
L4321 Hypothesis H8 : SNo (y * z )
L4322 Hypothesis H9 : SNo w
L4323 Hypothesis H10 : u ∈ SNoL x
L4324 Hypothesis H11 : v ∈ SNoL z
L4325 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4326 Hypothesis H14 : u < x
L4327 Hypothesis H15 : SNo v
L4328 Hypothesis H16 : v < z
L4329 Hypothesis H17 : SNo (u * v )
L4330 Hypothesis H18 : SNo (u + y )
L4331 Hypothesis H19 : SNo (w + u * v )
L4332 Hypothesis H20 : SNo ((x + y ) * v )
L4333 Hypothesis H21 : SNo (u * z )
L4334
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__71__13
Beginning of Section Conj_mul_SNo_distrR__73__19
L4346 Hypothesis H0 : SNo x
L4347 Hypothesis H1 : SNo y
L4348 Hypothesis H2 : SNo z
L4349 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4350 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4351 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4352 Hypothesis H6 : SNo (x + y )
L4353 Hypothesis H7 : SNo ((x + y ) * z )
L4354 Hypothesis H8 : SNo (y * z )
L4355 Hypothesis H9 : SNo w
L4356 Hypothesis H10 : u ∈ SNoL x
L4357 Hypothesis H11 : v ∈ SNoL z
L4358 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4359 Hypothesis H13 : SNo u
L4360 Hypothesis H14 : u < x
L4361 Hypothesis H15 : SNo v
L4362 Hypothesis H16 : v < z
L4363 Hypothesis H17 : SNo (u * v )
L4364 Hypothesis H18 : SNo (u + y )
L4365
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__73__19
Beginning of Section Conj_mul_SNo_distrR__74__5
L4377 Hypothesis H0 : SNo x
L4378 Hypothesis H1 : SNo y
L4379 Hypothesis H2 : SNo z
L4380 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4381 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4382 Hypothesis H6 : SNo (x + y )
L4383 Hypothesis H7 : SNo ((x + y ) * z )
L4384 Hypothesis H8 : SNo (y * z )
L4385 Hypothesis H9 : SNo w
L4386 Hypothesis H10 : u ∈ SNoL x
L4387 Hypothesis H11 : v ∈ SNoL z
L4388 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4389 Hypothesis H13 : SNo u
L4390 Hypothesis H14 : u < x
L4391 Hypothesis H15 : SNo v
L4392 Hypothesis H16 : v < z
L4393 Hypothesis H17 : SNo (u * v )
L4394 Hypothesis H18 : SNo (u + y )
L4395
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__74__5
Beginning of Section Conj_mul_SNo_distrR__75__5
L4407 Hypothesis H0 : SNo x
L4408 Hypothesis H1 : SNo y
L4409 Hypothesis H2 : SNo z
L4410 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4411 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4412 Hypothesis H6 : SNo (x + y )
L4413 Hypothesis H7 : SNo ((x + y ) * z )
L4414 Hypothesis H8 : SNo (y * z )
L4415 Hypothesis H9 : SNo w
L4416 Hypothesis H10 : u ∈ SNoL x
L4417 Hypothesis H11 : v ∈ SNoL z
L4418 Hypothesis H12 : (w + u * v ) ≤ u * z + x * v
L4419 Hypothesis H13 : SNo u
L4420 Hypothesis H14 : u < x
L4421 Hypothesis H15 : SNo v
L4422 Hypothesis H16 : v < z
L4423 Hypothesis H17 : SNo (u * v )
L4424
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__75__5
Beginning of Section Conj_mul_SNo_distrR__76__12
L4436 Hypothesis H0 : SNo x
L4437 Hypothesis H1 : SNo y
L4438 Hypothesis H2 : SNo z
L4439 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4440 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + y ) * x2 = x * x2 + y * x2 )
L4441 Hypothesis H5 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4442 Hypothesis H6 : SNo (x + y )
L4443 Hypothesis H7 : SNo ((x + y ) * z )
L4444 Hypothesis H8 : SNo (y * z )
L4445 Hypothesis H9 : SNo w
L4446 Hypothesis H10 : u ∈ SNoL x
L4447 Hypothesis H11 : v ∈ SNoL z
L4448 Hypothesis H13 : SNo u
L4449 Hypothesis H14 : u < x
L4450 Hypothesis H15 : SNo v
L4451 Hypothesis H16 : v < z
L4452
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__76__12
Beginning of Section Conj_mul_SNo_distrR__77__2
L4464 Hypothesis H0 : SNo x
L4465 Hypothesis H1 : SNo y
L4466 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L4467 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L4468 Hypothesis H5 : SNo (x * z )
L4469 Hypothesis H6 : SNo (y * z )
L4470 Hypothesis H7 : u ∈ SNoL z
L4471 Hypothesis H8 : SNo w
L4472 Hypothesis H9 : SNo u
L4473 Hypothesis H10 : u < z
L4474 Hypothesis H11 : SNo (x * u )
L4475 Hypothesis H12 : SNo (y * u )
L4476 Hypothesis H13 : SNo (w * z )
L4477 Hypothesis H14 : SNo (w * u )
L4478 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4479 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4480 Hypothesis H17 : v ∈ SNoR y
L4481 Hypothesis H18 : (x + v ) ≤ w
L4482 Hypothesis H19 : SNo v
L4483 Hypothesis H20 : y < v
L4484 Hypothesis H21 : SNo (v * u )
L4485 Hypothesis H22 : SNo (v * z )
L4486
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__77__2
Beginning of Section Conj_mul_SNo_distrR__77__13
L4498 Hypothesis H0 : SNo x
L4499 Hypothesis H1 : SNo y
L4500 Hypothesis H2 : SNo z
L4501 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L4502 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L4503 Hypothesis H5 : SNo (x * z )
L4504 Hypothesis H6 : SNo (y * z )
L4505 Hypothesis H7 : u ∈ SNoL z
L4506 Hypothesis H8 : SNo w
L4507 Hypothesis H9 : SNo u
L4508 Hypothesis H10 : u < z
L4509 Hypothesis H11 : SNo (x * u )
L4510 Hypothesis H12 : SNo (y * u )
L4511 Hypothesis H14 : SNo (w * u )
L4512 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4513 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4514 Hypothesis H17 : v ∈ SNoR y
L4515 Hypothesis H18 : (x + v ) ≤ w
L4516 Hypothesis H19 : SNo v
L4517 Hypothesis H20 : y < v
L4518 Hypothesis H21 : SNo (v * u )
L4519 Hypothesis H22 : SNo (v * z )
L4520
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__77__13
Beginning of Section Conj_mul_SNo_distrR__78__18
L4532 Hypothesis H0 : SNo x
L4533 Hypothesis H1 : SNo y
L4534 Hypothesis H2 : SNo z
L4535 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L4536 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L4537 Hypothesis H5 : SNo (x * z )
L4538 Hypothesis H6 : SNo (y * z )
L4539 Hypothesis H7 : u ∈ SNoL z
L4540 Hypothesis H8 : SNo w
L4541 Hypothesis H9 : SNo u
L4542 Hypothesis H10 : u < z
L4543 Hypothesis H11 : SNo (x * u )
L4544 Hypothesis H12 : SNo (y * u )
L4545 Hypothesis H13 : SNo (w * z )
L4546 Hypothesis H14 : SNo (w * u )
L4547 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4548 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4549 Hypothesis H17 : v ∈ SNoR y
L4550 Hypothesis H19 : SNo v
L4551 Hypothesis H20 : y < v
L4552 Hypothesis H21 : SNo (v * u )
L4553
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__78__18
Beginning of Section Conj_mul_SNo_distrR__80__0
L4565 Hypothesis H1 : SNo y
L4566 Hypothesis H2 : SNo z
L4567 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4568 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4569 Hypothesis H5 : SNo (x * z )
L4570 Hypothesis H6 : SNo (y * z )
L4571 Hypothesis H7 : u ∈ SNoL z
L4572 Hypothesis H8 : SNo w
L4573 Hypothesis H9 : SNo u
L4574 Hypothesis H10 : u < z
L4575 Hypothesis H11 : SNo (x * u )
L4576 Hypothesis H12 : SNo (y * u )
L4577 Hypothesis H13 : SNo (w * z )
L4578 Hypothesis H14 : SNo (w * u )
L4579 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4580 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4581 Hypothesis H17 : v ∈ SNoR x
L4582 Hypothesis H18 : (v + y ) ≤ w
L4583 Hypothesis H19 : SNo v
L4584 Hypothesis H20 : x < v
L4585 Hypothesis H21 : SNo (v * u )
L4586 Hypothesis H22 : SNo (v * z )
L4587
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__80__0
Beginning of Section Conj_mul_SNo_distrR__80__7
L4599 Hypothesis H0 : SNo x
L4600 Hypothesis H1 : SNo y
L4601 Hypothesis H2 : SNo z
L4602 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4603 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4604 Hypothesis H5 : SNo (x * z )
L4605 Hypothesis H6 : SNo (y * z )
L4606 Hypothesis H8 : SNo w
L4607 Hypothesis H9 : SNo u
L4608 Hypothesis H10 : u < z
L4609 Hypothesis H11 : SNo (x * u )
L4610 Hypothesis H12 : SNo (y * u )
L4611 Hypothesis H13 : SNo (w * z )
L4612 Hypothesis H14 : SNo (w * u )
L4613 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4614 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4615 Hypothesis H17 : v ∈ SNoR x
L4616 Hypothesis H18 : (v + y ) ≤ w
L4617 Hypothesis H19 : SNo v
L4618 Hypothesis H20 : x < v
L4619 Hypothesis H21 : SNo (v * u )
L4620 Hypothesis H22 : SNo (v * z )
L4621
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__80__7
Beginning of Section Conj_mul_SNo_distrR__80__13
L4633 Hypothesis H0 : SNo x
L4634 Hypothesis H1 : SNo y
L4635 Hypothesis H2 : SNo z
L4636 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4637 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4638 Hypothesis H5 : SNo (x * z )
L4639 Hypothesis H6 : SNo (y * z )
L4640 Hypothesis H7 : u ∈ SNoL z
L4641 Hypothesis H8 : SNo w
L4642 Hypothesis H9 : SNo u
L4643 Hypothesis H10 : u < z
L4644 Hypothesis H11 : SNo (x * u )
L4645 Hypothesis H12 : SNo (y * u )
L4646 Hypothesis H14 : SNo (w * u )
L4647 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4648 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4649 Hypothesis H17 : v ∈ SNoR x
L4650 Hypothesis H18 : (v + y ) ≤ w
L4651 Hypothesis H19 : SNo v
L4652 Hypothesis H20 : x < v
L4653 Hypothesis H21 : SNo (v * u )
L4654 Hypothesis H22 : SNo (v * z )
L4655
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__80__13
Beginning of Section Conj_mul_SNo_distrR__80__16
L4667 Hypothesis H0 : SNo x
L4668 Hypothesis H1 : SNo y
L4669 Hypothesis H2 : SNo z
L4670 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4671 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4672 Hypothesis H5 : SNo (x * z )
L4673 Hypothesis H6 : SNo (y * z )
L4674 Hypothesis H7 : u ∈ SNoL z
L4675 Hypothesis H8 : SNo w
L4676 Hypothesis H9 : SNo u
L4677 Hypothesis H10 : u < z
L4678 Hypothesis H11 : SNo (x * u )
L4679 Hypothesis H12 : SNo (y * u )
L4680 Hypothesis H13 : SNo (w * z )
L4681 Hypothesis H14 : SNo (w * u )
L4682 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4683 Hypothesis H17 : v ∈ SNoR x
L4684 Hypothesis H18 : (v + y ) ≤ w
L4685 Hypothesis H19 : SNo v
L4686 Hypothesis H20 : x < v
L4687 Hypothesis H21 : SNo (v * u )
L4688 Hypothesis H22 : SNo (v * z )
L4689
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__80__16
Beginning of Section Conj_mul_SNo_distrR__81__7
L4701 Hypothesis H0 : SNo x
L4702 Hypothesis H1 : SNo y
L4703 Hypothesis H2 : SNo z
L4704 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4705 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4706 Hypothesis H5 : SNo (x * z )
L4707 Hypothesis H6 : SNo (y * z )
L4708 Hypothesis H8 : SNo w
L4709 Hypothesis H9 : SNo u
L4710 Hypothesis H10 : u < z
L4711 Hypothesis H11 : SNo (x * u )
L4712 Hypothesis H12 : SNo (y * u )
L4713 Hypothesis H13 : SNo (w * z )
L4714 Hypothesis H14 : SNo (w * u )
L4715 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4716 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4717 Hypothesis H17 : v ∈ SNoR x
L4718 Hypothesis H18 : (v + y ) ≤ w
L4719 Hypothesis H19 : SNo v
L4720 Hypothesis H20 : x < v
L4721 Hypothesis H21 : SNo (v * u )
L4722
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__81__7
Beginning of Section Conj_mul_SNo_distrR__81__9
L4734 Hypothesis H0 : SNo x
L4735 Hypothesis H1 : SNo y
L4736 Hypothesis H2 : SNo z
L4737 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4738 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4739 Hypothesis H5 : SNo (x * z )
L4740 Hypothesis H6 : SNo (y * z )
L4741 Hypothesis H7 : u ∈ SNoL z
L4742 Hypothesis H8 : SNo w
L4743 Hypothesis H10 : u < z
L4744 Hypothesis H11 : SNo (x * u )
L4745 Hypothesis H12 : SNo (y * u )
L4746 Hypothesis H13 : SNo (w * z )
L4747 Hypothesis H14 : SNo (w * u )
L4748 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4749 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4750 Hypothesis H17 : v ∈ SNoR x
L4751 Hypothesis H18 : (v + y ) ≤ w
L4752 Hypothesis H19 : SNo v
L4753 Hypothesis H20 : x < v
L4754 Hypothesis H21 : SNo (v * u )
L4755
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__81__9
Beginning of Section Conj_mul_SNo_distrR__81__10
L4767 Hypothesis H0 : SNo x
L4768 Hypothesis H1 : SNo y
L4769 Hypothesis H2 : SNo z
L4770 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4771 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4772 Hypothesis H5 : SNo (x * z )
L4773 Hypothesis H6 : SNo (y * z )
L4774 Hypothesis H7 : u ∈ SNoL z
L4775 Hypothesis H8 : SNo w
L4776 Hypothesis H9 : SNo u
L4777 Hypothesis H11 : SNo (x * u )
L4778 Hypothesis H12 : SNo (y * u )
L4779 Hypothesis H13 : SNo (w * z )
L4780 Hypothesis H14 : SNo (w * u )
L4781 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4782 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4783 Hypothesis H17 : v ∈ SNoR x
L4784 Hypothesis H18 : (v + y ) ≤ w
L4785 Hypothesis H19 : SNo v
L4786 Hypothesis H20 : x < v
L4787 Hypothesis H21 : SNo (v * u )
L4788
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__81__10
Beginning of Section Conj_mul_SNo_distrR__81__19
L4800 Hypothesis H0 : SNo x
L4801 Hypothesis H1 : SNo y
L4802 Hypothesis H2 : SNo z
L4803 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4804 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4805 Hypothesis H5 : SNo (x * z )
L4806 Hypothesis H6 : SNo (y * z )
L4807 Hypothesis H7 : u ∈ SNoL z
L4808 Hypothesis H8 : SNo w
L4809 Hypothesis H9 : SNo u
L4810 Hypothesis H10 : u < z
L4811 Hypothesis H11 : SNo (x * u )
L4812 Hypothesis H12 : SNo (y * u )
L4813 Hypothesis H13 : SNo (w * z )
L4814 Hypothesis H14 : SNo (w * u )
L4815 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4816 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4817 Hypothesis H17 : v ∈ SNoR x
L4818 Hypothesis H18 : (v + y ) ≤ w
L4819 Hypothesis H20 : x < v
L4820 Hypothesis H21 : SNo (v * u )
L4821
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__81__19
Beginning of Section Conj_mul_SNo_distrR__82__13
L4833 Hypothesis H0 : SNo x
L4834 Hypothesis H1 : SNo y
L4835 Hypothesis H2 : SNo z
L4836 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L4837 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L4838 Hypothesis H5 : SNo (x * z )
L4839 Hypothesis H6 : SNo (y * z )
L4840 Hypothesis H7 : u ∈ SNoL z
L4841 Hypothesis H8 : SNo w
L4842 Hypothesis H9 : SNo u
L4843 Hypothesis H10 : u < z
L4844 Hypothesis H11 : SNo (x * u )
L4845 Hypothesis H12 : SNo (y * u )
L4846 Hypothesis H14 : SNo (w * u )
L4847 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4848 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4849 Hypothesis H17 : v ∈ SNoR x
L4850 Hypothesis H18 : (v + y ) ≤ w
L4851 Hypothesis H19 : SNo v
L4852 Hypothesis H20 : x < v
L4853
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__82__13
Beginning of Section Conj_mul_SNo_distrR__83__8
L4864 Hypothesis H0 : SNo x
L4865 Hypothesis H1 : SNo y
L4866 Hypothesis H2 : SNo z
L4867 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L4868 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L4869 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L4870 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L4871 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L4872 Hypothesis H9 : SNo (y * z )
L4873 Hypothesis H10 : SNo (x * z + y * z )
L4874 Hypothesis H11 : w ∈ SNoR (x + y )
L4875 Hypothesis H12 : u ∈ SNoL z
L4876 Hypothesis H13 : SNo w
L4877 Hypothesis H14 : SNo u
L4878 Hypothesis H15 : u < z
L4879 Hypothesis H16 : SNo (x * u )
L4880 Hypothesis H17 : SNo (y * u )
L4881 Hypothesis H18 : SNo (w * z )
L4882 Hypothesis H19 : SNo ((x + y ) * u )
L4883 Hypothesis H20 : SNo (w * u )
L4884 Hypothesis H21 : SNo (w * z + x * u + y * u )
L4885
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__83__8
Beginning of Section Conj_mul_SNo_distrR__85__18
L4896 Hypothesis H0 : SNo x
L4897 Hypothesis H1 : SNo y
L4898 Hypothesis H2 : SNo z
L4899 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L4900 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L4901 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L4902 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L4903 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L4904 Hypothesis H8 : SNo (x * z )
L4905 Hypothesis H9 : SNo (y * z )
L4906 Hypothesis H10 : SNo (x * z + y * z )
L4907 Hypothesis H11 : w ∈ SNoR (x + y )
L4908 Hypothesis H12 : u ∈ SNoL z
L4909 Hypothesis H13 : SNo w
L4910 Hypothesis H14 : SNo u
L4911 Hypothesis H15 : u < z
L4912 Hypothesis H16 : SNo (x * u )
L4913 Hypothesis H17 : SNo (y * u )
L4914 Hypothesis H19 : SNo ((x + y ) * u )
L4915
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__85__18
Beginning of Section Conj_mul_SNo_distrR__90__15
L4926 Hypothesis H0 : SNo x
L4927 Hypothesis H1 : SNo y
L4928 Hypothesis H2 : SNo z
L4929 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L4930 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L4931 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L4932 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L4933 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L4934 Hypothesis H8 : SNo (x + y )
L4935 Hypothesis H9 : SNo (x * z )
L4936 Hypothesis H10 : SNo (y * z )
L4937 Hypothesis H11 : SNo (x * z + y * z )
L4938 Hypothesis H12 : w ∈ SNoR (x + y )
L4939 Hypothesis H13 : u ∈ SNoL z
L4940 Hypothesis H14 : SNo w
L4941 Hypothesis H16 : u < z
L4942
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__90__15
Beginning of Section Conj_mul_SNo_distrR__92__5
L4954 Hypothesis H0 : SNo x
L4955 Hypothesis H1 : SNo y
L4956 Hypothesis H2 : SNo z
L4957 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L4958 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L4959 Hypothesis H6 : SNo (y * z )
L4960 Hypothesis H7 : u ∈ SNoR z
L4961 Hypothesis H8 : SNo w
L4962 Hypothesis H9 : SNo u
L4963 Hypothesis H10 : z < u
L4964 Hypothesis H11 : SNo (x * u )
L4965 Hypothesis H12 : SNo (y * u )
L4966 Hypothesis H13 : SNo (w * z )
L4967 Hypothesis H14 : SNo (w * u )
L4968 Hypothesis H15 : SNo (w * z + x * u + y * u )
L4969 Hypothesis H16 : SNo (x * z + y * z + w * u )
L4970 Hypothesis H17 : v ∈ SNoL y
L4971 Hypothesis H18 : w ≤ x + v
L4972 Hypothesis H19 : SNo v
L4973 Hypothesis H20 : v < y
L4974 Hypothesis H21 : SNo (v * u )
L4975
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__92__5
Beginning of Section Conj_mul_SNo_distrR__92__16
L4987 Hypothesis H0 : SNo x
L4988 Hypothesis H1 : SNo y
L4989 Hypothesis H2 : SNo z
L4990 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L4991 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L4992 Hypothesis H5 : SNo (x * z )
L4993 Hypothesis H6 : SNo (y * z )
L4994 Hypothesis H7 : u ∈ SNoR z
L4995 Hypothesis H8 : SNo w
L4996 Hypothesis H9 : SNo u
L4997 Hypothesis H10 : z < u
L4998 Hypothesis H11 : SNo (x * u )
L4999 Hypothesis H12 : SNo (y * u )
L5000 Hypothesis H13 : SNo (w * z )
L5001 Hypothesis H14 : SNo (w * u )
L5002 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5003 Hypothesis H17 : v ∈ SNoL y
L5004 Hypothesis H18 : w ≤ x + v
L5005 Hypothesis H19 : SNo v
L5006 Hypothesis H20 : v < y
L5007 Hypothesis H21 : SNo (v * u )
L5008
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__92__16
Beginning of Section Conj_mul_SNo_distrR__93__0
L5020 Hypothesis H1 : SNo y
L5021 Hypothesis H2 : SNo z
L5022 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L5023 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L5024 Hypothesis H5 : SNo (x * z )
L5025 Hypothesis H6 : SNo (y * z )
L5026 Hypothesis H7 : u ∈ SNoR z
L5027 Hypothesis H8 : SNo w
L5028 Hypothesis H9 : SNo u
L5029 Hypothesis H10 : z < u
L5030 Hypothesis H11 : SNo (x * u )
L5031 Hypothesis H12 : SNo (y * u )
L5032 Hypothesis H13 : SNo (w * z )
L5033 Hypothesis H14 : SNo (w * u )
L5034 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5035 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5036 Hypothesis H17 : v ∈ SNoL y
L5037 Hypothesis H18 : w ≤ x + v
L5038 Hypothesis H19 : SNo v
L5039 Hypothesis H20 : v < y
L5040
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__93__0
Beginning of Section Conj_mul_SNo_distrR__94__0
L5052 Hypothesis H1 : SNo y
L5053 Hypothesis H2 : SNo z
L5054 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5055 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5056 Hypothesis H5 : SNo (x * z )
L5057 Hypothesis H6 : SNo (y * z )
L5058 Hypothesis H7 : u ∈ SNoR z
L5059 Hypothesis H8 : SNo w
L5060 Hypothesis H9 : SNo u
L5061 Hypothesis H10 : z < u
L5062 Hypothesis H11 : SNo (x * u )
L5063 Hypothesis H12 : SNo (y * u )
L5064 Hypothesis H13 : SNo (w * z )
L5065 Hypothesis H14 : SNo (w * u )
L5066 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5067 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5068 Hypothesis H17 : v ∈ SNoL x
L5069 Hypothesis H18 : w ≤ v + y
L5070 Hypothesis H19 : SNo v
L5071 Hypothesis H20 : v < x
L5072 Hypothesis H21 : SNo (v * u )
L5073 Hypothesis H22 : SNo (v * z )
L5074
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__94__0
Beginning of Section Conj_mul_SNo_distrR__94__22
L5086 Hypothesis H0 : SNo x
L5087 Hypothesis H1 : SNo y
L5088 Hypothesis H2 : SNo z
L5089 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5090 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5091 Hypothesis H5 : SNo (x * z )
L5092 Hypothesis H6 : SNo (y * z )
L5093 Hypothesis H7 : u ∈ SNoR z
L5094 Hypothesis H8 : SNo w
L5095 Hypothesis H9 : SNo u
L5096 Hypothesis H10 : z < u
L5097 Hypothesis H11 : SNo (x * u )
L5098 Hypothesis H12 : SNo (y * u )
L5099 Hypothesis H13 : SNo (w * z )
L5100 Hypothesis H14 : SNo (w * u )
L5101 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5102 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5103 Hypothesis H17 : v ∈ SNoL x
L5104 Hypothesis H18 : w ≤ v + y
L5105 Hypothesis H19 : SNo v
L5106 Hypothesis H20 : v < x
L5107 Hypothesis H21 : SNo (v * u )
L5108
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__94__22
Beginning of Section Conj_mul_SNo_distrR__95__12
L5120 Hypothesis H0 : SNo x
L5121 Hypothesis H1 : SNo y
L5122 Hypothesis H2 : SNo z
L5123 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5124 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5125 Hypothesis H5 : SNo (x * z )
L5126 Hypothesis H6 : SNo (y * z )
L5127 Hypothesis H7 : u ∈ SNoR z
L5128 Hypothesis H8 : SNo w
L5129 Hypothesis H9 : SNo u
L5130 Hypothesis H10 : z < u
L5131 Hypothesis H11 : SNo (x * u )
L5132 Hypothesis H13 : SNo (w * z )
L5133 Hypothesis H14 : SNo (w * u )
L5134 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5135 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5136 Hypothesis H17 : v ∈ SNoL x
L5137 Hypothesis H18 : w ≤ v + y
L5138 Hypothesis H19 : SNo v
L5139 Hypothesis H20 : v < x
L5140 Hypothesis H21 : SNo (v * u )
L5141
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__95__12
Beginning of Section Conj_mul_SNo_distrR__97__18
L5152 Hypothesis H0 : SNo x
L5153 Hypothesis H1 : SNo y
L5154 Hypothesis H2 : SNo z
L5155 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5156 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5157 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5158 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5159 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5160 Hypothesis H8 : SNo (x * z )
L5161 Hypothesis H9 : SNo (y * z )
L5162 Hypothesis H10 : SNo (x * z + y * z )
L5163 Hypothesis H11 : w ∈ SNoL (x + y )
L5164 Hypothesis H12 : u ∈ SNoR z
L5165 Hypothesis H13 : SNo w
L5166 Hypothesis H14 : SNo u
L5167 Hypothesis H15 : z < u
L5168 Hypothesis H16 : SNo (x * u )
L5169 Hypothesis H17 : SNo (y * u )
L5170 Hypothesis H19 : SNo ((x + y ) * u )
L5171 Hypothesis H20 : SNo (w * u )
L5172 Hypothesis H21 : SNo (w * z + x * u + y * u )
L5173
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__97__18
Beginning of Section Conj_mul_SNo_distrR__98__10
L5184 Hypothesis H0 : SNo x
L5185 Hypothesis H1 : SNo y
L5186 Hypothesis H2 : SNo z
L5187 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5188 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5189 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5190 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5191 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5192 Hypothesis H8 : SNo (x * z )
L5193 Hypothesis H9 : SNo (y * z )
L5194 Hypothesis H11 : w ∈ SNoL (x + y )
L5195 Hypothesis H12 : u ∈ SNoR z
L5196 Hypothesis H13 : SNo w
L5197 Hypothesis H14 : SNo u
L5198 Hypothesis H15 : z < u
L5199 Hypothesis H16 : SNo (x * u )
L5200 Hypothesis H17 : SNo (y * u )
L5201 Hypothesis H18 : SNo (w * z )
L5202 Hypothesis H19 : SNo ((x + y ) * u )
L5203 Hypothesis H20 : SNo (w * u )
L5204
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__98__10
Beginning of Section Conj_mul_SNo_distrR__100__6
L5215 Hypothesis H0 : SNo x
L5216 Hypothesis H1 : SNo y
L5217 Hypothesis H2 : SNo z
L5218 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5219 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5220 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5221 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5222 Hypothesis H8 : SNo (x * z )
L5223 Hypothesis H9 : SNo (y * z )
L5224 Hypothesis H10 : SNo (x * z + y * z )
L5225 Hypothesis H11 : w ∈ SNoL (x + y )
L5226 Hypothesis H12 : u ∈ SNoR z
L5227 Hypothesis H13 : SNo w
L5228 Hypothesis H14 : SNo u
L5229 Hypothesis H15 : z < u
L5230 Hypothesis H16 : SNo (x * u )
L5231 Hypothesis H17 : SNo (y * u )
L5232 Hypothesis H18 : SNo (w * z )
L5233 Hypothesis H19 : SNo ((x + y ) * u )
L5234
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__100__6
Beginning of Section Conj_mul_SNo_distrR__100__13
L5245 Hypothesis H0 : SNo x
L5246 Hypothesis H1 : SNo y
L5247 Hypothesis H2 : SNo z
L5248 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5249 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5250 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5251 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5252 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5253 Hypothesis H8 : SNo (x * z )
L5254 Hypothesis H9 : SNo (y * z )
L5255 Hypothesis H10 : SNo (x * z + y * z )
L5256 Hypothesis H11 : w ∈ SNoL (x + y )
L5257 Hypothesis H12 : u ∈ SNoR z
L5258 Hypothesis H14 : SNo u
L5259 Hypothesis H15 : z < u
L5260 Hypothesis H16 : SNo (x * u )
L5261 Hypothesis H17 : SNo (y * u )
L5262 Hypothesis H18 : SNo (w * z )
L5263 Hypothesis H19 : SNo ((x + y ) * u )
L5264
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__100__13
Beginning of Section Conj_mul_SNo_distrR__101__14
L5275 Hypothesis H0 : SNo x
L5276 Hypothesis H1 : SNo y
L5277 Hypothesis H2 : SNo z
L5278 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5279 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5280 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5281 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5282 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5283 Hypothesis H8 : SNo (x + y )
L5284 Hypothesis H9 : SNo (x * z )
L5285 Hypothesis H10 : SNo (y * z )
L5286 Hypothesis H11 : SNo (x * z + y * z )
L5287 Hypothesis H12 : w ∈ SNoL (x + y )
L5288 Hypothesis H13 : u ∈ SNoR z
L5289 Hypothesis H15 : SNo u
L5290 Hypothesis H16 : z < u
L5291 Hypothesis H17 : SNo (x * u )
L5292 Hypothesis H18 : SNo (y * u )
L5293 Hypothesis H19 : SNo (w * z )
L5294
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__101__14
Beginning of Section Conj_mul_SNo_distrR__104__2
L5305 Hypothesis H0 : SNo x
L5306 Hypothesis H1 : SNo y
L5307 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5308 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5309 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5310 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5311 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5312 Hypothesis H8 : SNo (x + y )
L5313 Hypothesis H9 : SNo (x * z )
L5314 Hypothesis H10 : SNo (y * z )
L5315 Hypothesis H11 : SNo (x * z + y * z )
L5316 Hypothesis H12 : w ∈ SNoL (x + y )
L5317 Hypothesis H13 : u ∈ SNoR z
L5318 Hypothesis H14 : SNo w
L5319 Hypothesis H15 : SNo u
L5320 Hypothesis H16 : z < u
L5321
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__104__2
Beginning of Section Conj_mul_SNo_distrR__105__19
L5333 Hypothesis H0 : SNo x
L5334 Hypothesis H1 : SNo y
L5335 Hypothesis H2 : SNo z
L5336 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L5337 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L5338 Hypothesis H5 : SNo (x * z )
L5339 Hypothesis H6 : SNo (y * z )
L5340 Hypothesis H7 : u ∈ SNoR z
L5341 Hypothesis H8 : SNo w
L5342 Hypothesis H9 : SNo u
L5343 Hypothesis H10 : z < u
L5344 Hypothesis H11 : SNo (x * u )
L5345 Hypothesis H12 : SNo (y * u )
L5346 Hypothesis H13 : SNo (w * z )
L5347 Hypothesis H14 : SNo (w * u )
L5348 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5349 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5350 Hypothesis H17 : v ∈ SNoR y
L5351 Hypothesis H18 : (x + v ) ≤ w
L5352 Hypothesis H20 : y < v
L5353 Hypothesis H21 : SNo (v * u )
L5354 Hypothesis H22 : SNo (v * z )
L5355
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__105__19
Beginning of Section Conj_mul_SNo_distrR__107__18
L5367 Hypothesis H0 : SNo x
L5368 Hypothesis H1 : SNo y
L5369 Hypothesis H2 : SNo z
L5370 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L5371 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L5372 Hypothesis H5 : SNo (x * z )
L5373 Hypothesis H6 : SNo (y * z )
L5374 Hypothesis H7 : u ∈ SNoR z
L5375 Hypothesis H8 : SNo w
L5376 Hypothesis H9 : SNo u
L5377 Hypothesis H10 : z < u
L5378 Hypothesis H11 : SNo (x * u )
L5379 Hypothesis H12 : SNo (y * u )
L5380 Hypothesis H13 : SNo (w * z )
L5381 Hypothesis H14 : SNo (w * u )
L5382 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5383 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5384 Hypothesis H17 : v ∈ SNoR y
L5385 Hypothesis H19 : SNo v
L5386 Hypothesis H20 : y < v
L5387
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__107__18
Beginning of Section Conj_mul_SNo_distrR__108__2
L5399 Hypothesis H0 : SNo x
L5400 Hypothesis H1 : SNo y
L5401 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5402 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5403 Hypothesis H5 : SNo (x * z )
L5404 Hypothesis H6 : SNo (y * z )
L5405 Hypothesis H7 : u ∈ SNoR z
L5406 Hypothesis H8 : SNo w
L5407 Hypothesis H9 : SNo u
L5408 Hypothesis H10 : z < u
L5409 Hypothesis H11 : SNo (x * u )
L5410 Hypothesis H12 : SNo (y * u )
L5411 Hypothesis H13 : SNo (w * z )
L5412 Hypothesis H14 : SNo (w * u )
L5413 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5414 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5415 Hypothesis H17 : v ∈ SNoR x
L5416 Hypothesis H18 : (v + y ) ≤ w
L5417 Hypothesis H19 : SNo v
L5418 Hypothesis H20 : x < v
L5419 Hypothesis H21 : SNo (v * u )
L5420 Hypothesis H22 : SNo (v * z )
L5421
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__108__2
Beginning of Section Conj_mul_SNo_distrR__108__9
L5433 Hypothesis H0 : SNo x
L5434 Hypothesis H1 : SNo y
L5435 Hypothesis H2 : SNo z
L5436 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5437 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5438 Hypothesis H5 : SNo (x * z )
L5439 Hypothesis H6 : SNo (y * z )
L5440 Hypothesis H7 : u ∈ SNoR z
L5441 Hypothesis H8 : SNo w
L5442 Hypothesis H10 : z < u
L5443 Hypothesis H11 : SNo (x * u )
L5444 Hypothesis H12 : SNo (y * u )
L5445 Hypothesis H13 : SNo (w * z )
L5446 Hypothesis H14 : SNo (w * u )
L5447 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5448 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5449 Hypothesis H17 : v ∈ SNoR x
L5450 Hypothesis H18 : (v + y ) ≤ w
L5451 Hypothesis H19 : SNo v
L5452 Hypothesis H20 : x < v
L5453 Hypothesis H21 : SNo (v * u )
L5454 Hypothesis H22 : SNo (v * z )
L5455
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__108__9
Beginning of Section Conj_mul_SNo_distrR__109__8
L5467 Hypothesis H0 : SNo x
L5468 Hypothesis H1 : SNo y
L5469 Hypothesis H2 : SNo z
L5470 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5471 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5472 Hypothesis H5 : SNo (x * z )
L5473 Hypothesis H6 : SNo (y * z )
L5474 Hypothesis H7 : u ∈ SNoR z
L5475 Hypothesis H9 : SNo u
L5476 Hypothesis H10 : z < u
L5477 Hypothesis H11 : SNo (x * u )
L5478 Hypothesis H12 : SNo (y * u )
L5479 Hypothesis H13 : SNo (w * z )
L5480 Hypothesis H14 : SNo (w * u )
L5481 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5482 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5483 Hypothesis H17 : v ∈ SNoR x
L5484 Hypothesis H18 : (v + y ) ≤ w
L5485 Hypothesis H19 : SNo v
L5486 Hypothesis H20 : x < v
L5487 Hypothesis H21 : SNo (v * u )
L5488
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__109__8
Beginning of Section Conj_mul_SNo_distrR__109__18
L5500 Hypothesis H0 : SNo x
L5501 Hypothesis H1 : SNo y
L5502 Hypothesis H2 : SNo z
L5503 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5504 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5505 Hypothesis H5 : SNo (x * z )
L5506 Hypothesis H6 : SNo (y * z )
L5507 Hypothesis H7 : u ∈ SNoR z
L5508 Hypothesis H8 : SNo w
L5509 Hypothesis H9 : SNo u
L5510 Hypothesis H10 : z < u
L5511 Hypothesis H11 : SNo (x * u )
L5512 Hypothesis H12 : SNo (y * u )
L5513 Hypothesis H13 : SNo (w * z )
L5514 Hypothesis H14 : SNo (w * u )
L5515 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5516 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5517 Hypothesis H17 : v ∈ SNoR x
L5518 Hypothesis H19 : SNo v
L5519 Hypothesis H20 : x < v
L5520 Hypothesis H21 : SNo (v * u )
L5521
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__109__18
Beginning of Section Conj_mul_SNo_distrR__110__16
L5533 Hypothesis H0 : SNo x
L5534 Hypothesis H1 : SNo y
L5535 Hypothesis H2 : SNo z
L5536 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5537 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5538 Hypothesis H5 : SNo (x * z )
L5539 Hypothesis H6 : SNo (y * z )
L5540 Hypothesis H7 : u ∈ SNoR z
L5541 Hypothesis H8 : SNo w
L5542 Hypothesis H9 : SNo u
L5543 Hypothesis H10 : z < u
L5544 Hypothesis H11 : SNo (x * u )
L5545 Hypothesis H12 : SNo (y * u )
L5546 Hypothesis H13 : SNo (w * z )
L5547 Hypothesis H14 : SNo (w * u )
L5548 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5549 Hypothesis H17 : v ∈ SNoR x
L5550 Hypothesis H18 : (v + y ) ≤ w
L5551 Hypothesis H19 : SNo v
L5552 Hypothesis H20 : x < v
L5553
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__110__16
Beginning of Section Conj_mul_SNo_distrR__111__6
L5564 Hypothesis H0 : SNo x
L5565 Hypothesis H1 : SNo y
L5566 Hypothesis H2 : SNo z
L5567 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5568 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5569 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5570 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5571 Hypothesis H8 : SNo (x * z )
L5572 Hypothesis H9 : SNo (y * z )
L5573 Hypothesis H10 : SNo (x * z + y * z )
L5574 Hypothesis H11 : w ∈ SNoR (x + y )
L5575 Hypothesis H12 : u ∈ SNoR z
L5576 Hypothesis H13 : SNo w
L5577 Hypothesis H14 : SNo u
L5578 Hypothesis H15 : z < u
L5579 Hypothesis H16 : SNo (x * u )
L5580 Hypothesis H17 : SNo (y * u )
L5581 Hypothesis H18 : SNo (w * z )
L5582 Hypothesis H19 : SNo ((x + y ) * u )
L5583 Hypothesis H20 : SNo (w * u )
L5584 Hypothesis H21 : SNo (w * z + x * u + y * u )
L5585
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__111__6
Beginning of Section Conj_mul_SNo_distrR__112__16
L5596 Hypothesis H0 : SNo x
L5597 Hypothesis H1 : SNo y
L5598 Hypothesis H2 : SNo z
L5599 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5600 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5601 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5602 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5603 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5604 Hypothesis H8 : SNo (x * z )
L5605 Hypothesis H9 : SNo (y * z )
L5606 Hypothesis H10 : SNo (x * z + y * z )
L5607 Hypothesis H11 : w ∈ SNoR (x + y )
L5608 Hypothesis H12 : u ∈ SNoR z
L5609 Hypothesis H13 : SNo w
L5610 Hypothesis H14 : SNo u
L5611 Hypothesis H15 : z < u
L5612 Hypothesis H17 : SNo (y * u )
L5613 Hypothesis H18 : SNo (w * z )
L5614 Hypothesis H19 : SNo ((x + y ) * u )
L5615 Hypothesis H20 : SNo (w * u )
L5616
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__112__16
Beginning of Section Conj_mul_SNo_distrR__115__15
L5627 Hypothesis H0 : SNo x
L5628 Hypothesis H1 : SNo y
L5629 Hypothesis H2 : SNo z
L5630 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5631 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5632 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5633 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5634 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5635 Hypothesis H8 : SNo (x + y )
L5636 Hypothesis H9 : SNo (x * z )
L5637 Hypothesis H10 : SNo (y * z )
L5638 Hypothesis H11 : SNo (x * z + y * z )
L5639 Hypothesis H12 : w ∈ SNoR (x + y )
L5640 Hypothesis H13 : u ∈ SNoR z
L5641 Hypothesis H14 : SNo w
L5642 Hypothesis H16 : z < u
L5643 Hypothesis H17 : SNo (x * u )
L5644 Hypothesis H18 : SNo (y * u )
L5645 Hypothesis H19 : SNo (w * z )
L5646
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__115__15
Beginning of Section Conj_mul_SNo_distrR__116__7
L5657 Hypothesis H0 : SNo x
L5658 Hypothesis H1 : SNo y
L5659 Hypothesis H2 : SNo z
L5660 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5661 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5662 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5663 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5664 Hypothesis H8 : SNo (x + y )
L5665 Hypothesis H9 : SNo (x * z )
L5666 Hypothesis H10 : SNo (y * z )
L5667 Hypothesis H11 : SNo (x * z + y * z )
L5668 Hypothesis H12 : w ∈ SNoR (x + y )
L5669 Hypothesis H13 : u ∈ SNoR z
L5670 Hypothesis H14 : SNo w
L5671 Hypothesis H15 : SNo u
L5672 Hypothesis H16 : z < u
L5673 Hypothesis H17 : SNo (x * u )
L5674 Hypothesis H18 : SNo (y * u )
L5675
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__116__7
Beginning of Section Conj_mul_SNo_distrR__116__15
L5686 Hypothesis H0 : SNo x
L5687 Hypothesis H1 : SNo y
L5688 Hypothesis H2 : SNo z
L5689 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5690 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5691 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5692 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5693 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5694 Hypothesis H8 : SNo (x + y )
L5695 Hypothesis H9 : SNo (x * z )
L5696 Hypothesis H10 : SNo (y * z )
L5697 Hypothesis H11 : SNo (x * z + y * z )
L5698 Hypothesis H12 : w ∈ SNoR (x + y )
L5699 Hypothesis H13 : u ∈ SNoR z
L5700 Hypothesis H14 : SNo w
L5701 Hypothesis H16 : z < u
L5702 Hypothesis H17 : SNo (x * u )
L5703 Hypothesis H18 : SNo (y * u )
L5704
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__116__15
Beginning of Section Conj_mul_SNo_distrR__117__12
L5715 Hypothesis H0 : SNo x
L5716 Hypothesis H1 : SNo y
L5717 Hypothesis H2 : SNo z
L5718 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5719 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5720 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5721 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5722 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5723 Hypothesis H8 : SNo (x + y )
L5724 Hypothesis H9 : SNo (x * z )
L5725 Hypothesis H10 : SNo (y * z )
L5726 Hypothesis H11 : SNo (x * z + y * z )
L5727 Hypothesis H13 : u ∈ SNoR z
L5728 Hypothesis H14 : SNo w
L5729 Hypothesis H15 : SNo u
L5730 Hypothesis H16 : z < u
L5731 Hypothesis H17 : SNo (x * u )
L5732
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__117__12
Beginning of Section Conj_mul_SNo_distrR__118__12
L5743 Hypothesis H0 : SNo x
L5744 Hypothesis H1 : SNo y
L5745 Hypothesis H2 : SNo z
L5746 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5747 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5748 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5749 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5750 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5751 Hypothesis H8 : SNo (x + y )
L5752 Hypothesis H9 : SNo (x * z )
L5753 Hypothesis H10 : SNo (y * z )
L5754 Hypothesis H11 : SNo (x * z + y * z )
L5755 Hypothesis H13 : u ∈ SNoR z
L5756 Hypothesis H14 : SNo w
L5757 Hypothesis H15 : SNo u
L5758 Hypothesis H16 : z < u
L5759
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__118__12
Beginning of Section Conj_mul_SNo_distrR__119__9
L5771 Hypothesis H0 : SNo x
L5772 Hypothesis H1 : SNo y
L5773 Hypothesis H2 : SNo z
L5774 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L5775 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L5776 Hypothesis H5 : SNo (x * z )
L5777 Hypothesis H6 : SNo (y * z )
L5778 Hypothesis H7 : u ∈ SNoL z
L5779 Hypothesis H8 : SNo w
L5780 Hypothesis H10 : u < z
L5781 Hypothesis H11 : SNo (x * u )
L5782 Hypothesis H12 : SNo (y * u )
L5783 Hypothesis H13 : SNo (w * z )
L5784 Hypothesis H14 : SNo (w * u )
L5785 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5786 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5787 Hypothesis H17 : v ∈ SNoL y
L5788 Hypothesis H18 : w ≤ x + v
L5789 Hypothesis H19 : SNo v
L5790 Hypothesis H20 : v < y
L5791 Hypothesis H21 : SNo (v * u )
L5792 Hypothesis H22 : SNo (v * z )
L5793
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__119__9
Beginning of Section Conj_mul_SNo_distrR__120__16
L5805 Hypothesis H0 : SNo x
L5806 Hypothesis H1 : SNo y
L5807 Hypothesis H2 : SNo z
L5808 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (x + x2 ) * z = x * z + x2 * z )
L5809 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L5810 Hypothesis H5 : SNo (x * z )
L5811 Hypothesis H6 : SNo (y * z )
L5812 Hypothesis H7 : u ∈ SNoL z
L5813 Hypothesis H8 : SNo w
L5814 Hypothesis H9 : SNo u
L5815 Hypothesis H10 : u < z
L5816 Hypothesis H11 : SNo (x * u )
L5817 Hypothesis H12 : SNo (y * u )
L5818 Hypothesis H13 : SNo (w * z )
L5819 Hypothesis H14 : SNo (w * u )
L5820 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5821 Hypothesis H17 : v ∈ SNoL y
L5822 Hypothesis H18 : w ≤ x + v
L5823 Hypothesis H19 : SNo v
L5824 Hypothesis H20 : v < y
L5825 Hypothesis H21 : SNo (v * u )
L5826
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__120__16
Beginning of Section Conj_mul_SNo_distrR__121__3
L5838 Hypothesis H0 : SNo x
L5839 Hypothesis H1 : SNo y
L5840 Hypothesis H2 : SNo z
L5841 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev y ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x + x2 ) * y2 = x * y2 + x2 * y2 ) )
L5842 Hypothesis H5 : SNo (x * z )
L5843 Hypothesis H6 : SNo (y * z )
L5844 Hypothesis H7 : u ∈ SNoL z
L5845 Hypothesis H8 : SNo w
L5846 Hypothesis H9 : SNo u
L5847 Hypothesis H10 : u < z
L5848 Hypothesis H11 : SNo (x * u )
L5849 Hypothesis H12 : SNo (y * u )
L5850 Hypothesis H13 : SNo (w * z )
L5851 Hypothesis H14 : SNo (w * u )
L5852 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5853 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5854 Hypothesis H17 : v ∈ SNoL y
L5855 Hypothesis H18 : w ≤ x + v
L5856 Hypothesis H19 : SNo v
L5857 Hypothesis H20 : v < y
L5858
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__121__3
Beginning of Section Conj_mul_SNo_distrR__123__10
L5870 Hypothesis H0 : SNo x
L5871 Hypothesis H1 : SNo y
L5872 Hypothesis H2 : SNo z
L5873 Hypothesis H3 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (x2 + y ) * z = x2 * z + y * z )
L5874 Hypothesis H4 : (∀x2 : set , x2 ∈ SNoS_ (SNoLev x ) → (∀y2 : set , y2 ∈ SNoS_ (SNoLev z ) → (x2 + y ) * y2 = x2 * y2 + y * y2 ) )
L5875 Hypothesis H5 : SNo (x * z )
L5876 Hypothesis H6 : SNo (y * z )
L5877 Hypothesis H7 : u ∈ SNoL z
L5878 Hypothesis H8 : SNo w
L5879 Hypothesis H9 : SNo u
L5880 Hypothesis H11 : SNo (x * u )
L5881 Hypothesis H12 : SNo (y * u )
L5882 Hypothesis H13 : SNo (w * z )
L5883 Hypothesis H14 : SNo (w * u )
L5884 Hypothesis H15 : SNo (w * z + x * u + y * u )
L5885 Hypothesis H16 : SNo (x * z + y * z + w * u )
L5886 Hypothesis H17 : v ∈ SNoL x
L5887 Hypothesis H18 : w ≤ v + y
L5888 Hypothesis H19 : SNo v
L5889 Hypothesis H20 : v < x
L5890 Hypothesis H21 : SNo (v * u )
L5891
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__123__10
Beginning of Section Conj_mul_SNo_distrR__125__15
L5902 Hypothesis H0 : SNo x
L5903 Hypothesis H1 : SNo y
L5904 Hypothesis H2 : SNo z
L5905 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5906 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5907 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5908 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5909 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5910 Hypothesis H8 : SNo (x * z )
L5911 Hypothesis H9 : SNo (y * z )
L5912 Hypothesis H10 : SNo (x * z + y * z )
L5913 Hypothesis H11 : w ∈ SNoL (x + y )
L5914 Hypothesis H12 : u ∈ SNoL z
L5915 Hypothesis H13 : SNo w
L5916 Hypothesis H14 : SNo u
L5917 Hypothesis H16 : SNo (x * u )
L5918 Hypothesis H17 : SNo (y * u )
L5919 Hypothesis H18 : SNo (w * z )
L5920 Hypothesis H19 : SNo ((x + y ) * u )
L5921 Hypothesis H20 : SNo (w * u )
L5922 Hypothesis H21 : SNo (w * z + x * u + y * u )
L5923
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__125__15
Beginning of Section Conj_mul_SNo_distrR__126__9
L5934 Hypothesis H0 : SNo x
L5935 Hypothesis H1 : SNo y
L5936 Hypothesis H2 : SNo z
L5937 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5938 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5939 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5940 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5941 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5942 Hypothesis H8 : SNo (x * z )
L5943 Hypothesis H10 : SNo (x * z + y * z )
L5944 Hypothesis H11 : w ∈ SNoL (x + y )
L5945 Hypothesis H12 : u ∈ SNoL z
L5946 Hypothesis H13 : SNo w
L5947 Hypothesis H14 : SNo u
L5948 Hypothesis H15 : u < z
L5949 Hypothesis H16 : SNo (x * u )
L5950 Hypothesis H17 : SNo (y * u )
L5951 Hypothesis H18 : SNo (w * z )
L5952 Hypothesis H19 : SNo ((x + y ) * u )
L5953 Hypothesis H20 : SNo (w * u )
L5954
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__126__9
Beginning of Section Conj_mul_SNo_distrR__126__11
L5965 Hypothesis H0 : SNo x
L5966 Hypothesis H1 : SNo y
L5967 Hypothesis H2 : SNo z
L5968 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L5969 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L5970 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L5971 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L5972 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L5973 Hypothesis H8 : SNo (x * z )
L5974 Hypothesis H9 : SNo (y * z )
L5975 Hypothesis H10 : SNo (x * z + y * z )
L5976 Hypothesis H12 : u ∈ SNoL z
L5977 Hypothesis H13 : SNo w
L5978 Hypothesis H14 : SNo u
L5979 Hypothesis H15 : u < z
L5980 Hypothesis H16 : SNo (x * u )
L5981 Hypothesis H17 : SNo (y * u )
L5982 Hypothesis H18 : SNo (w * z )
L5983 Hypothesis H19 : SNo ((x + y ) * u )
L5984 Hypothesis H20 : SNo (w * u )
L5985
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__126__11
Beginning of Section Conj_mul_SNo_distrR__127__7
L5996 Hypothesis H0 : SNo x
L5997 Hypothesis H1 : SNo y
L5998 Hypothesis H2 : SNo z
L5999 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6000 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6001 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6002 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6003 Hypothesis H8 : SNo (x * z )
L6004 Hypothesis H9 : SNo (y * z )
L6005 Hypothesis H10 : SNo (x * z + y * z )
L6006 Hypothesis H11 : w ∈ SNoL (x + y )
L6007 Hypothesis H12 : u ∈ SNoL z
L6008 Hypothesis H13 : SNo w
L6009 Hypothesis H14 : SNo u
L6010 Hypothesis H15 : u < z
L6011 Hypothesis H16 : SNo (x * u )
L6012 Hypothesis H17 : SNo (y * u )
L6013 Hypothesis H18 : SNo (w * z )
L6014 Hypothesis H19 : SNo ((x + y ) * u )
L6015
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__127__7
Beginning of Section Conj_mul_SNo_distrR__128__15
L6026 Hypothesis H0 : SNo x
L6027 Hypothesis H1 : SNo y
L6028 Hypothesis H2 : SNo z
L6029 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6030 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6031 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6032 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6033 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6034 Hypothesis H8 : SNo (x * z )
L6035 Hypothesis H9 : SNo (y * z )
L6036 Hypothesis H10 : SNo (x * z + y * z )
L6037 Hypothesis H11 : w ∈ SNoL (x + y )
L6038 Hypothesis H12 : u ∈ SNoL z
L6039 Hypothesis H13 : SNo w
L6040 Hypothesis H14 : SNo u
L6041 Hypothesis H16 : SNo (x * u )
L6042 Hypothesis H17 : SNo (y * u )
L6043 Hypothesis H18 : SNo (w * z )
L6044 Hypothesis H19 : SNo ((x + y ) * u )
L6045
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__128__15
Beginning of Section Conj_mul_SNo_distrR__129__10
L6056 Hypothesis H0 : SNo x
L6057 Hypothesis H1 : SNo y
L6058 Hypothesis H2 : SNo z
L6059 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6060 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6061 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6062 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6063 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6064 Hypothesis H8 : SNo (x + y )
L6065 Hypothesis H9 : SNo (x * z )
L6066 Hypothesis H11 : SNo (x * z + y * z )
L6067 Hypothesis H12 : w ∈ SNoL (x + y )
L6068 Hypothesis H13 : u ∈ SNoL z
L6069 Hypothesis H14 : SNo w
L6070 Hypothesis H15 : SNo u
L6071 Hypothesis H16 : u < z
L6072 Hypothesis H17 : SNo (x * u )
L6073 Hypothesis H18 : SNo (y * u )
L6074 Hypothesis H19 : SNo (w * z )
L6075
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__129__10
Beginning of Section Conj_mul_SNo_distrR__130__13
L6086 Hypothesis H0 : SNo x
L6087 Hypothesis H1 : SNo y
L6088 Hypothesis H2 : SNo z
L6089 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6090 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6091 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6092 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6093 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6094 Hypothesis H8 : SNo (x + y )
L6095 Hypothesis H9 : SNo (x * z )
L6096 Hypothesis H10 : SNo (y * z )
L6097 Hypothesis H11 : SNo (x * z + y * z )
L6098 Hypothesis H12 : w ∈ SNoL (x + y )
L6099 Hypothesis H14 : SNo w
L6100 Hypothesis H15 : SNo u
L6101 Hypothesis H16 : u < z
L6102 Hypothesis H17 : SNo (x * u )
L6103 Hypothesis H18 : SNo (y * u )
L6104
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__130__13
Beginning of Section Conj_mul_SNo_distrR__131__12
L6115 Hypothesis H0 : SNo x
L6116 Hypothesis H1 : SNo y
L6117 Hypothesis H2 : SNo z
L6118 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6119 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6120 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6121 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6122 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6123 Hypothesis H8 : SNo (x + y )
L6124 Hypothesis H9 : SNo (x * z )
L6125 Hypothesis H10 : SNo (y * z )
L6126 Hypothesis H11 : SNo (x * z + y * z )
L6127 Hypothesis H13 : u ∈ SNoL z
L6128 Hypothesis H14 : SNo w
L6129 Hypothesis H15 : SNo u
L6130 Hypothesis H16 : u < z
L6131 Hypothesis H17 : SNo (x * u )
L6132
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__131__12
Beginning of Section Conj_mul_SNo_distrR__131__17
L6143 Hypothesis H0 : SNo x
L6144 Hypothesis H1 : SNo y
L6145 Hypothesis H2 : SNo z
L6146 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6147 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6148 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6149 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6150 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6151 Hypothesis H8 : SNo (x + y )
L6152 Hypothesis H9 : SNo (x * z )
L6153 Hypothesis H10 : SNo (y * z )
L6154 Hypothesis H11 : SNo (x * z + y * z )
L6155 Hypothesis H12 : w ∈ SNoL (x + y )
L6156 Hypothesis H13 : u ∈ SNoL z
L6157 Hypothesis H14 : SNo w
L6158 Hypothesis H15 : SNo u
L6159 Hypothesis H16 : u < z
L6160
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__131__17
Beginning of Section Conj_mul_SNo_distrR__132__4
L6171 Hypothesis H0 : SNo x
L6172 Hypothesis H1 : SNo y
L6173 Hypothesis H2 : SNo z
L6174 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6175 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6176 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6177 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6178 Hypothesis H8 : SNo (x + y )
L6179 Hypothesis H9 : SNo (x * z )
L6180 Hypothesis H10 : SNo (y * z )
L6181 Hypothesis H11 : SNo (x * z + y * z )
L6182 Hypothesis H12 : w ∈ SNoL (x + y )
L6183 Hypothesis H13 : u ∈ SNoL z
L6184 Hypothesis H14 : SNo w
L6185 Hypothesis H15 : SNo u
L6186 Hypothesis H16 : u < z
L6187
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__132__4
Beginning of Section Conj_mul_SNo_distrR__132__16
L6198 Hypothesis H0 : SNo x
L6199 Hypothesis H1 : SNo y
L6200 Hypothesis H2 : SNo z
L6201 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6202 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6203 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6204 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6205 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6206 Hypothesis H8 : SNo (x + y )
L6207 Hypothesis H9 : SNo (x * z )
L6208 Hypothesis H10 : SNo (y * z )
L6209 Hypothesis H11 : SNo (x * z + y * z )
L6210 Hypothesis H12 : w ∈ SNoL (x + y )
L6211 Hypothesis H13 : u ∈ SNoL z
L6212 Hypothesis H14 : SNo w
L6213 Hypothesis H15 : SNo u
L6214
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__132__16
Beginning of Section Conj_mul_SNo_distrR__133__11
L6225 Hypothesis H0 : SNo x
L6226 Hypothesis H1 : SNo y
L6227 Hypothesis H2 : SNo z
L6228 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6229 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6230 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6231 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6232 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6233 Hypothesis H8 : SNoCutP w u
L6234 Hypothesis H9 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6235 Hypothesis H10 : (∀v : set , v ∈ u → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6236 Hypothesis H12 : SNo (x + y )
L6237 Hypothesis H13 : SNo ((x + y ) * z )
L6238 Hypothesis H14 : SNo (x * z )
L6239 Hypothesis H15 : SNo (y * z )
L6240 Hypothesis H16 : SNo (x * z + y * z )
L6241 Theorem. (
Conj_mul_SNo_distrR__133__11 )
x * z + y * z = SNoCut (binunion (Repl (SNoL (x * z ) ) (λv : set ⇒ v + y * z ) ) (Repl (SNoL (y * z ) ) (add_SNo (x * z ) ) ) ) (binunion (Repl (SNoR (x * z ) ) (λv : set ⇒ v + y * z ) ) (Repl (SNoR (y * z ) ) (add_SNo (x * z ) ) ) ) → (x + y ) * z = x * z + y * z
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__133__11
Beginning of Section Conj_mul_SNo_distrR__135__6
L6252 Hypothesis H0 : SNo x
L6253 Hypothesis H1 : SNo y
L6254 Hypothesis H2 : SNo z
L6255 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6256 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6257 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6258 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6259 Hypothesis H8 : SNoCutP w u
L6260 Hypothesis H9 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6261 Hypothesis H10 : (∀v : set , v ∈ u → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6262 Hypothesis H11 : (x + y ) * z = SNoCut w u
L6263 Hypothesis H12 : SNo (x + y )
L6264 Hypothesis H13 : SNo ((x + y ) * z )
L6265 Hypothesis H14 : SNo (x * z )
L6266
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__135__6
Beginning of Section Conj_mul_SNo_distrR__136__5
L6277 Hypothesis H0 : SNo x
L6278 Hypothesis H1 : SNo y
L6279 Hypothesis H2 : SNo z
L6280 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6281 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6282 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6283 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6284 Hypothesis H8 : SNoCutP w u
L6285 Hypothesis H9 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6286 Hypothesis H10 : (∀v : set , v ∈ u → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6287 Hypothesis H11 : (x + y ) * z = SNoCut w u
L6288 Hypothesis H12 : SNo (x + y )
L6289 Hypothesis H13 : SNo ((x + y ) * z )
L6290
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__136__5
Beginning of Section Conj_mul_SNo_distrR__137__3
L6301 Hypothesis H0 : SNo x
L6302 Hypothesis H1 : SNo y
L6303 Hypothesis H2 : SNo z
L6304 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6305 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6306 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6307 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6308 Hypothesis H8 : SNoCutP w u
L6309 Hypothesis H9 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6310 Hypothesis H10 : (∀v : set , v ∈ u → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6311 Hypothesis H11 : (x + y ) * z = SNoCut w u
L6312 Hypothesis H12 : SNo (x + y )
L6313
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__137__3
Beginning of Section Conj_mul_SNo_distrR__137__4
L6324 Hypothesis H0 : SNo x
L6325 Hypothesis H1 : SNo y
L6326 Hypothesis H2 : SNo z
L6327 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6328 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6329 Hypothesis H6 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (v + y ) * x2 = v * x2 + y * x2 ) )
L6330 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6331 Hypothesis H8 : SNoCutP w u
L6332 Hypothesis H9 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6333 Hypothesis H10 : (∀v : set , v ∈ u → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6334 Hypothesis H11 : (x + y ) * z = SNoCut w u
L6335 Hypothesis H12 : SNo (x + y )
L6336
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__137__4
Beginning of Section Conj_mul_SNo_distrR__138__6
L6347 Hypothesis H0 : SNo x
L6348 Hypothesis H1 : SNo y
L6349 Hypothesis H2 : SNo z
L6350 Hypothesis H3 : (∀v : set , v ∈ SNoS_ (SNoLev x ) → (v + y ) * z = v * z + y * z )
L6351 Hypothesis H4 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (x + v ) * z = x * z + v * z )
L6352 Hypothesis H5 : (∀v : set , v ∈ SNoS_ (SNoLev z ) → (x + y ) * v = x * v + y * v )
L6353 Hypothesis H7 : (∀v : set , v ∈ SNoS_ (SNoLev y ) → (∀x2 : set , x2 ∈ SNoS_ (SNoLev z ) → (x + v ) * x2 = x * x2 + v * x2 ) )
L6354 Hypothesis H8 : SNoCutP w u
L6355 Hypothesis H9 : (∀v : set , v ∈ w → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6356 Hypothesis H10 : (∀v : set , v ∈ u → (∀P : prop , (∀x2 : set , x2 ∈ SNoL (x + y ) → (∀y2 : set , y2 ∈ SNoR z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → (∀x2 : set , x2 ∈ SNoR (x + y ) → (∀y2 : set , y2 ∈ SNoL z → v = x2 * z + (x + y ) * y2 + - (x2 * y2 ) → P ) ) → P ) )
L6357 Hypothesis H11 : (x + y ) * z = SNoCut w u
L6358
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_distrR__138__6
Beginning of Section Conj_mul_SNo_assoc_lem1__1__7
L6364 Variable g : (set → (set → set ) )
L6373 Hypothesis H0 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6374 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6375 Hypothesis H2 : SNo x
L6376 Hypothesis H3 : SNo z
L6377 Hypothesis H4 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6378 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6379 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6380 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6381 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6382 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6383 Hypothesis H11 : SNo (g x y )
L6384 Hypothesis H12 : SNo (g (g x y ) z )
L6385 Hypothesis H13 : u ∈ SNoS_ (SNoLev x )
L6386 Hypothesis H14 : SNo v
L6387 Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y )
L6388 Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z )
L6389 Hypothesis H17 : w = g u (g y z ) + g x v + - (g u v )
L6390 Hypothesis H18 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6391 Hypothesis H19 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6392 Hypothesis H20 : SNo u
L6393 Hypothesis H21 : SNo y2
L6394 Hypothesis H22 : SNo (g u (g y z ) )
L6395 Hypothesis H23 : SNo (g x v )
L6396 Hypothesis H24 : SNo (g x x2 )
L6397 Hypothesis H25 : SNo (g u v )
L6398 Hypothesis H26 : SNo (g u x2 )
L6399 Hypothesis H27 : SNo (g u y )
L6400 Hypothesis H28 : SNo (g x2 z )
L6401 Hypothesis H29 : SNo (g y y2 )
L6402 Hypothesis H30 : SNo (g u (g x2 z ) )
L6403 Hypothesis H31 : SNo (g u (g y y2 ) )
L6404 Hypothesis H32 : SNo (g x2 y2 )
L6405 Hypothesis H33 : SNo (g x (g x2 y2 ) )
L6406 Hypothesis H34 : SNo (g x (g x2 z ) )
L6407 Hypothesis H35 : SNo (g x (g y y2 ) )
L6408 Hypothesis H36 : SNo (g u (g y z ) + g x v )
L6409 Hypothesis H37 : SNo (g (g x y ) z + g u v )
L6410 Hypothesis H38 : SNo (g u (g x2 y2 ) )
L6411 Hypothesis H39 : SNo (g u (v + g x2 y2 ) )
L6412 Hypothesis H40 : SNo (g u (g x2 z + g y y2 ) )
L6413 Hypothesis H41 : SNo (g u (g y z ) + g x (g x2 z ) + g x (g y y2 ) + g u v + g u (g x2 y2 ) )
L6414
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__1__7
Beginning of Section Conj_mul_SNo_assoc_lem1__1__33
L6420 Variable g : (set → (set → set ) )
L6429 Hypothesis H0 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6430 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6431 Hypothesis H2 : SNo x
L6432 Hypothesis H3 : SNo z
L6433 Hypothesis H4 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6434 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6435 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6436 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6437 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6438 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6439 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6440 Hypothesis H11 : SNo (g x y )
L6441 Hypothesis H12 : SNo (g (g x y ) z )
L6442 Hypothesis H13 : u ∈ SNoS_ (SNoLev x )
L6443 Hypothesis H14 : SNo v
L6444 Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y )
L6445 Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z )
L6446 Hypothesis H17 : w = g u (g y z ) + g x v + - (g u v )
L6447 Hypothesis H18 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6448 Hypothesis H19 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6449 Hypothesis H20 : SNo u
L6450 Hypothesis H21 : SNo y2
L6451 Hypothesis H22 : SNo (g u (g y z ) )
L6452 Hypothesis H23 : SNo (g x v )
L6453 Hypothesis H24 : SNo (g x x2 )
L6454 Hypothesis H25 : SNo (g u v )
L6455 Hypothesis H26 : SNo (g u x2 )
L6456 Hypothesis H27 : SNo (g u y )
L6457 Hypothesis H28 : SNo (g x2 z )
L6458 Hypothesis H29 : SNo (g y y2 )
L6459 Hypothesis H30 : SNo (g u (g x2 z ) )
L6460 Hypothesis H31 : SNo (g u (g y y2 ) )
L6461 Hypothesis H32 : SNo (g x2 y2 )
L6462 Hypothesis H34 : SNo (g x (g x2 z ) )
L6463 Hypothesis H35 : SNo (g x (g y y2 ) )
L6464 Hypothesis H36 : SNo (g u (g y z ) + g x v )
L6465 Hypothesis H37 : SNo (g (g x y ) z + g u v )
L6466 Hypothesis H38 : SNo (g u (g x2 y2 ) )
L6467 Hypothesis H39 : SNo (g u (v + g x2 y2 ) )
L6468 Hypothesis H40 : SNo (g u (g x2 z + g y y2 ) )
L6469 Hypothesis H41 : SNo (g u (g y z ) + g x (g x2 z ) + g x (g y y2 ) + g u v + g u (g x2 y2 ) )
L6470
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__1__33
Beginning of Section Conj_mul_SNo_assoc_lem1__2__27
L6476 Variable g : (set → (set → set ) )
L6485 Hypothesis H0 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6486 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6487 Hypothesis H2 : SNo x
L6488 Hypothesis H3 : SNo z
L6489 Hypothesis H4 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6490 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6491 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6492 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6493 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6494 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6495 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6496 Hypothesis H11 : SNo (g x y )
L6497 Hypothesis H12 : SNo (g (g x y ) z )
L6498 Hypothesis H13 : u ∈ SNoS_ (SNoLev x )
L6499 Hypothesis H14 : SNo v
L6500 Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y )
L6501 Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z )
L6502 Hypothesis H17 : w = g u (g y z ) + g x v + - (g u v )
L6503 Hypothesis H18 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6504 Hypothesis H19 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6505 Hypothesis H20 : SNo u
L6506 Hypothesis H21 : SNo y2
L6507 Hypothesis H22 : SNo (g u (g y z ) )
L6508 Hypothesis H23 : SNo (g x v )
L6509 Hypothesis H24 : SNo (g x x2 )
L6510 Hypothesis H25 : SNo (g u v )
L6511 Hypothesis H26 : SNo (g u x2 )
L6512 Hypothesis H28 : SNo (g x2 z )
L6513 Hypothesis H29 : SNo (g y y2 )
L6514 Hypothesis H30 : SNo (g u (g x2 z ) )
L6515 Hypothesis H31 : SNo (g u (g y y2 ) )
L6516 Hypothesis H32 : SNo (g x2 y2 )
L6517 Hypothesis H33 : SNo (g x (g x2 y2 ) )
L6518 Hypothesis H34 : SNo (g x (g x2 z ) )
L6519 Hypothesis H35 : SNo (g x (g y y2 ) )
L6520 Hypothesis H36 : SNo (g u (g y z ) + g x v )
L6521 Hypothesis H37 : SNo (g (g x y ) z + g u v )
L6522 Hypothesis H38 : SNo (g u (g x2 y2 ) )
L6523 Hypothesis H39 : SNo (g u (v + g x2 y2 ) )
L6524 Hypothesis H40 : SNo (g u (g x2 z + g y y2 ) )
L6525 Hypothesis H41 : SNo (g u v + g u (g x2 y2 ) )
L6526
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__2__27
Beginning of Section Conj_mul_SNo_assoc_lem1__3__17
L6532 Variable g : (set → (set → set ) )
L6541 Hypothesis H0 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6542 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6543 Hypothesis H2 : SNo x
L6544 Hypothesis H3 : SNo z
L6545 Hypothesis H4 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6546 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6547 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6548 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6549 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6550 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6551 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6552 Hypothesis H11 : SNo (g x y )
L6553 Hypothesis H12 : SNo (g (g x y ) z )
L6554 Hypothesis H13 : u ∈ SNoS_ (SNoLev x )
L6555 Hypothesis H14 : SNo v
L6556 Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y )
L6557 Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z )
L6558 Hypothesis H18 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6559 Hypothesis H19 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6560 Hypothesis H20 : SNo u
L6561 Hypothesis H21 : SNo y2
L6562 Hypothesis H22 : SNo (g u (g y z ) )
L6563 Hypothesis H23 : SNo (g x v )
L6564 Hypothesis H24 : SNo (g x x2 )
L6565 Hypothesis H25 : SNo (g u v )
L6566 Hypothesis H26 : SNo (g u x2 )
L6567 Hypothesis H27 : SNo (g u y )
L6568 Hypothesis H28 : SNo (g x2 z )
L6569 Hypothesis H29 : SNo (g y y2 )
L6570 Hypothesis H30 : SNo (g u (g x2 z ) )
L6571 Hypothesis H31 : SNo (g u (g y y2 ) )
L6572 Hypothesis H32 : SNo (g x2 y2 )
L6573 Hypothesis H33 : SNo (g x (g x2 y2 ) )
L6574 Hypothesis H34 : SNo (g x (g x2 z ) )
L6575 Hypothesis H35 : SNo (g x (g y y2 ) )
L6576 Hypothesis H36 : SNo (g u (g y z ) + g x v )
L6577 Hypothesis H37 : SNo (g (g x y ) z + g u v )
L6578 Hypothesis H38 : SNo (g u (g x2 y2 ) )
L6579 Hypothesis H39 : SNo (g u (v + g x2 y2 ) )
L6580 Hypothesis H40 : SNo (g u (g x2 z + g y y2 ) )
L6581
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__3__17
Beginning of Section Conj_mul_SNo_assoc_lem1__3__38
L6587 Variable g : (set → (set → set ) )
L6596 Hypothesis H0 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6597 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6598 Hypothesis H2 : SNo x
L6599 Hypothesis H3 : SNo z
L6600 Hypothesis H4 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6601 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6602 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6603 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6604 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6605 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6606 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6607 Hypothesis H11 : SNo (g x y )
L6608 Hypothesis H12 : SNo (g (g x y ) z )
L6609 Hypothesis H13 : u ∈ SNoS_ (SNoLev x )
L6610 Hypothesis H14 : SNo v
L6611 Hypothesis H15 : x2 ∈ SNoS_ (SNoLev y )
L6612 Hypothesis H16 : y2 ∈ SNoS_ (SNoLev z )
L6613 Hypothesis H17 : w = g u (g y z ) + g x v + - (g u v )
L6614 Hypothesis H18 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6615 Hypothesis H19 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6616 Hypothesis H20 : SNo u
L6617 Hypothesis H21 : SNo y2
L6618 Hypothesis H22 : SNo (g u (g y z ) )
L6619 Hypothesis H23 : SNo (g x v )
L6620 Hypothesis H24 : SNo (g x x2 )
L6621 Hypothesis H25 : SNo (g u v )
L6622 Hypothesis H26 : SNo (g u x2 )
L6623 Hypothesis H27 : SNo (g u y )
L6624 Hypothesis H28 : SNo (g x2 z )
L6625 Hypothesis H29 : SNo (g y y2 )
L6626 Hypothesis H30 : SNo (g u (g x2 z ) )
L6627 Hypothesis H31 : SNo (g u (g y y2 ) )
L6628 Hypothesis H32 : SNo (g x2 y2 )
L6629 Hypothesis H33 : SNo (g x (g x2 y2 ) )
L6630 Hypothesis H34 : SNo (g x (g x2 z ) )
L6631 Hypothesis H35 : SNo (g x (g y y2 ) )
L6632 Hypothesis H36 : SNo (g u (g y z ) + g x v )
L6633 Hypothesis H37 : SNo (g (g x y ) z + g u v )
L6634 Hypothesis H39 : SNo (g u (v + g x2 y2 ) )
L6635 Hypothesis H40 : SNo (g u (g x2 z + g y y2 ) )
L6636
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__3__38
Beginning of Section Conj_mul_SNo_assoc_lem1__4__1
L6642 Variable g : (set → (set → set ) )
L6651 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L6652 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6653 Hypothesis H3 : SNo x
L6654 Hypothesis H4 : SNo z
L6655 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6656 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6657 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6658 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6659 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6660 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6661 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6662 Hypothesis H12 : SNo (g x y )
L6663 Hypothesis H13 : SNo (g (g x y ) z )
L6664 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L6665 Hypothesis H15 : SNo v
L6666 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L6667 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L6668 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L6669 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6670 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6671 Hypothesis H21 : SNo u
L6672 Hypothesis H22 : SNo y2
L6673 Hypothesis H23 : SNo (g u (g y z ) )
L6674 Hypothesis H24 : SNo (g x v )
L6675 Hypothesis H25 : SNo (g x x2 )
L6676 Hypothesis H26 : SNo (g u v )
L6677 Hypothesis H27 : SNo (g u x2 )
L6678 Hypothesis H28 : SNo (g u y )
L6679 Hypothesis H29 : SNo (g x2 z )
L6680 Hypothesis H30 : SNo (g y y2 )
L6681 Hypothesis H31 : SNo (g u (g x2 z ) )
L6682 Hypothesis H32 : SNo (g u (g y y2 ) )
L6683 Hypothesis H33 : SNo (g x2 y2 )
L6684 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L6685 Hypothesis H35 : SNo (g x (g x2 z ) )
L6686 Hypothesis H36 : SNo (g x (g y y2 ) )
L6687 Hypothesis H37 : SNo (g u (g y z ) + g x v )
L6688 Hypothesis H38 : SNo (g (g x y ) z + g u v )
L6689 Hypothesis H39 : SNo (g u (g x2 y2 ) )
L6690 Hypothesis H40 : SNo (g u (v + g x2 y2 ) )
L6691
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__4__1
Beginning of Section Conj_mul_SNo_assoc_lem1__4__8
L6697 Variable g : (set → (set → set ) )
L6706 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L6707 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6708 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6709 Hypothesis H3 : SNo x
L6710 Hypothesis H4 : SNo z
L6711 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6712 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6713 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6714 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6715 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6716 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6717 Hypothesis H12 : SNo (g x y )
L6718 Hypothesis H13 : SNo (g (g x y ) z )
L6719 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L6720 Hypothesis H15 : SNo v
L6721 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L6722 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L6723 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L6724 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6725 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6726 Hypothesis H21 : SNo u
L6727 Hypothesis H22 : SNo y2
L6728 Hypothesis H23 : SNo (g u (g y z ) )
L6729 Hypothesis H24 : SNo (g x v )
L6730 Hypothesis H25 : SNo (g x x2 )
L6731 Hypothesis H26 : SNo (g u v )
L6732 Hypothesis H27 : SNo (g u x2 )
L6733 Hypothesis H28 : SNo (g u y )
L6734 Hypothesis H29 : SNo (g x2 z )
L6735 Hypothesis H30 : SNo (g y y2 )
L6736 Hypothesis H31 : SNo (g u (g x2 z ) )
L6737 Hypothesis H32 : SNo (g u (g y y2 ) )
L6738 Hypothesis H33 : SNo (g x2 y2 )
L6739 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L6740 Hypothesis H35 : SNo (g x (g x2 z ) )
L6741 Hypothesis H36 : SNo (g x (g y y2 ) )
L6742 Hypothesis H37 : SNo (g u (g y z ) + g x v )
L6743 Hypothesis H38 : SNo (g (g x y ) z + g u v )
L6744 Hypothesis H39 : SNo (g u (g x2 y2 ) )
L6745 Hypothesis H40 : SNo (g u (v + g x2 y2 ) )
L6746
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__4__8
Beginning of Section Conj_mul_SNo_assoc_lem1__4__18
L6752 Variable g : (set → (set → set ) )
L6761 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L6762 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6763 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6764 Hypothesis H3 : SNo x
L6765 Hypothesis H4 : SNo z
L6766 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6767 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6768 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6769 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6770 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6771 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6772 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6773 Hypothesis H12 : SNo (g x y )
L6774 Hypothesis H13 : SNo (g (g x y ) z )
L6775 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L6776 Hypothesis H15 : SNo v
L6777 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L6778 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L6779 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6780 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6781 Hypothesis H21 : SNo u
L6782 Hypothesis H22 : SNo y2
L6783 Hypothesis H23 : SNo (g u (g y z ) )
L6784 Hypothesis H24 : SNo (g x v )
L6785 Hypothesis H25 : SNo (g x x2 )
L6786 Hypothesis H26 : SNo (g u v )
L6787 Hypothesis H27 : SNo (g u x2 )
L6788 Hypothesis H28 : SNo (g u y )
L6789 Hypothesis H29 : SNo (g x2 z )
L6790 Hypothesis H30 : SNo (g y y2 )
L6791 Hypothesis H31 : SNo (g u (g x2 z ) )
L6792 Hypothesis H32 : SNo (g u (g y y2 ) )
L6793 Hypothesis H33 : SNo (g x2 y2 )
L6794 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L6795 Hypothesis H35 : SNo (g x (g x2 z ) )
L6796 Hypothesis H36 : SNo (g x (g y y2 ) )
L6797 Hypothesis H37 : SNo (g u (g y z ) + g x v )
L6798 Hypothesis H38 : SNo (g (g x y ) z + g u v )
L6799 Hypothesis H39 : SNo (g u (g x2 y2 ) )
L6800 Hypothesis H40 : SNo (g u (v + g x2 y2 ) )
L6801
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__4__18
Beginning of Section Conj_mul_SNo_assoc_lem1__4__27
L6807 Variable g : (set → (set → set ) )
L6816 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L6817 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6818 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6819 Hypothesis H3 : SNo x
L6820 Hypothesis H4 : SNo z
L6821 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6822 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6823 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6824 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6825 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6826 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6827 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6828 Hypothesis H12 : SNo (g x y )
L6829 Hypothesis H13 : SNo (g (g x y ) z )
L6830 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L6831 Hypothesis H15 : SNo v
L6832 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L6833 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L6834 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L6835 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6836 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6837 Hypothesis H21 : SNo u
L6838 Hypothesis H22 : SNo y2
L6839 Hypothesis H23 : SNo (g u (g y z ) )
L6840 Hypothesis H24 : SNo (g x v )
L6841 Hypothesis H25 : SNo (g x x2 )
L6842 Hypothesis H26 : SNo (g u v )
L6843 Hypothesis H28 : SNo (g u y )
L6844 Hypothesis H29 : SNo (g x2 z )
L6845 Hypothesis H30 : SNo (g y y2 )
L6846 Hypothesis H31 : SNo (g u (g x2 z ) )
L6847 Hypothesis H32 : SNo (g u (g y y2 ) )
L6848 Hypothesis H33 : SNo (g x2 y2 )
L6849 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L6850 Hypothesis H35 : SNo (g x (g x2 z ) )
L6851 Hypothesis H36 : SNo (g x (g y y2 ) )
L6852 Hypothesis H37 : SNo (g u (g y z ) + g x v )
L6853 Hypothesis H38 : SNo (g (g x y ) z + g u v )
L6854 Hypothesis H39 : SNo (g u (g x2 y2 ) )
L6855 Hypothesis H40 : SNo (g u (v + g x2 y2 ) )
L6856
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__4__27
Beginning of Section Conj_mul_SNo_assoc_lem1__6__15
L6862 Variable g : (set → (set → set ) )
L6871 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L6872 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6873 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6874 Hypothesis H3 : SNo x
L6875 Hypothesis H4 : SNo z
L6876 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6877 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6878 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6879 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6880 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6881 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6882 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6883 Hypothesis H12 : SNo (g x y )
L6884 Hypothesis H13 : SNo (g (g x y ) z )
L6885 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L6886 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L6887 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L6888 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L6889 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6890 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6891 Hypothesis H21 : SNo u
L6892 Hypothesis H22 : SNo y2
L6893 Hypothesis H23 : SNo (g u (g y z ) )
L6894 Hypothesis H24 : SNo (g x v )
L6895 Hypothesis H25 : SNo (g x x2 )
L6896 Hypothesis H26 : SNo (g u v )
L6897 Hypothesis H27 : SNo (g u x2 )
L6898 Hypothesis H28 : SNo (g u y )
L6899 Hypothesis H29 : SNo (g x2 z )
L6900 Hypothesis H30 : SNo (g y y2 )
L6901 Hypothesis H31 : SNo (g u (g x2 z ) )
L6902 Hypothesis H32 : SNo (g u (g y y2 ) )
L6903 Hypothesis H33 : SNo (g x2 y2 )
L6904 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L6905 Hypothesis H35 : SNo (g x (g x2 z ) )
L6906 Hypothesis H36 : SNo (g x (g y y2 ) )
L6907 Hypothesis H37 : SNo (g u (g y z ) + g x v )
L6908 Hypothesis H38 : SNo (g (g x y ) z + g u v )
L6909 Hypothesis H39 : SNo (g u (g x2 y2 ) )
L6910
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__6__15
Beginning of Section Conj_mul_SNo_assoc_lem1__6__31
L6916 Variable g : (set → (set → set ) )
L6925 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L6926 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6927 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6928 Hypothesis H3 : SNo x
L6929 Hypothesis H4 : SNo z
L6930 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6931 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6932 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6933 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6934 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6935 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6936 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6937 Hypothesis H12 : SNo (g x y )
L6938 Hypothesis H13 : SNo (g (g x y ) z )
L6939 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L6940 Hypothesis H15 : SNo v
L6941 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L6942 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L6943 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L6944 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6945 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L6946 Hypothesis H21 : SNo u
L6947 Hypothesis H22 : SNo y2
L6948 Hypothesis H23 : SNo (g u (g y z ) )
L6949 Hypothesis H24 : SNo (g x v )
L6950 Hypothesis H25 : SNo (g x x2 )
L6951 Hypothesis H26 : SNo (g u v )
L6952 Hypothesis H27 : SNo (g u x2 )
L6953 Hypothesis H28 : SNo (g u y )
L6954 Hypothesis H29 : SNo (g x2 z )
L6955 Hypothesis H30 : SNo (g y y2 )
L6956 Hypothesis H32 : SNo (g u (g y y2 ) )
L6957 Hypothesis H33 : SNo (g x2 y2 )
L6958 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L6959 Hypothesis H35 : SNo (g x (g x2 z ) )
L6960 Hypothesis H36 : SNo (g x (g y y2 ) )
L6961 Hypothesis H37 : SNo (g u (g y z ) + g x v )
L6962 Hypothesis H38 : SNo (g (g x y ) z + g u v )
L6963 Hypothesis H39 : SNo (g u (g x2 y2 ) )
L6964
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__6__31
Beginning of Section Conj_mul_SNo_assoc_lem1__6__39
L6970 Variable g : (set → (set → set ) )
L6979 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L6980 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L6981 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L6982 Hypothesis H3 : SNo x
L6983 Hypothesis H4 : SNo z
L6984 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L6985 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L6986 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L6987 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L6988 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L6989 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L6990 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L6991 Hypothesis H12 : SNo (g x y )
L6992 Hypothesis H13 : SNo (g (g x y ) z )
L6993 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L6994 Hypothesis H15 : SNo v
L6995 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L6996 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L6997 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L6998 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L6999 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7000 Hypothesis H21 : SNo u
L7001 Hypothesis H22 : SNo y2
L7002 Hypothesis H23 : SNo (g u (g y z ) )
L7003 Hypothesis H24 : SNo (g x v )
L7004 Hypothesis H25 : SNo (g x x2 )
L7005 Hypothesis H26 : SNo (g u v )
L7006 Hypothesis H27 : SNo (g u x2 )
L7007 Hypothesis H28 : SNo (g u y )
L7008 Hypothesis H29 : SNo (g x2 z )
L7009 Hypothesis H30 : SNo (g y y2 )
L7010 Hypothesis H31 : SNo (g u (g x2 z ) )
L7011 Hypothesis H32 : SNo (g u (g y y2 ) )
L7012 Hypothesis H33 : SNo (g x2 y2 )
L7013 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L7014 Hypothesis H35 : SNo (g x (g x2 z ) )
L7015 Hypothesis H36 : SNo (g x (g y y2 ) )
L7016 Hypothesis H37 : SNo (g u (g y z ) + g x v )
L7017 Hypothesis H38 : SNo (g (g x y ) z + g u v )
L7018
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__6__39
Beginning of Section Conj_mul_SNo_assoc_lem1__9__22
L7024 Variable g : (set → (set → set ) )
L7033 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7034 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7035 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7036 Hypothesis H3 : SNo x
L7037 Hypothesis H4 : SNo z
L7038 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7039 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7040 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7041 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7042 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7043 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7044 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7045 Hypothesis H12 : SNo (g x y )
L7046 Hypothesis H13 : SNo (g (g x y ) z )
L7047 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7048 Hypothesis H15 : SNo v
L7049 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7050 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7051 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7052 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7053 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7054 Hypothesis H21 : SNo u
L7055 Hypothesis H23 : SNo (g u (g y z ) )
L7056 Hypothesis H24 : SNo (g x v )
L7057 Hypothesis H25 : SNo (g x x2 )
L7058 Hypothesis H26 : SNo (g u v )
L7059 Hypothesis H27 : SNo (g u x2 )
L7060 Hypothesis H28 : SNo (g u y )
L7061 Hypothesis H29 : SNo (g x2 z )
L7062 Hypothesis H30 : SNo (g y y2 )
L7063 Hypothesis H31 : SNo (g u (g x2 z ) )
L7064 Hypothesis H32 : SNo (g u (g y y2 ) )
L7065 Hypothesis H33 : SNo (g x2 y2 )
L7066 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L7067 Hypothesis H35 : SNo (g x (g x2 z ) )
L7068 Hypothesis H36 : SNo (g x (g y y2 ) )
L7069
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__9__22
Beginning of Section Conj_mul_SNo_assoc_lem1__10__14
L7075 Variable g : (set → (set → set ) )
L7084 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7085 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7086 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7087 Hypothesis H3 : SNo x
L7088 Hypothesis H4 : SNo z
L7089 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7090 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7091 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7092 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7093 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7094 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7095 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7096 Hypothesis H12 : SNo (g x y )
L7097 Hypothesis H13 : SNo (g (g x y ) z )
L7098 Hypothesis H15 : SNo v
L7099 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7100 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7101 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7102 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7103 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7104 Hypothesis H21 : SNo u
L7105 Hypothesis H22 : SNo y2
L7106 Hypothesis H23 : SNo (g u (g y z ) )
L7107 Hypothesis H24 : SNo (g x v )
L7108 Hypothesis H25 : SNo (g x x2 )
L7109 Hypothesis H26 : SNo (g u v )
L7110 Hypothesis H27 : SNo (g u x2 )
L7111 Hypothesis H28 : SNo (g u y )
L7112 Hypothesis H29 : SNo (g x2 z )
L7113 Hypothesis H30 : SNo (g y y2 )
L7114 Hypothesis H31 : SNo (g u (g x2 z ) )
L7115 Hypothesis H32 : SNo (g u (g y y2 ) )
L7116 Hypothesis H33 : SNo (g x2 y2 )
L7117 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L7118 Hypothesis H35 : SNo (g x (g x2 z ) )
L7119
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__10__14
Beginning of Section Conj_mul_SNo_assoc_lem1__10__16
L7125 Variable g : (set → (set → set ) )
L7134 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7135 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7136 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7137 Hypothesis H3 : SNo x
L7138 Hypothesis H4 : SNo z
L7139 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7140 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7141 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7142 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7143 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7144 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7145 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7146 Hypothesis H12 : SNo (g x y )
L7147 Hypothesis H13 : SNo (g (g x y ) z )
L7148 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7149 Hypothesis H15 : SNo v
L7150 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7151 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7152 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7153 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7154 Hypothesis H21 : SNo u
L7155 Hypothesis H22 : SNo y2
L7156 Hypothesis H23 : SNo (g u (g y z ) )
L7157 Hypothesis H24 : SNo (g x v )
L7158 Hypothesis H25 : SNo (g x x2 )
L7159 Hypothesis H26 : SNo (g u v )
L7160 Hypothesis H27 : SNo (g u x2 )
L7161 Hypothesis H28 : SNo (g u y )
L7162 Hypothesis H29 : SNo (g x2 z )
L7163 Hypothesis H30 : SNo (g y y2 )
L7164 Hypothesis H31 : SNo (g u (g x2 z ) )
L7165 Hypothesis H32 : SNo (g u (g y y2 ) )
L7166 Hypothesis H33 : SNo (g x2 y2 )
L7167 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L7168 Hypothesis H35 : SNo (g x (g x2 z ) )
L7169
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__10__16
Beginning of Section Conj_mul_SNo_assoc_lem1__10__19
L7175 Variable g : (set → (set → set ) )
L7184 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7185 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7186 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7187 Hypothesis H3 : SNo x
L7188 Hypothesis H4 : SNo z
L7189 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7190 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7191 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7192 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7193 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7194 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7195 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7196 Hypothesis H12 : SNo (g x y )
L7197 Hypothesis H13 : SNo (g (g x y ) z )
L7198 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7199 Hypothesis H15 : SNo v
L7200 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7201 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7202 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7203 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7204 Hypothesis H21 : SNo u
L7205 Hypothesis H22 : SNo y2
L7206 Hypothesis H23 : SNo (g u (g y z ) )
L7207 Hypothesis H24 : SNo (g x v )
L7208 Hypothesis H25 : SNo (g x x2 )
L7209 Hypothesis H26 : SNo (g u v )
L7210 Hypothesis H27 : SNo (g u x2 )
L7211 Hypothesis H28 : SNo (g u y )
L7212 Hypothesis H29 : SNo (g x2 z )
L7213 Hypothesis H30 : SNo (g y y2 )
L7214 Hypothesis H31 : SNo (g u (g x2 z ) )
L7215 Hypothesis H32 : SNo (g u (g y y2 ) )
L7216 Hypothesis H33 : SNo (g x2 y2 )
L7217 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L7218 Hypothesis H35 : SNo (g x (g x2 z ) )
L7219
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__10__19
Beginning of Section Conj_mul_SNo_assoc_lem1__10__26
L7225 Variable g : (set → (set → set ) )
L7234 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7235 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7236 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7237 Hypothesis H3 : SNo x
L7238 Hypothesis H4 : SNo z
L7239 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7240 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7241 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7242 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7243 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7244 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7245 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7246 Hypothesis H12 : SNo (g x y )
L7247 Hypothesis H13 : SNo (g (g x y ) z )
L7248 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7249 Hypothesis H15 : SNo v
L7250 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7251 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7252 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7253 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7254 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7255 Hypothesis H21 : SNo u
L7256 Hypothesis H22 : SNo y2
L7257 Hypothesis H23 : SNo (g u (g y z ) )
L7258 Hypothesis H24 : SNo (g x v )
L7259 Hypothesis H25 : SNo (g x x2 )
L7260 Hypothesis H27 : SNo (g u x2 )
L7261 Hypothesis H28 : SNo (g u y )
L7262 Hypothesis H29 : SNo (g x2 z )
L7263 Hypothesis H30 : SNo (g y y2 )
L7264 Hypothesis H31 : SNo (g u (g x2 z ) )
L7265 Hypothesis H32 : SNo (g u (g y y2 ) )
L7266 Hypothesis H33 : SNo (g x2 y2 )
L7267 Hypothesis H34 : SNo (g x (g x2 y2 ) )
L7268 Hypothesis H35 : SNo (g x (g x2 z ) )
L7269
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__10__26
Beginning of Section Conj_mul_SNo_assoc_lem1__12__2
L7275 Variable g : (set → (set → set ) )
L7284 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7285 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7286 Hypothesis H3 : SNo x
L7287 Hypothesis H4 : SNo z
L7288 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7289 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7290 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7291 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7292 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7293 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7294 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7295 Hypothesis H12 : SNo (g x y )
L7296 Hypothesis H13 : SNo (g (g x y ) z )
L7297 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7298 Hypothesis H15 : SNo v
L7299 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7300 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7301 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7302 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7303 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7304 Hypothesis H21 : SNo u
L7305 Hypothesis H22 : SNo y2
L7306 Hypothesis H23 : SNo (g u (g y z ) )
L7307 Hypothesis H24 : SNo (g x v )
L7308 Hypothesis H25 : SNo (g x x2 )
L7309 Hypothesis H26 : SNo (g u v )
L7310 Hypothesis H27 : SNo (g u x2 )
L7311 Hypothesis H28 : SNo (g u y )
L7312 Hypothesis H29 : SNo (g x2 z )
L7313 Hypothesis H30 : SNo (g y y2 )
L7314 Hypothesis H31 : SNo (g u (g x2 z ) )
L7315 Hypothesis H32 : SNo (g u (g y y2 ) )
L7316 Hypothesis H33 : SNo (g x2 y2 )
L7317
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__12__2
Beginning of Section Conj_mul_SNo_assoc_lem1__12__16
L7323 Variable g : (set → (set → set ) )
L7332 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7333 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7334 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7335 Hypothesis H3 : SNo x
L7336 Hypothesis H4 : SNo z
L7337 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7338 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7339 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7340 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7341 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7342 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7343 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7344 Hypothesis H12 : SNo (g x y )
L7345 Hypothesis H13 : SNo (g (g x y ) z )
L7346 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7347 Hypothesis H15 : SNo v
L7348 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7349 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7350 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7351 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7352 Hypothesis H21 : SNo u
L7353 Hypothesis H22 : SNo y2
L7354 Hypothesis H23 : SNo (g u (g y z ) )
L7355 Hypothesis H24 : SNo (g x v )
L7356 Hypothesis H25 : SNo (g x x2 )
L7357 Hypothesis H26 : SNo (g u v )
L7358 Hypothesis H27 : SNo (g u x2 )
L7359 Hypothesis H28 : SNo (g u y )
L7360 Hypothesis H29 : SNo (g x2 z )
L7361 Hypothesis H30 : SNo (g y y2 )
L7362 Hypothesis H31 : SNo (g u (g x2 z ) )
L7363 Hypothesis H32 : SNo (g u (g y y2 ) )
L7364 Hypothesis H33 : SNo (g x2 y2 )
L7365
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__12__16
Beginning of Section Conj_mul_SNo_assoc_lem1__12__17
L7371 Variable g : (set → (set → set ) )
L7380 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7381 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7382 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7383 Hypothesis H3 : SNo x
L7384 Hypothesis H4 : SNo z
L7385 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7386 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7387 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7388 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7389 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7390 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7391 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7392 Hypothesis H12 : SNo (g x y )
L7393 Hypothesis H13 : SNo (g (g x y ) z )
L7394 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7395 Hypothesis H15 : SNo v
L7396 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7397 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7398 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7399 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7400 Hypothesis H21 : SNo u
L7401 Hypothesis H22 : SNo y2
L7402 Hypothesis H23 : SNo (g u (g y z ) )
L7403 Hypothesis H24 : SNo (g x v )
L7404 Hypothesis H25 : SNo (g x x2 )
L7405 Hypothesis H26 : SNo (g u v )
L7406 Hypothesis H27 : SNo (g u x2 )
L7407 Hypothesis H28 : SNo (g u y )
L7408 Hypothesis H29 : SNo (g x2 z )
L7409 Hypothesis H30 : SNo (g y y2 )
L7410 Hypothesis H31 : SNo (g u (g x2 z ) )
L7411 Hypothesis H32 : SNo (g u (g y y2 ) )
L7412 Hypothesis H33 : SNo (g x2 y2 )
L7413
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__12__17
Beginning of Section Conj_mul_SNo_assoc_lem1__13__6
L7419 Variable g : (set → (set → set ) )
L7428 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7429 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7430 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7431 Hypothesis H3 : SNo x
L7432 Hypothesis H4 : SNo z
L7433 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7434 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7435 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7436 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7437 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7438 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7439 Hypothesis H12 : SNo (g x y )
L7440 Hypothesis H13 : SNo (g (g x y ) z )
L7441 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7442 Hypothesis H15 : SNo v
L7443 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7444 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7445 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7446 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7447 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7448 Hypothesis H21 : SNo u
L7449 Hypothesis H22 : SNo x2
L7450 Hypothesis H23 : SNo y2
L7451 Hypothesis H24 : SNo (g u (g y z ) )
L7452 Hypothesis H25 : SNo (g x v )
L7453 Hypothesis H26 : SNo (g x x2 )
L7454 Hypothesis H27 : SNo (g u v )
L7455 Hypothesis H28 : SNo (g u x2 )
L7456 Hypothesis H29 : SNo (g u y )
L7457 Hypothesis H30 : SNo (g x2 z )
L7458 Hypothesis H31 : SNo (g y y2 )
L7459 Hypothesis H32 : SNo (g u (g x2 z ) )
L7460 Hypothesis H33 : SNo (g u (g y y2 ) )
L7461
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__13__6
Beginning of Section Conj_mul_SNo_assoc_lem1__13__12
L7467 Variable g : (set → (set → set ) )
L7476 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7477 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7478 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7479 Hypothesis H3 : SNo x
L7480 Hypothesis H4 : SNo z
L7481 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7482 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7483 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7484 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7485 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7486 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7487 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7488 Hypothesis H13 : SNo (g (g x y ) z )
L7489 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7490 Hypothesis H15 : SNo v
L7491 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7492 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7493 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7494 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7495 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7496 Hypothesis H21 : SNo u
L7497 Hypothesis H22 : SNo x2
L7498 Hypothesis H23 : SNo y2
L7499 Hypothesis H24 : SNo (g u (g y z ) )
L7500 Hypothesis H25 : SNo (g x v )
L7501 Hypothesis H26 : SNo (g x x2 )
L7502 Hypothesis H27 : SNo (g u v )
L7503 Hypothesis H28 : SNo (g u x2 )
L7504 Hypothesis H29 : SNo (g u y )
L7505 Hypothesis H30 : SNo (g x2 z )
L7506 Hypothesis H31 : SNo (g y y2 )
L7507 Hypothesis H32 : SNo (g u (g x2 z ) )
L7508 Hypothesis H33 : SNo (g u (g y y2 ) )
L7509
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__13__12
Beginning of Section Conj_mul_SNo_assoc_lem1__13__26
L7515 Variable g : (set → (set → set ) )
L7524 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7525 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7526 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7527 Hypothesis H3 : SNo x
L7528 Hypothesis H4 : SNo z
L7529 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7530 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7531 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7532 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7533 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7534 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7535 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7536 Hypothesis H12 : SNo (g x y )
L7537 Hypothesis H13 : SNo (g (g x y ) z )
L7538 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7539 Hypothesis H15 : SNo v
L7540 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7541 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7542 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7543 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7544 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7545 Hypothesis H21 : SNo u
L7546 Hypothesis H22 : SNo x2
L7547 Hypothesis H23 : SNo y2
L7548 Hypothesis H24 : SNo (g u (g y z ) )
L7549 Hypothesis H25 : SNo (g x v )
L7550 Hypothesis H27 : SNo (g u v )
L7551 Hypothesis H28 : SNo (g u x2 )
L7552 Hypothesis H29 : SNo (g u y )
L7553 Hypothesis H30 : SNo (g x2 z )
L7554 Hypothesis H31 : SNo (g y y2 )
L7555 Hypothesis H32 : SNo (g u (g x2 z ) )
L7556 Hypothesis H33 : SNo (g u (g y y2 ) )
L7557
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__13__26
Beginning of Section Conj_mul_SNo_assoc_lem1__14__12
L7563 Variable g : (set → (set → set ) )
L7572 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7573 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7574 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7575 Hypothesis H3 : SNo x
L7576 Hypothesis H4 : SNo z
L7577 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7578 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7579 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7580 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7581 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7582 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7583 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7584 Hypothesis H13 : SNo (g (g x y ) z )
L7585 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7586 Hypothesis H15 : SNo v
L7587 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7588 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7589 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7590 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7591 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7592 Hypothesis H21 : SNo u
L7593 Hypothesis H22 : SNo x2
L7594 Hypothesis H23 : SNo y2
L7595 Hypothesis H24 : SNo (g u (g y z ) )
L7596 Hypothesis H25 : SNo (g x v )
L7597 Hypothesis H26 : SNo (g x x2 )
L7598 Hypothesis H27 : SNo (g u v )
L7599 Hypothesis H28 : SNo (g u x2 )
L7600 Hypothesis H29 : SNo (g u y )
L7601 Hypothesis H30 : SNo (g x2 z )
L7602 Hypothesis H31 : SNo (g y y2 )
L7603 Hypothesis H32 : SNo (g u (g x2 z ) )
L7604
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__14__12
Beginning of Section Conj_mul_SNo_assoc_lem1__14__21
L7610 Variable g : (set → (set → set ) )
L7619 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7620 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7621 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7622 Hypothesis H3 : SNo x
L7623 Hypothesis H4 : SNo z
L7624 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7625 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7626 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7627 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7628 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7629 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7630 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7631 Hypothesis H12 : SNo (g x y )
L7632 Hypothesis H13 : SNo (g (g x y ) z )
L7633 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7634 Hypothesis H15 : SNo v
L7635 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7636 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7637 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7638 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7639 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7640 Hypothesis H22 : SNo x2
L7641 Hypothesis H23 : SNo y2
L7642 Hypothesis H24 : SNo (g u (g y z ) )
L7643 Hypothesis H25 : SNo (g x v )
L7644 Hypothesis H26 : SNo (g x x2 )
L7645 Hypothesis H27 : SNo (g u v )
L7646 Hypothesis H28 : SNo (g u x2 )
L7647 Hypothesis H29 : SNo (g u y )
L7648 Hypothesis H30 : SNo (g x2 z )
L7649 Hypothesis H31 : SNo (g y y2 )
L7650 Hypothesis H32 : SNo (g u (g x2 z ) )
L7651
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__14__21
Beginning of Section Conj_mul_SNo_assoc_lem1__15__6
L7657 Variable g : (set → (set → set ) )
L7666 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7667 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7668 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7669 Hypothesis H3 : SNo x
L7670 Hypothesis H4 : SNo z
L7671 Hypothesis H5 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7672 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7673 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7674 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7675 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7676 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7677 Hypothesis H12 : SNo (g x y )
L7678 Hypothesis H13 : SNo (g (g x y ) z )
L7679 Hypothesis H14 : u ∈ SNoS_ (SNoLev x )
L7680 Hypothesis H15 : SNo v
L7681 Hypothesis H16 : x2 ∈ SNoS_ (SNoLev y )
L7682 Hypothesis H17 : y2 ∈ SNoS_ (SNoLev z )
L7683 Hypothesis H18 : w = g u (g y z ) + g x v + - (g u v )
L7684 Hypothesis H19 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7685 Hypothesis H20 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7686 Hypothesis H21 : SNo u
L7687 Hypothesis H22 : SNo x2
L7688 Hypothesis H23 : SNo y2
L7689 Hypothesis H24 : SNo (g u (g y z ) )
L7690 Hypothesis H25 : SNo (g x v )
L7691 Hypothesis H26 : SNo (g x x2 )
L7692 Hypothesis H27 : SNo (g u v )
L7693 Hypothesis H28 : SNo (g u x2 )
L7694 Hypothesis H29 : SNo (g u y )
L7695 Hypothesis H30 : SNo (g x2 z )
L7696 Hypothesis H31 : SNo (g y y2 )
L7697
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__15__6
Beginning of Section Conj_mul_SNo_assoc_lem1__17__0
L7703 Variable g : (set → (set → set ) )
L7712 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7713 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7714 Hypothesis H3 : SNo x
L7715 Hypothesis H4 : SNo y
L7716 Hypothesis H5 : SNo z
L7717 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7718 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7719 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7720 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7721 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7722 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7723 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7724 Hypothesis H13 : SNo (g x y )
L7725 Hypothesis H14 : SNo (g (g x y ) z )
L7726 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L7727 Hypothesis H16 : SNo v
L7728 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L7729 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L7730 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L7731 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7732 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7733 Hypothesis H22 : SNo u
L7734 Hypothesis H23 : SNo x2
L7735 Hypothesis H24 : SNo y2
L7736 Hypothesis H25 : SNo (g u (g y z ) )
L7737 Hypothesis H26 : SNo (g x v )
L7738 Hypothesis H27 : SNo (g x x2 )
L7739 Hypothesis H28 : SNo (g u v )
L7740 Hypothesis H29 : SNo (g u x2 )
L7741 Hypothesis H30 : SNo (g u y )
L7742
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__17__0
Beginning of Section Conj_mul_SNo_assoc_lem1__17__2
L7748 Variable g : (set → (set → set ) )
L7757 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7758 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7759 Hypothesis H3 : SNo x
L7760 Hypothesis H4 : SNo y
L7761 Hypothesis H5 : SNo z
L7762 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7763 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7764 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7765 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7766 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7767 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7768 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7769 Hypothesis H13 : SNo (g x y )
L7770 Hypothesis H14 : SNo (g (g x y ) z )
L7771 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L7772 Hypothesis H16 : SNo v
L7773 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L7774 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L7775 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L7776 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7777 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7778 Hypothesis H22 : SNo u
L7779 Hypothesis H23 : SNo x2
L7780 Hypothesis H24 : SNo y2
L7781 Hypothesis H25 : SNo (g u (g y z ) )
L7782 Hypothesis H26 : SNo (g x v )
L7783 Hypothesis H27 : SNo (g x x2 )
L7784 Hypothesis H28 : SNo (g u v )
L7785 Hypothesis H29 : SNo (g u x2 )
L7786 Hypothesis H30 : SNo (g u y )
L7787
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__17__2
Beginning of Section Conj_mul_SNo_assoc_lem1__17__14
L7793 Variable g : (set → (set → set ) )
L7802 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7803 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7804 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7805 Hypothesis H3 : SNo x
L7806 Hypothesis H4 : SNo y
L7807 Hypothesis H5 : SNo z
L7808 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7809 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7810 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7811 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7812 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7813 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7814 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7815 Hypothesis H13 : SNo (g x y )
L7816 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L7817 Hypothesis H16 : SNo v
L7818 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L7819 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L7820 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L7821 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7822 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7823 Hypothesis H22 : SNo u
L7824 Hypothesis H23 : SNo x2
L7825 Hypothesis H24 : SNo y2
L7826 Hypothesis H25 : SNo (g u (g y z ) )
L7827 Hypothesis H26 : SNo (g x v )
L7828 Hypothesis H27 : SNo (g x x2 )
L7829 Hypothesis H28 : SNo (g u v )
L7830 Hypothesis H29 : SNo (g u x2 )
L7831 Hypothesis H30 : SNo (g u y )
L7832
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__17__14
Beginning of Section Conj_mul_SNo_assoc_lem1__18__24
L7838 Variable g : (set → (set → set ) )
L7847 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7848 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7849 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7850 Hypothesis H3 : SNo x
L7851 Hypothesis H4 : SNo y
L7852 Hypothesis H5 : SNo z
L7853 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7854 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7855 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7856 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7857 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7858 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7859 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7860 Hypothesis H13 : SNo (g x y )
L7861 Hypothesis H14 : SNo (g (g x y ) z )
L7862 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L7863 Hypothesis H16 : SNo v
L7864 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L7865 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L7866 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L7867 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7868 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7869 Hypothesis H22 : SNo u
L7870 Hypothesis H23 : SNo x2
L7871 Hypothesis H25 : SNo (g u (g y z ) )
L7872 Hypothesis H26 : SNo (g x v )
L7873 Hypothesis H27 : SNo (g x x2 )
L7874 Hypothesis H28 : SNo (g u v )
L7875 Hypothesis H29 : SNo (g u x2 )
L7876
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__18__24
Beginning of Section Conj_mul_SNo_assoc_lem1__18__27
L7882 Variable g : (set → (set → set ) )
L7891 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7892 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7893 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7894 Hypothesis H3 : SNo x
L7895 Hypothesis H4 : SNo y
L7896 Hypothesis H5 : SNo z
L7897 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7898 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7899 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7900 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7901 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7902 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7903 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7904 Hypothesis H13 : SNo (g x y )
L7905 Hypothesis H14 : SNo (g (g x y ) z )
L7906 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L7907 Hypothesis H16 : SNo v
L7908 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L7909 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L7910 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L7911 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7912 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7913 Hypothesis H22 : SNo u
L7914 Hypothesis H23 : SNo x2
L7915 Hypothesis H24 : SNo y2
L7916 Hypothesis H25 : SNo (g u (g y z ) )
L7917 Hypothesis H26 : SNo (g x v )
L7918 Hypothesis H28 : SNo (g u v )
L7919 Hypothesis H29 : SNo (g u x2 )
L7920
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__18__27
Beginning of Section Conj_mul_SNo_assoc_lem1__19__13
L7926 Variable g : (set → (set → set ) )
L7935 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7936 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7937 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7938 Hypothesis H3 : SNo x
L7939 Hypothesis H4 : SNo y
L7940 Hypothesis H5 : SNo z
L7941 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7942 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7943 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7944 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7945 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7946 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7947 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7948 Hypothesis H14 : SNo (g (g x y ) z )
L7949 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L7950 Hypothesis H16 : SNo v
L7951 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L7952 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L7953 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L7954 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7955 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7956 Hypothesis H22 : SNo u
L7957 Hypothesis H23 : SNo x2
L7958 Hypothesis H24 : SNo y2
L7959 Hypothesis H25 : SNo (g u (g y z ) )
L7960 Hypothesis H26 : SNo (g x v )
L7961 Hypothesis H27 : SNo (g x x2 )
L7962 Hypothesis H28 : SNo (g u v )
L7963
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__19__13
Beginning of Section Conj_mul_SNo_assoc_lem1__20__5
L7969 Variable g : (set → (set → set ) )
L7978 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L7979 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L7980 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L7981 Hypothesis H3 : SNo x
L7982 Hypothesis H4 : SNo y
L7983 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L7984 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L7985 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L7986 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L7987 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L7988 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L7989 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L7990 Hypothesis H13 : SNo (g x y )
L7991 Hypothesis H14 : SNo (g (g x y ) z )
L7992 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L7993 Hypothesis H16 : SNo v
L7994 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L7995 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L7996 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L7997 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L7998 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L7999 Hypothesis H22 : SNo u
L8000 Hypothesis H23 : SNo x2
L8001 Hypothesis H24 : SNo y2
L8002 Hypothesis H25 : SNo (g u (g y z ) )
L8003 Hypothesis H26 : SNo (g x v )
L8004 Hypothesis H27 : SNo (g x x2 )
L8005
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__20__5
Beginning of Section Conj_mul_SNo_assoc_lem1__20__23
L8011 Variable g : (set → (set → set ) )
L8020 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L8021 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L8022 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L8023 Hypothesis H3 : SNo x
L8024 Hypothesis H4 : SNo y
L8025 Hypothesis H5 : SNo z
L8026 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L8027 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L8028 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L8029 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L8030 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L8031 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L8032 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L8033 Hypothesis H13 : SNo (g x y )
L8034 Hypothesis H14 : SNo (g (g x y ) z )
L8035 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L8036 Hypothesis H16 : SNo v
L8037 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L8038 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L8039 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L8040 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L8041 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L8042 Hypothesis H22 : SNo u
L8043 Hypothesis H24 : SNo y2
L8044 Hypothesis H25 : SNo (g u (g y z ) )
L8045 Hypothesis H26 : SNo (g x v )
L8046 Hypothesis H27 : SNo (g x x2 )
L8047
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__20__23
Beginning of Section Conj_mul_SNo_assoc_lem1__22__14
L8053 Variable g : (set → (set → set ) )
L8062 Hypothesis H0 : (∀z2 : set , ∀w2 : set , SNo z2 → SNo w2 → SNo (g z2 w2 ) )
L8063 Hypothesis H1 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g z2 (w2 + u2 ) = g z2 w2 + g z2 u2 )
L8064 Hypothesis H2 : (∀z2 : set , ∀w2 : set , ∀u2 : set , SNo z2 → SNo w2 → SNo u2 → g (z2 + w2 ) u2 = g z2 u2 + g w2 u2 )
L8065 Hypothesis H3 : SNo x
L8066 Hypothesis H4 : SNo y
L8067 Hypothesis H5 : SNo z
L8068 Hypothesis H6 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → g z2 (g y z ) = g (g z2 y ) z )
L8069 Hypothesis H7 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → g x (g z2 z ) = g (g x z2 ) z )
L8070 Hypothesis H8 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev z ) → g x (g y z2 ) = g (g x y ) z2 )
L8071 Hypothesis H9 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → g z2 (g w2 z ) = g (g z2 w2 ) z ) )
L8072 Hypothesis H10 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g z2 (g y w2 ) = g (g z2 y ) w2 ) )
L8073 Hypothesis H11 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev y ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev z ) → g x (g z2 w2 ) = g (g x z2 ) w2 ) )
L8074 Hypothesis H12 : (∀z2 : set , z2 ∈ SNoS_ (SNoLev x ) → (∀w2 : set , w2 ∈ SNoS_ (SNoLev y ) → (∀u2 : set , u2 ∈ SNoS_ (SNoLev z ) → g z2 (g w2 u2 ) = g (g z2 w2 ) u2 ) ) )
L8075 Hypothesis H13 : SNo (g x y )
L8076 Hypothesis H15 : u ∈ SNoS_ (SNoLev x )
L8077 Hypothesis H16 : SNo v
L8078 Hypothesis H17 : x2 ∈ SNoS_ (SNoLev y )
L8079 Hypothesis H18 : y2 ∈ SNoS_ (SNoLev z )
L8080 Hypothesis H19 : w = g u (g y z ) + g x v + - (g u v )
L8081 Hypothesis H20 : (g u (g x2 z + g y y2 ) + g x (v + g x2 y2 ) ) ≤ g x (g x2 z + g y y2 ) + g u (v + g x2 y2 )
L8082 Hypothesis H21 : (g (g u y + g x x2 ) z + g (g x y + g u x2 ) y2 ) < g (g x y + g u x2 ) z + g (g u y + g x x2 ) y2
L8083 Hypothesis H22 : SNo u
L8084 Hypothesis H23 : SNo x2
L8085 Hypothesis H24 : SNo y2
L8086 Hypothesis H25 : SNo (g u (g y z ) )
L8087
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_assoc_lem1__22__14