Beginning of Section Conj_ZF_UPair_closed__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : z ∈ UPair x y
Theorem. (
Conj_ZF_UPair_closed__1__1)
If_i (x ∈ Empty) x y ∈ Repl (𝒫 (𝒫 x)) (λw : set ⇒ If_i (x ∈ w) x y) → z ∈ Repl (𝒫 (𝒫 x)) (λw : set ⇒ If_i (x ∈ w) x y)
Proof:The rest of the proof is missing.
End of Section Conj_ZF_UPair_closed__1__1
Beginning of Section Conj_ZF_UPair_closed__5__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ZF_closed x
Proof:The rest of the proof is missing.
End of Section Conj_ZF_UPair_closed__5__1
Beginning of Section Conj_ordinal_ordsucc_In_eq__1__1
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Proof:The rest of the proof is missing.
End of Section Conj_ordinal_ordsucc_In_eq__1__1
Beginning of Section Conj_ordinal_famunion__2__0
Variable x : set
Variable f : (set → set)
Variable y : set
Variable z : set
Proof:The rest of the proof is missing.
End of Section Conj_ordinal_famunion__2__0
Beginning of Section Conj_KnasterTarski_set__3__0
Variable x : set
Variable f : (set → set)
Hypothesis H1 : Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z) ∈ 𝒫 x
Hypothesis H2 : f (Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z)) ∈ 𝒫 x
Hypothesis H3 : (∀y : set, y ∈ 𝒫 x → Subq (f y) y → Subq (Sep x (λz : set ⇒ ∀w : set, w ∈ 𝒫 x → Subq (f w) w → z ∈ w)) y)
Hypothesis H4 : Subq (f (Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z))) (Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z))
Theorem. (
Conj_KnasterTarski_set__3__0)
Subq (f (f (Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z)))) (f (Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z))) → (∃y : set, y ∈ 𝒫 x ∧ f y = y)
Proof:The rest of the proof is missing.
End of Section Conj_KnasterTarski_set__3__0
Beginning of Section Conj_KnasterTarski_set__4__0
Variable x : set
Variable f : (set → set)
Hypothesis H1 : Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z) ∈ 𝒫 x
Hypothesis H2 : f (Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z)) ∈ 𝒫 x
Hypothesis H3 : (∀y : set, y ∈ 𝒫 x → Subq (f y) y → Subq (Sep x (λz : set ⇒ ∀w : set, w ∈ 𝒫 x → Subq (f w) w → z ∈ w)) y)
Theorem. (
Conj_KnasterTarski_set__4__0)
Subq (f (Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z))) (Sep x (λy : set ⇒ ∀z : set, z ∈ 𝒫 x → Subq (f z) z → y ∈ z)) → (∃y : set, y ∈ 𝒫 x ∧ f y = y)
Proof:The rest of the proof is missing.
End of Section Conj_KnasterTarski_set__4__0
Beginning of Section Conj_SchroederBernstein__3__3
Variable x : set
Variable y : set
Variable f : (set → set)
Variable f2 : (set → set)
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, x2 ∈ y → (∀y2 : set, y2 ∈ y → f2 x2 = f2 y2 → x2 = y2))
Hypothesis H1 : (λx2 : set ⇒ Repl (setminus y (Repl (setminus x x2) (λy2 : set ⇒ f y2))) (λy2 : set ⇒ f2 y2)) z = z
Hypothesis H2 : w = f2 v
Proof:The rest of the proof is missing.
End of Section Conj_SchroederBernstein__3__3
Beginning of Section Conj_PigeonHole_nat__1__0
Variable x : set
Variable f : (set → set)
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : z ∈ ordsucc (ordsucc x)
Hypothesis H2 : ordsucc w ∈ ordsucc (ordsucc x)
Hypothesis H3 : ¬ Subq y z
Hypothesis H4 : Subq y w
Hypothesis H5 : f z = f (ordsucc w)
Proof:The rest of the proof is missing.
End of Section Conj_PigeonHole_nat__1__0
Beginning of Section Conj_PigeonHole_nat__5__1
Variable x : set
Variable f : (set → set)
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H2 : z ∈ ordsucc x
Hypothesis H3 : w ∈ ordsucc x
Hypothesis H4 : z ∈ ordsucc (ordsucc x)
Theorem. (
Conj_PigeonHole_nat__5__1)
ordsucc z ∈ ordsucc (ordsucc x) → If_i (Subq y z) (f (ordsucc z)) (f z) = If_i (Subq y w) (f (ordsucc w)) (f w) → z = w
Proof:The rest of the proof is missing.
End of Section Conj_PigeonHole_nat__5__1
Beginning of Section Conj_PigeonHole_nat_bij__2__2
Variable x : set
Variable f : (set → set)
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ x → (∀v : set, v ∈ x → f u = f v → u = v))
Hypothesis H1 : ¬ (∃u : set, u ∈ x ∧ f u = y)
Hypothesis H3 : w ∈ ordsucc x
Proof:The rest of the proof is missing.
End of Section Conj_PigeonHole_nat_bij__2__2
Beginning of Section Conj_finite_ind__2__4
Variable p : (set → prop)
Variable x : set
Variable y : set
Variable f : (set → set)
Hypothesis H0 : (∀z : set, ∀w : set, finite z → nIn w z → p z → p (binunion z (Sing w)))
Hypothesis H1 : nat_p x
Hypothesis H2 : (∀z : set, equip z x → p z)
Hypothesis H3 : (∀z : set, z ∈ ordsucc x → f z ∈ y)
Hypothesis H5 : (∀z : set, z ∈ y → (∃w : set, w ∈ ordsucc x ∧ f w = z))
Proof:The rest of the proof is missing.
End of Section Conj_finite_ind__2__4
Beginning of Section Conj_Descr_Vo1_prop__1__1
Variable P : ((set → prop) → prop)
Variable p : (set → prop)
Hypothesis H0 : (∀q : set → prop, ∀p2 : set → prop, P q → P p2 → q = p2)
Proof:The rest of the proof is missing.
End of Section Conj_Descr_Vo1_prop__1__1
Beginning of Section Conj_nat_setsum1_ordsucc__1__0
Variable x : set
Variable y : set
Hypothesis H1 : x = ordsucc y
Proof:The rest of the proof is missing.
End of Section Conj_nat_setsum1_ordsucc__1__0
Beginning of Section Conj_PNoLt_trichotomy_or__6__2
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable q : (set → prop)
Hypothesis H0 : TransSet y
Hypothesis H1 : PNoEq_ (binintersect x y) p q
Proof:The rest of the proof is missing.
End of Section Conj_PNoLt_trichotomy_or__6__2
Beginning of Section Conj_PNoLt_trichotomy_or__7__2
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Hypothesis H3 : TransSet y
Proof:The rest of the proof is missing.
End of Section Conj_PNoLt_trichotomy_or__7__2
Beginning of Section Conj_PNoLt_tra__1__0
Variable x : set
Variable y : set
Variable z : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable p2 : (set → prop)
Variable w : set
Hypothesis H1 : ordinal y
Hypothesis H2 : TransSet z
Hypothesis H3 : PNoEq_ x p q
Hypothesis H4 : q x
Hypothesis H7 : PNoEq_ w q p2
Hypothesis H8 : ¬ q w
Hypothesis H9 : p2 w
Proof:The rest of the proof is missing.
End of Section Conj_PNoLt_tra__1__0
Beginning of Section Conj_PNoLt_tra__2__12
Variable x : set
Variable y : set
Variable z : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable p2 : (set → prop)
Variable w : set
Variable u : set
Hypothesis H0 : ordinal y
Hypothesis H1 : TransSet x
Hypothesis H2 : TransSet z
Hypothesis H4 : PNoEq_ w p q
Hypothesis H5 : ¬ p w
Hypothesis H6 : q w
Hypothesis H7 : ordinal w
Hypothesis H10 : PNoEq_ u q p2
Hypothesis H11 : ¬ q u
Proof:The rest of the proof is missing.
End of Section Conj_PNoLt_tra__2__12
Beginning of Section Conj_PNoLe_tra__1__0
Variable x : set
Variable y : set
Variable z : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable p2 : (set → prop)
Hypothesis H1 : ordinal z
Hypothesis H2 : PNoLe y q z p2
Hypothesis H3 : x = y
Hypothesis H4 : PNoEq_ x p q
Proof:The rest of the proof is missing.
End of Section Conj_PNoLe_tra__1__0
Beginning of Section Conj_PNo_rel_strict_upperbd_antimon__6__1
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H2 : TransSet x
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_strict_upperbd_antimon__6__1
Beginning of Section Conj_PNo_rel_strict_upperbd_antimon__6__2
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Hypothesis H0 : ordinal x
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_strict_upperbd_antimon__6__2
Beginning of Section Conj_PNo_rel_strict_lowerbd_antimon__4__0
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable z : set
Variable q : (set → prop)
Hypothesis H1 : TransSet x
Hypothesis H2 : TransSet y
Hypothesis H3 : (∀w : set, w ∈ x → (∀p2 : set → prop, PNo_upc P w p2 → PNoLt x p w p2))
Hypothesis H5 : PNo_upc P z q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_strict_lowerbd_antimon__4__0
Beginning of Section Conj_PNo_rel_imv_ex__4__9
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀w : set, w ∈ x → (∀p2 : set → prop, PNo_upc P w p2 → PNoLt x p w p2))
Hypothesis H2 : PNoEq_ x p (λw : set ⇒ p w ∨ w = x)
Hypothesis H3 : PNo_upc P y q
Hypothesis H4 : ordinal y
Hypothesis H5 : y = x
Hypothesis H7 : PNoEq_ z q (λw : set ⇒ p w ∨ w = x)
Hypothesis H8 : ¬ q z
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__4__9
Beginning of Section Conj_PNo_rel_imv_ex__7__0
Variable x : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable y : set
Hypothesis H1 : PNoEq_ x p (λz : set ⇒ p z ∨ z = x)
Hypothesis H3 : PNoEq_ y (λz : set ⇒ p z ∨ z = x) q
Hypothesis H4 : ¬ (p y ∨ y = x)
Hypothesis H5 : ordinal y
Hypothesis H6 : PNoLt y q x p
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__7__0
Beginning of Section Conj_PNo_rel_imv_ex__7__3
Variable x : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : PNoEq_ x p (λz : set ⇒ p z ∨ z = x)
Hypothesis H4 : ¬ (p y ∨ y = x)
Hypothesis H5 : ordinal y
Hypothesis H6 : PNoLt y q x p
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__7__3
Beginning of Section Conj_PNo_rel_imv_ex__7__4
Variable x : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : PNoEq_ x p (λz : set ⇒ p z ∨ z = x)
Hypothesis H3 : PNoEq_ y (λz : set ⇒ p z ∨ z = x) q
Hypothesis H5 : ordinal y
Hypothesis H6 : PNoLt y q x p
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__7__4
Beginning of Section Conj_PNo_rel_imv_ex__15__3
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : ¬ (∃q : set → prop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H1 : x = ordsucc y
Hypothesis H2 : ordinal y
Hypothesis H4 : binintersect y (ordsucc y) = y
Hypothesis H5 : binintersect (ordsucc y) y = y
Hypothesis H6 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_downc P z q → PNoLt z q y p))
Hypothesis H7 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_upc Q z q → PNoLt y p z q))
Hypothesis H8 : (∀q : set → prop, PNo_rel_strict_imv P Q y q → PNoEq_ y p q)
Hypothesis H9 : PNoEq_ y p (λz : set ⇒ p z ∨ z = y)
Hypothesis H10 : PNoLt y p (ordsucc y) (λz : set ⇒ p z ∨ z = y)
Hypothesis H11 : ¬ (PNo_rel_strict_imv P Q x (λz : set ⇒ p z ∧ z ≠ y) ∧ PNo_rel_strict_imv P Q x (λz : set ⇒ p z ∨ z = y))
Hypothesis H12 : (∀q : set → prop, PNo_upc Q y q → ¬ PNoEq_ y p q)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__15__3
Beginning of Section Conj_PNo_rel_imv_ex__15__11
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : ¬ (∃q : set → prop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H1 : x = ordsucc y
Hypothesis H2 : ordinal y
Hypothesis H3 : ordinal (ordsucc y)
Hypothesis H4 : binintersect y (ordsucc y) = y
Hypothesis H5 : binintersect (ordsucc y) y = y
Hypothesis H6 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_downc P z q → PNoLt z q y p))
Hypothesis H7 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_upc Q z q → PNoLt y p z q))
Hypothesis H8 : (∀q : set → prop, PNo_rel_strict_imv P Q y q → PNoEq_ y p q)
Hypothesis H9 : PNoEq_ y p (λz : set ⇒ p z ∨ z = y)
Hypothesis H10 : PNoLt y p (ordsucc y) (λz : set ⇒ p z ∨ z = y)
Hypothesis H12 : (∀q : set → prop, PNo_upc Q y q → ¬ PNoEq_ y p q)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__15__11
Beginning of Section Conj_PNo_rel_imv_ex__16__2
Variable x : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : PNoEq_ x (λz : set ⇒ p z ∧ z ≠ x) p
Hypothesis H3 : PNoEq_ y q (λz : set ⇒ p z ∧ z ≠ x)
Hypothesis H4 : p y ∧ y ≠ x
Hypothesis H5 : ordinal y
Hypothesis H6 : PNoLt x p y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__16__2
Beginning of Section Conj_PNo_rel_imv_ex__17__0
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Variable z : set
Hypothesis H1 : (∀w : set, w ∈ x → (∀p2 : set → prop, PNo_upc P w p2 → PNoLt x p w p2))
Hypothesis H2 : PNoEq_ x (λw : set ⇒ p w ∧ w ≠ x) p
Hypothesis H3 : PNo_upc P y q
Hypothesis H4 : ordinal y
Hypothesis H5 : y = x
Hypothesis H7 : PNoEq_ z q (λw : set ⇒ p w ∧ w ≠ x)
Hypothesis H8 : ¬ q z
Hypothesis H9 : p z ∧ z ≠ x
Hypothesis H10 : ordinal z
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__17__0
Beginning of Section Conj_PNo_rel_imv_ex__19__3
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : binintersect x (ordsucc x) = x
Hypothesis H4 : PNoEq_ x (λz : set ⇒ p z ∧ z ≠ x) p
Hypothesis H5 : PNoLt (ordsucc x) (λz : set ⇒ p z ∧ z ≠ x) x p
Hypothesis H6 : y ∈ ordsucc x
Hypothesis H7 : PNo_upc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__19__3
Beginning of Section Conj_PNo_rel_imv_ex__20__5
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀w : set, w ∈ x → (∀p2 : set → prop, PNo_downc P w p2 → PNoLt w p2 x p))
Hypothesis H2 : PNo_downc P y q
Hypothesis H3 : ordinal y
Hypothesis H4 : y = x
Hypothesis H6 : q z
Hypothesis H7 : ordinal z
Hypothesis H8 : PNoLt x p z q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__20__5
Beginning of Section Conj_PNo_rel_imv_ex__22__6
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀w : set, w ∈ x → (∀p2 : set → prop, PNo_downc P w p2 → PNoLt w p2 x p))
Hypothesis H2 : PNoEq_ x (λw : set ⇒ p w ∧ w ≠ x) p
Hypothesis H3 : PNo_downc P y q
Hypothesis H4 : ordinal y
Hypothesis H5 : y = x
Hypothesis H7 : PNoEq_ z (λw : set ⇒ p w ∧ w ≠ x) q
Hypothesis H8 : ¬ (p z ∧ z ≠ x)
Hypothesis H9 : q z
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__22__6
Beginning of Section Conj_PNo_rel_imv_ex__29__1
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : ¬ (∃q : set → prop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H2 : ordinal y
Hypothesis H3 : ordinal (ordsucc y)
Hypothesis H4 : binintersect y (ordsucc y) = y
Hypothesis H5 : binintersect (ordsucc y) y = y
Hypothesis H6 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_downc P z q → PNoLt z q y p))
Hypothesis H7 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_upc Q z q → PNoLt y p z q))
Hypothesis H8 : (∀q : set → prop, PNo_rel_strict_imv P Q y q → PNoEq_ y p q)
Hypothesis H9 : PNoEq_ y (λz : set ⇒ p z ∧ z ≠ y) p
Hypothesis H10 : PNoLt (ordsucc y) (λz : set ⇒ p z ∧ z ≠ y) y p
Hypothesis H11 : ¬ (PNo_rel_strict_imv P Q x (λz : set ⇒ p z ∧ z ≠ y) ∧ PNo_rel_strict_imv P Q x (λz : set ⇒ p z ∨ z = y))
Hypothesis H12 : (∀q : set → prop, PNo_downc P y q → ¬ PNoEq_ y p q)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__29__1
Beginning of Section Conj_PNo_rel_imv_ex__32__9
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ¬ (∃q : set → prop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H2 : ¬ (∃z : set, z ∈ x ∧ (∃q : set → prop, PNo_rel_strict_split_imv P Q z q))
Hypothesis H4 : x = ordsucc y
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal (ordsucc y)
Hypothesis H7 : binintersect y (ordsucc y) = y
Hypothesis H8 : binintersect (ordsucc y) y = y
Hypothesis H10 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_upc Q z q → PNoLt y p z q))
Hypothesis H11 : (∀q : set → prop, PNo_rel_strict_imv P Q y q → PNoEq_ y p q)
Hypothesis H12 : PNoEq_ y (λz : set ⇒ p z ∧ z ≠ y) p
Hypothesis H13 : PNoLt (ordsucc y) (λz : set ⇒ p z ∧ z ≠ y) y p
Hypothesis H14 : PNoEq_ y p (λz : set ⇒ p z ∨ z = y)
Hypothesis H15 : p y ∨ y = y
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__32__9
Beginning of Section Conj_PNo_rel_imv_ex__32__11
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ¬ (∃q : set → prop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H2 : ¬ (∃z : set, z ∈ x ∧ (∃q : set → prop, PNo_rel_strict_split_imv P Q z q))
Hypothesis H4 : x = ordsucc y
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal (ordsucc y)
Hypothesis H7 : binintersect y (ordsucc y) = y
Hypothesis H8 : binintersect (ordsucc y) y = y
Hypothesis H9 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_downc P z q → PNoLt z q y p))
Hypothesis H10 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_upc Q z q → PNoLt y p z q))
Hypothesis H12 : PNoEq_ y (λz : set ⇒ p z ∧ z ≠ y) p
Hypothesis H13 : PNoLt (ordsucc y) (λz : set ⇒ p z ∧ z ≠ y) y p
Hypothesis H14 : PNoEq_ y p (λz : set ⇒ p z ∨ z = y)
Hypothesis H15 : p y ∨ y = y
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__32__11
Beginning of Section Conj_PNo_rel_imv_ex__37__7
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ¬ (∃q : set → prop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H2 : ¬ (∃z : set, z ∈ x ∧ (∃q : set → prop, PNo_rel_strict_split_imv P Q z q))
Hypothesis H4 : x = ordsucc y
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal (ordsucc y)
Hypothesis H8 : binintersect (ordsucc y) y = y
Hypothesis H9 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_downc P z q → PNoLt z q y p))
Hypothesis H10 : (∀z : set, z ∈ y → (∀q : set → prop, PNo_upc Q z q → PNoLt y p z q))
Hypothesis H11 : (∀q : set → prop, PNo_rel_strict_imv P Q y q → PNoEq_ y p q)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__37__7
Beginning of Section Conj_PNo_rel_imv_ex__38__8
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ¬ (∃p : set → prop, PNo_rel_strict_uniq_imv P Q x p)
Hypothesis H2 : ¬ (∃z : set, z ∈ x ∧ (∃p : set → prop, PNo_rel_strict_split_imv P Q z p))
Hypothesis H3 : (∀z : set, z ∈ x → (∃p : set → prop, PNo_rel_strict_uniq_imv P Q z p))
Hypothesis H5 : x = ordsucc y
Hypothesis H6 : ordinal y
Hypothesis H7 : ordinal (ordsucc y)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__38__8
Beginning of Section Conj_PNo_rel_imv_ex__39__1
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H2 : ¬ (∃z : set, z ∈ x ∧ (∃p : set → prop, PNo_rel_strict_split_imv P Q z p))
Hypothesis H3 : (∀z : set, z ∈ x → (∃p : set → prop, PNo_rel_strict_uniq_imv P Q z p))
Hypothesis H5 : x = ordsucc y
Hypothesis H6 : ordinal y
Hypothesis H7 : ordinal (ordsucc y)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__39__1
Beginning of Section Conj_PNo_rel_imv_ex__40__5
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ordinal x
Hypothesis H2 : ¬ (∃p : set → prop, PNo_rel_strict_uniq_imv P Q x p)
Hypothesis H3 : ¬ (∃z : set, z ∈ x ∧ (∃p : set → prop, PNo_rel_strict_split_imv P Q z p))
Hypothesis H4 : (∀z : set, z ∈ x → (∃p : set → prop, PNo_rel_strict_uniq_imv P Q z p))
Hypothesis H6 : x = ordsucc y
Hypothesis H7 : ordinal y
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__40__5
Beginning of Section Conj_PNo_rel_imv_ex__45__7
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : TransSet x
Hypothesis H1 : ordinal y
Hypothesis H2 : (∀z : set, z ∈ y → z ∈ x → PNo_rel_strict_uniq_imv P Q z (λw : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc w) q → q w))
Hypothesis H4 : PNo_rel_strict_imv P Q y p
Hypothesis H5 : PNo_rel_strict_upperbd P y p
Hypothesis H6 : PNo_rel_strict_lowerbd Q y p
Theorem. (
Conj_PNo_rel_imv_ex__45__7)
PNoEq_ y (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z) p → PNo_rel_strict_imv P Q y (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z) ∧ (∀q : set → prop, PNo_rel_strict_imv P Q y q → PNoEq_ y (λz : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc z) p2 → p2 z) q)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__45__7
Beginning of Section Conj_PNo_rel_imv_ex__49__2
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : PNo_upc Q y p
Hypothesis H1 : ordinal y
Hypothesis H3 : PNoEq_ y p (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z)
Hypothesis H4 : (∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc y) q → q y)
Hypothesis H5 : PNo_rel_strict_lowerbd Q (ordsucc y) (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z)
Theorem. (
Conj_PNo_rel_imv_ex__49__2)
PNoLt (ordsucc y) (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z) y p → PNoLt x (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z) y p
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__49__2
Beginning of Section Conj_PNo_rel_imv_ex__54__4
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Hypothesis H0 : (∀w : set, w ∈ x → ordsucc w ∈ x)
Hypothesis H1 : (∀w : set, w ∈ x → PNo_rel_strict_uniq_imv P Q w (λu : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc u) q → q u))
Hypothesis H2 : PNo_upc Q y p
Hypothesis H3 : ordinal y
Hypothesis H6 : PNoEq_ z p (λw : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc w) q → q w)
Hypothesis H7 : ¬ p z
Hypothesis H8 : (∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z)
Theorem. (
Conj_PNo_rel_imv_ex__54__4)
ordinal z → PNoLt x (λw : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc w) q → q w) y p
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__54__4
Beginning of Section Conj_PNo_rel_imv_ex__58__3
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_imv P Q (ordsucc x) p
Hypothesis H4 : p y
Hypothesis H5 : (∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc y) q → PNoEq_ (ordsucc y) (λz : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc z) p2 → p2 z) q)
Theorem. (
Conj_PNo_rel_imv_ex__58__3)
PNoEq_ (ordsucc y) (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z) p → (∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc y) q → q y)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__58__3
Beginning of Section Conj_PNo_rel_imv_ex__62__6
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable z : set
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀w : set, w ∈ x → ordsucc w ∈ x)
Hypothesis H2 : (∀w : set, w ∈ x → PNo_rel_strict_uniq_imv P Q w (λu : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc u) p2 → p2 u))
Hypothesis H4 : ordinal y
Hypothesis H5 : ordinal (ordsucc y)
Hypothesis H7 : PNo_rel_strict_imv P Q (ordsucc y) q
Hypothesis H9 : ¬ p z
Hypothesis H10 : q z
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__62__6
Beginning of Section Conj_PNo_rel_imv_ex__64__8
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable q : (set → prop)
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀z : set, z ∈ x → ordsucc z ∈ x)
Hypothesis H2 : (∀z : set, z ∈ x → PNo_rel_strict_uniq_imv P Q z (λw : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc w) p2 → p2 w))
Hypothesis H4 : PNo_downc P y p
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal (ordsucc y)
Hypothesis H7 : PNoEq_ y (λz : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc z) p2 → p2 z) p
Hypothesis H9 : PNo_rel_strict_upperbd P (ordsucc y) q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__64__8
Beginning of Section Conj_PNo_rel_imv_ex__65__3
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_imv P Q (ordsucc x) p
Hypothesis H4 : p y
Hypothesis H5 : (∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc y) q → PNoEq_ (ordsucc y) (λz : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc z) p2 → p2 z) q)
Theorem. (
Conj_PNo_rel_imv_ex__65__3)
PNoEq_ (ordsucc y) (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z) p → (∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc y) q → q y)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__65__3
Beginning of Section Conj_PNo_rel_imv_ex__68__8
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Variable z : set
Hypothesis H0 : (∀w : set, w ∈ x → ordsucc w ∈ x)
Hypothesis H1 : (∀w : set, w ∈ x → PNo_rel_strict_uniq_imv P Q w (λu : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc u) p2 → p2 u))
Hypothesis H2 : PNoEq_ y (λw : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc w) p2 → p2 w) p
Hypothesis H3 : ordinal y
Hypothesis H4 : ordinal (ordsucc y)
Hypothesis H5 : PNo_rel_strict_imv P Q (ordsucc y) q
Hypothesis H7 : ¬ p z
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__68__8
Beginning of Section Conj_PNo_rel_imv_ex__71__8
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀w : set, w ∈ x → ordsucc w ∈ x)
Hypothesis H2 : (∀w : set, w ∈ x → PNo_rel_strict_uniq_imv P Q w (λu : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc u) p2 → p2 u))
Hypothesis H3 : PNo_downc P y p
Hypothesis H4 : ordinal y
Hypothesis H7 : PNoEq_ z (λw : set ⇒ ∀p2 : set → prop, PNo_rel_strict_imv P Q (ordsucc w) p2 → p2 w) p
Hypothesis H9 : ordinal z
Hypothesis H10 : ordinal (ordsucc z)
Hypothesis H11 : PNo_rel_strict_imv P Q (ordsucc z) q
Hypothesis H12 : PNo_rel_strict_upperbd P (ordsucc z) q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__71__8
Beginning of Section Conj_PNo_rel_imv_ex__73__4
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀w : set, w ∈ x → ordsucc w ∈ x)
Hypothesis H2 : (∀w : set, w ∈ x → PNo_rel_strict_uniq_imv P Q w (λu : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc u) q → q u))
Hypothesis H3 : PNo_downc P y p
Hypothesis H7 : PNoEq_ z (λw : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc w) q → q w) p
Hypothesis H8 : ¬ (∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z)
Hypothesis H9 : p z
Theorem. (
Conj_PNo_rel_imv_ex__73__4)
ordinal z → PNoLt y p x (λw : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc w) q → q w)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__73__4
Beginning of Section Conj_PNo_rel_imv_ex__75__0
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H1 : TransSet x
Hypothesis H2 : (∀z : set, z ∈ x → ordsucc z ∈ x)
Hypothesis H3 : (∀z : set, z ∈ x → PNo_rel_strict_uniq_imv P Q z (λw : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc w) q → q w))
Hypothesis H5 : PNo_downc P y p
Theorem. (
Conj_PNo_rel_imv_ex__75__0)
ordinal y → PNoLt y p x (λz : set ⇒ ∀q : set → prop, PNo_rel_strict_imv P Q (ordsucc z) q → q z)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__75__0
Beginning of Section Conj_PNo_rel_imv_ex__77__2
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H3 : (∀y : set, y ∈ x → (∃p : set → prop, PNo_rel_strict_uniq_imv P Q y p))
Hypothesis H4 : (∀y : set, y ∈ x → ordsucc y ∈ x)
Theorem. (
Conj_PNo_rel_imv_ex__77__2)
¬ (∀y : set, ordinal y → y ∈ x → PNo_rel_strict_uniq_imv P Q y (λz : set ⇒ ∀p : set → prop, PNo_rel_strict_imv P Q (ordsucc z) p → p z))
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_imv_ex__77__2
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__3__3
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : PNo_lenbdd x P
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H4 : PNoEq_ x p (λz : set ⇒ p z ∧ z ≠ x)
Hypothesis H5 : y ∈ ordsucc x
Hypothesis H6 : PNo_upc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__3__3
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__4__2
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__4__2
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__5__0
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_upperbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : set ⇒ p z ∧ z ≠ x)
Hypothesis H5 : ordinal y
Hypothesis H7 : y ∈ ordsucc x
Hypothesis H8 : PNo_downc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__5__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__6__7
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_upperbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : set ⇒ p z ∧ z ≠ x)
Hypothesis H5 : ordinal y
Hypothesis H6 : P y q
Hypothesis H8 : y ∈ ordsucc x
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__6__7
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__9__0
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_lenbdd x P
Hypothesis H3 : PNo_rel_strict_upperbd P x p
Hypothesis H4 : ordinal (ordsucc x)
Hypothesis H5 : PNoEq_ x p (λz : set ⇒ p z ∧ z ≠ x)
Hypothesis H6 : y ∈ ordsucc x
Hypothesis H7 : PNo_downc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__9__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__10__0
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_lenbdd x P
Hypothesis H3 : PNo_lenbdd x Q
Hypothesis H4 : PNo_rel_strict_upperbd P x p
Hypothesis H5 : PNo_rel_strict_lowerbd Q x p
Hypothesis H6 : ordinal (ordsucc x)
Theorem. (
Conj_PNo_lenbdd_strict_imv_extend0__10__0)
PNoEq_ x p (λy : set ⇒ p y ∧ y ≠ x) → PNo_rel_strict_upperbd P (ordsucc x) (λy : set ⇒ p y ∧ y ≠ x) ∧ PNo_rel_strict_lowerbd Q (ordsucc x) (λy : set ⇒ p y ∧ y ≠ x)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__10__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__0
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : set ⇒ p z ∨ z = x)
Hypothesis H5 : ordinal y
Hypothesis H7 : y ∈ ordsucc x
Hypothesis H8 : PNo_upc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__1
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : set ⇒ p z ∨ z = x)
Hypothesis H5 : ordinal y
Hypothesis H7 : y ∈ ordsucc x
Hypothesis H8 : PNo_upc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__1
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__5
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : set ⇒ p z ∨ z = x)
Hypothesis H7 : y ∈ ordsucc x
Hypothesis H8 : PNo_upc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__5
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__4__6
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : set ⇒ p z ∨ z = x)
Hypothesis H5 : ordinal y
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__4__6
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__7__6
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_lenbdd x P
Hypothesis H3 : PNo_rel_strict_lowerbd P x p
Hypothesis H4 : ordinal (ordsucc x)
Hypothesis H5 : PNoEq_ x p (λz : set ⇒ p z ∨ z = x)
Hypothesis H7 : PNo_upc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__7__6
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__1__5
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H2 : TransSet x
Hypothesis H3 : ordinal y
Hypothesis H4 : ordinal z
Hypothesis H6 : PNoLt z q x p
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__1__5
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__3__9
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Variable w : set
Variable p2 : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H3 : TransSet x
Hypothesis H4 : ordinal y
Hypothesis H5 : ordinal z
Hypothesis H6 : Subq z y
Hypothesis H7 : ordinal w
Hypothesis H8 : PNoLe z q w p2
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__3__9
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__4__0
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Variable w : set
Variable p2 : (set → prop)
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H2 : PNo_strict_upperbd P x p
Hypothesis H4 : TransSet x
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal z
Hypothesis H7 : Subq z y
Hypothesis H8 : ordinal w
Hypothesis H9 : P w p2
Hypothesis H10 : PNoLe z q w p2
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__4__0
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__7__4
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H2 : PNo_strict_upperbd P x p
Hypothesis H5 : TransSet x
Hypothesis H6 : ordinal y
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__7__4
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__9__2
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H4 : PNo_downc P z q
Hypothesis H5 : TransSet x
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__9__2
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__4__8
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Variable w : set
Variable p2 : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H2 : PNo_strict_lowerbd P x p
Hypothesis H4 : TransSet x
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal z
Hypothesis H7 : Subq z y
Hypothesis H9 : P w p2
Hypothesis H10 : PNoLe w p2 z q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__4__8
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__5__5
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H2 : PNo_strict_lowerbd P x p
Hypothesis H4 : PNo_upc P z q
Hypothesis H6 : ordinal y
Hypothesis H7 : TransSet y
Hypothesis H8 : ordinal z
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__5__5
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__7__2
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Variable z : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H4 : PNo_upc P z q
Hypothesis H5 : TransSet x
Hypothesis H6 : ordinal y
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__7__2
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__3__0
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Variable z : set
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_lowerbd P (ordsucc x) (λw : set ⇒ p w ∨ w = x)
Hypothesis H3 : ordinal y
Hypothesis H4 : P y q
Hypothesis H5 : z ∈ ordsucc x
Hypothesis H6 : PNoEq_ z q p
Hypothesis H7 : p z ∨ z = x
Hypothesis H8 : ordinal z
Hypothesis H9 : PNoLt y q z q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__3__0
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__11__7
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x) (λw : set ⇒ p w ∧ w ≠ x)
Hypothesis H3 : ordinal y
Hypothesis H4 : P y q
Hypothesis H5 : z ∈ ordsucc x
Hypothesis H6 : PNoEq_ z p q
Hypothesis H8 : ordinal z
Hypothesis H9 : PNoLt z q y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__11__7
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__14__6
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x) (λz : set ⇒ p z ∧ z ≠ x)
Hypothesis H3 : ¬ (p x ∧ x ≠ x)
Hypothesis H4 : ordinal y
Hypothesis H5 : P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__14__6
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__2
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H3 : ¬ (p x ∧ x ≠ x)
Hypothesis H4 : PNoLt (ordsucc x) (λz : set ⇒ p z ∧ z ≠ x) x p
Hypothesis H5 : ordinal y
Hypothesis H6 : P y q
Hypothesis H7 : PNo_downc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__2
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__6
Variable P : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable y : set
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x) (λz : set ⇒ p z ∧ z ≠ x)
Hypothesis H3 : ¬ (p x ∧ x ≠ x)
Hypothesis H4 : PNoLt (ordsucc x) (λz : set ⇒ p z ∧ z ≠ x) x p
Hypothesis H5 : ordinal y
Hypothesis H7 : PNo_downc P y q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__6
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__19__4
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x) (λy : set ⇒ p y ∧ y ≠ x)
Hypothesis H3 : PNo_rel_strict_lowerbd Q (ordsucc x) (λy : set ⇒ p y ∨ y = x)
Proof:The rest of the proof is missing.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__19__4
Beginning of Section Conj_PNo_strict_imv_pred_eq__3__7
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable q : (set → prop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀z : set, z ∈ x → (∀p2 : set → prop, ¬ PNo_strict_imv P Q z p2))
Hypothesis H2 : PNo_strict_lowerbd Q x p
Hypothesis H3 : PNo_strict_upperbd P x q
Hypothesis H4 : ordinal y
Hypothesis H6 : ¬ q y
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_imv_pred_eq__3__7
Beginning of Section Conj_PNo_strict_imv_pred_eq__6__3
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable p : (set → prop)
Variable q : (set → prop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : (∀y : set, y ∈ x → (∀p2 : set → prop, ¬ PNo_strict_imv P Q y p2))
Hypothesis H4 : PNo_strict_lowerbd Q x p
Hypothesis H5 : PNo_strict_upperbd P x q
Hypothesis H6 : PNo_strict_lowerbd Q x q
Proof:The rest of the proof is missing.
End of Section Conj_PNo_strict_imv_pred_eq__6__3
Beginning of Section Conj_PNo_bd_In__1__3
Variable P : (set → ((set → prop) → prop))
Variable Q : (set → ((set → prop) → prop))
Variable x : set
Variable y : set
Variable p : (set → prop)
Hypothesis H0 : (∀z : set, z ∈ PNo_bd P Q → (∀q : set → prop, ¬ PNo_strict_imv P Q z q))
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H2 : PNo_strict_imv P Q y p
Proof:The rest of the proof is missing.
End of Section Conj_PNo_bd_In__1__3
Beginning of Section Conj_SNoLtE__1__3
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo w → SNoLev w ∈ binintersect (SNoLev x) (SNoLev y) → SNoEq_ (SNoLev w) w x → SNoEq_ (SNoLev w) w y → x < w → w < y → nIn (SNoLev w) x → SNoLev w ∈ y → P)
Hypothesis H1 : z ∈ binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : set ⇒ w ∈ x) (λw : set ⇒ w ∈ y)
Hypothesis H5 : z ∈ SNoLev x
Hypothesis H6 : z ∈ SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : set ⇒ w ∈ x))
Hypothesis H8 : SNoLev (PSNo z (λw : set ⇒ w ∈ x)) = z
Hypothesis H9 : SNoEq_ z (PSNo z (λw : set ⇒ w ∈ x)) x
Proof:The rest of the proof is missing.
End of Section Conj_SNoLtE__1__3
Beginning of Section Conj_SNoLtE__1__4
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo w → SNoLev w ∈ binintersect (SNoLev x) (SNoLev y) → SNoEq_ (SNoLev w) w x → SNoEq_ (SNoLev w) w y → x < w → w < y → nIn (SNoLev w) x → SNoLev w ∈ y → P)
Hypothesis H1 : z ∈ binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : set ⇒ w ∈ x) (λw : set ⇒ w ∈ y)
Hypothesis H5 : z ∈ SNoLev x
Hypothesis H6 : z ∈ SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : set ⇒ w ∈ x))
Hypothesis H8 : SNoLev (PSNo z (λw : set ⇒ w ∈ x)) = z
Hypothesis H9 : SNoEq_ z (PSNo z (λw : set ⇒ w ∈ x)) x
Proof:The rest of the proof is missing.
End of Section Conj_SNoLtE__1__4
Beginning of Section Conj_SNoLtE__1__5
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo w → SNoLev w ∈ binintersect (SNoLev x) (SNoLev y) → SNoEq_ (SNoLev w) w x → SNoEq_ (SNoLev w) w y → x < w → w < y → nIn (SNoLev w) x → SNoLev w ∈ y → P)
Hypothesis H1 : z ∈ binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : set ⇒ w ∈ x) (λw : set ⇒ w ∈ y)
Hypothesis H6 : z ∈ SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : set ⇒ w ∈ x))
Hypothesis H8 : SNoLev (PSNo z (λw : set ⇒ w ∈ x)) = z
Hypothesis H9 : SNoEq_ z (PSNo z (λw : set ⇒ w ∈ x)) x
Proof:The rest of the proof is missing.
End of Section Conj_SNoLtE__1__5
Beginning of Section Conj_SNoLtE__1__8
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo w → SNoLev w ∈ binintersect (SNoLev x) (SNoLev y) → SNoEq_ (SNoLev w) w x → SNoEq_ (SNoLev w) w y → x < w → w < y → nIn (SNoLev w) x → SNoLev w ∈ y → P)
Hypothesis H1 : z ∈ binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : set ⇒ w ∈ x) (λw : set ⇒ w ∈ y)
Hypothesis H5 : z ∈ SNoLev x
Hypothesis H6 : z ∈ SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : set ⇒ w ∈ x))
Hypothesis H9 : SNoEq_ z (PSNo z (λw : set ⇒ w ∈ x)) x
Proof:The rest of the proof is missing.
End of Section Conj_SNoLtE__1__8
Beginning of Section Conj_SNoLtE__1__9
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo w → SNoLev w ∈ binintersect (SNoLev x) (SNoLev y) → SNoEq_ (SNoLev w) w x → SNoEq_ (SNoLev w) w y → x < w → w < y → nIn (SNoLev w) x → SNoLev w ∈ y → P)
Hypothesis H1 : z ∈ binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : set ⇒ w ∈ x) (λw : set ⇒ w ∈ y)
Hypothesis H5 : z ∈ SNoLev x
Hypothesis H6 : z ∈ SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : set ⇒ w ∈ x))
Hypothesis H8 : SNoLev (PSNo z (λw : set ⇒ w ∈ x)) = z
Proof:The rest of the proof is missing.
End of Section Conj_SNoLtE__1__9
Beginning of Section Conj_SNoLtE__6__5
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo w → SNoLev w ∈ binintersect (SNoLev x) (SNoLev y) → SNoEq_ (SNoLev w) w x → SNoEq_ (SNoLev w) w y → x < w → w < y → nIn (SNoLev w) x → SNoLev w ∈ y → P)
Hypothesis H1 : ordinal (SNoLev x)
Hypothesis H2 : z ∈ binintersect (SNoLev x) (SNoLev y)
Hypothesis H3 : PNoEq_ z (λw : set ⇒ w ∈ x) (λw : set ⇒ w ∈ y)
Hypothesis H6 : z ∈ SNoLev x
Hypothesis H7 : z ∈ SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_SNoLtE__6__5
Beginning of Section Conj_SNoLtE__8__3
Variable x : set
Variable y : set
Variable P : prop
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : x < y
Hypothesis H4 : SNoLev x ∈ SNoLev y → SNoEq_ (SNoLev x) x y → SNoLev x ∈ y → P
Hypothesis H5 : SNoLev y ∈ SNoLev x → SNoEq_ (SNoLev y) x y → nIn (SNoLev y) x → P
Proof:The rest of the proof is missing.
End of Section Conj_SNoLtE__8__3
Beginning of Section Conj_SNoCutP_SNoCut__1__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal (PNo_bd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y))
Hypothesis H1 : PNo_strict_upperbd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (PNo_bd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y)) (PNo_pred (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y))
Hypothesis H3 : ordinal (SNoLev z)
Theorem. (
Conj_SNoCutP_SNoCut__1__4)
ordinal (SNoLev z) ∧ PSNo (SNoLev z) (λw : set ⇒ w ∈ z) ∈ x → z < PSNo (PNo_bd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y)) (PNo_pred (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y))
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__1__4
Beginning of Section Conj_SNoCutP_SNoCut__9__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H1 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H2 : (∀u : set, u ∈ PNo_bd (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ x) (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ y) → (∀p : set → prop, ¬ PNo_strict_imv (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ x) (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ y) u p))
Hypothesis H4 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (SNoLev z) (λu : set ⇒ u ∈ z)
Hypothesis H5 : Subq (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (SNoLev z)
Hypothesis H6 : w ∈ PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)
Hypothesis H7 : PNoEq_ w (λu : set ⇒ u ∈ z) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H8 : nIn w z
Hypothesis H9 : PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) w
Hypothesis H10 : ordinal w
Hypothesis H11 : ordinal (ordsucc w)
Hypothesis H12 : ¬ (w ∈ z ∧ w ≠ w)
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__9__3
Beginning of Section Conj_SNoCutP_SNoCut__9__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H1 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H2 : (∀u : set, u ∈ PNo_bd (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ x) (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ y) → (∀p : set → prop, ¬ PNo_strict_imv (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ x) (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ y) u p))
Hypothesis H3 : ordinal (SNoLev z)
Hypothesis H4 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (SNoLev z) (λu : set ⇒ u ∈ z)
Hypothesis H5 : Subq (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (SNoLev z)
Hypothesis H6 : w ∈ PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)
Hypothesis H7 : PNoEq_ w (λu : set ⇒ u ∈ z) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H8 : nIn w z
Hypothesis H9 : PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) w
Hypothesis H10 : ordinal w
Hypothesis H12 : ¬ (w ∈ z ∧ w ≠ w)
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__9__11
Beginning of Section Conj_SNoCutP_SNoCut__10__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H2 : (∀u : set, u ∈ PNo_bd (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ x) (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ y) → (∀p : set → prop, ¬ PNo_strict_imv (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ x) (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ y) u p))
Hypothesis H3 : ordinal (SNoLev z)
Hypothesis H4 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (SNoLev z) (λu : set ⇒ u ∈ z)
Hypothesis H5 : Subq (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (SNoLev z)
Hypothesis H6 : w ∈ PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)
Hypothesis H7 : PNoEq_ w (λu : set ⇒ u ∈ z) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H8 : nIn w z
Hypothesis H9 : PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) w
Hypothesis H10 : ordinal w
Hypothesis H11 : ordinal (ordsucc w)
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__10__0
Beginning of Section Conj_SNoCutP_SNoCut__12__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H1 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H2 : (∀u : set, u ∈ PNo_bd (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ x) (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ y) → (∀p : set → prop, ¬ PNo_strict_imv (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ x) (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ y) u p))
Hypothesis H3 : ordinal (SNoLev z)
Hypothesis H4 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (SNoLev z) (λu : set ⇒ u ∈ z)
Hypothesis H5 : Subq (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (SNoLev z)
Hypothesis H6 : w ∈ PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)
Hypothesis H8 : nIn w z
Hypothesis H9 : PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) w
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__12__7
Beginning of Section Conj_SNoCutP_SNoCut__14__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H1 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H2 : (∀u : set, u ∈ PNo_bd (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ x) (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ y) → (∀p : set → prop, ¬ PNo_strict_imv (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ x) (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ y) u p))
Hypothesis H3 : ordinal (SNoLev z)
Hypothesis H4 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (SNoLev z) (λu : set ⇒ u ∈ z)
Hypothesis H5 : Subq (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (SNoLev z)
Hypothesis H6 : w ∈ PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)
Hypothesis H8 : ¬ PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) w
Hypothesis H10 : ordinal w
Hypothesis H11 : ordinal (ordsucc w)
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__14__7
Beginning of Section Conj_SNoCutP_SNoCut__15__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H1 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y))
Hypothesis H2 : (∀u : set, u ∈ PNo_bd (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ x) (λv : set ⇒ λp : set → prop ⇒ ordinal v ∧ PSNo v p ∈ y) → (∀p : set → prop, ¬ PNo_strict_imv (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ x) (λv : set ⇒ λq : set → prop ⇒ ordinal v ∧ PSNo v q ∈ y) u p))
Hypothesis H4 : PNo_strict_imv (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) (SNoLev z) (λu : set ⇒ u ∈ z)
Hypothesis H5 : Subq (PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (SNoLev z)
Hypothesis H6 : w ∈ PNo_bd (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)
Hypothesis H7 : PNoEq_ w (PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y)) (λu : set ⇒ u ∈ z)
Hypothesis H8 : ¬ PNo_pred (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ x) (λu : set ⇒ λp : set → prop ⇒ ordinal u ∧ PSNo u p ∈ y) w
Hypothesis H10 : ordinal w
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__15__3
Beginning of Section Conj_SNoCutP_SNoCut__20__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal (PNo_bd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y))
Hypothesis H1 : PNo_strict_imv (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y) (PNo_bd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y)) (PNo_pred (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y))
Hypothesis H3 : SNoLev (SNoCut x y) = PNo_bd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y)
Hypothesis H4 : PNoEq_ (PNo_bd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y)) (λw : set ⇒ w ∈ SNoCut x y) (PNo_pred (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y))
Hypothesis H5 : SNo z
Hypothesis H6 : (∀w : set, w ∈ x → w < z)
Hypothesis H7 : (∀w : set, w ∈ y → z < w)
Theorem. (
Conj_SNoCutP_SNoCut__20__2)
ordinal (SNoLev z) → Subq (SNoLev (SNoCut x y)) (SNoLev z) ∧ PNoEq_ (SNoLev (SNoCut x y)) (λw : set ⇒ w ∈ SNoCut x y) (λw : set ⇒ w ∈ z)
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__20__2
Beginning of Section Conj_SNoCutP_SNoCut__21__7
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z ∈ y → SNo z)
Hypothesis H1 : ordinal (PNo_bd (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y))
Hypothesis H2 : PNo_strict_imv (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y) (PNo_bd (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y)) (PNo_pred (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y))
Hypothesis H3 : (∀z : set, z ∈ PNo_bd (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ x) (λw : set ⇒ λp : set → prop ⇒ ordinal w ∧ PSNo w p ∈ y) → (∀p : set → prop, ¬ PNo_strict_imv (λw : set ⇒ λq : set → prop ⇒ ordinal w ∧ PSNo w q ∈ x) (λw : set ⇒ λq : set → prop ⇒ ordinal w ∧ PSNo w q ∈ y) z p))
Hypothesis H4 : PNo_strict_lowerbd (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y) (PNo_bd (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y)) (PNo_pred (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y))
Hypothesis H5 : SNo (SNoCut x y)
Hypothesis H6 : SNoLev (SNoCut x y) = PNo_bd (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y)
Hypothesis H8 : PNoEq_ (PNo_bd (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y)) (λz : set ⇒ z ∈ SNoCut x y) (PNo_pred (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y))
Hypothesis H9 : (∀z : set, z ∈ x → z < SNoCut x y)
Theorem. (
Conj_SNoCutP_SNoCut__21__7)
(∀z : set, z ∈ y → SNoCut x y < z) → SNo (SNoCut x y) ∧ SNoLev (SNoCut x y) ∈ ordsucc (binunion (famunion x (λz : set ⇒ ordsucc (SNoLev z))) (famunion y (λz : set ⇒ ordsucc (SNoLev z)))) ∧ (∀z : set, z ∈ x → z < SNoCut x y) ∧ (∀z : set, z ∈ y → SNoCut x y < z) ∧ (∀z : set, SNo z → (∀w : set, w ∈ x → w < z) → (∀w : set, w ∈ y → z < w) → Subq (SNoLev (SNoCut x y)) (SNoLev z) ∧ PNoEq_ (SNoLev (SNoCut x y)) (λw : set ⇒ w ∈ SNoCut x y) (λw : set ⇒ w ∈ z))
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__21__7
Beginning of Section Conj_SNoCutP_SNoCut__29__1
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z ∈ x → SNo z)
Hypothesis H2 : PNoLt_pwise (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y)
Hypothesis H3 : ordinal (binunion (famunion x (λz : set ⇒ ordsucc (SNoLev z))) (famunion y (λz : set ⇒ ordsucc (SNoLev z))))
Hypothesis H4 : PNo_lenbdd (binunion (famunion x (λz : set ⇒ ordsucc (SNoLev z))) (famunion y (λz : set ⇒ ordsucc (SNoLev z)))) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x)
Theorem. (
Conj_SNoCutP_SNoCut__29__1)
PNo_lenbdd (binunion (famunion x (λz : set ⇒ ordsucc (SNoLev z))) (famunion y (λz : set ⇒ ordsucc (SNoLev z)))) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y) → SNo (SNoCut x y) ∧ SNoLev (SNoCut x y) ∈ ordsucc (binunion (famunion x (λz : set ⇒ ordsucc (SNoLev z))) (famunion y (λz : set ⇒ ordsucc (SNoLev z)))) ∧ (∀z : set, z ∈ x → z < SNoCut x y) ∧ (∀z : set, z ∈ y → SNoCut x y < z) ∧ (∀z : set, SNo z → (∀w : set, w ∈ x → w < z) → (∀w : set, w ∈ y → z < w) → Subq (SNoLev (SNoCut x y)) (SNoLev z) ∧ PNoEq_ (SNoLev (SNoCut x y)) (λw : set ⇒ w ∈ SNoCut x y) (λw : set ⇒ w ∈ z))
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__29__1
Beginning of Section Conj_SNoCutP_SNoCut__34__2
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z ∈ x → SNo z)
Hypothesis H1 : (∀z : set, z ∈ y → SNo z)
Theorem. (
Conj_SNoCutP_SNoCut__34__2)
PNoLt_pwise (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ x) (λz : set ⇒ λp : set → prop ⇒ ordinal z ∧ PSNo z p ∈ y) → SNo (SNoCut x y) ∧ SNoLev (SNoCut x y) ∈ ordsucc (binunion (famunion x (λz : set ⇒ ordsucc (SNoLev z))) (famunion y (λz : set ⇒ ordsucc (SNoLev z)))) ∧ (∀z : set, z ∈ x → z < SNoCut x y) ∧ (∀z : set, z ∈ y → SNoCut x y < z) ∧ (∀z : set, SNo z → (∀w : set, w ∈ x → w < z) → (∀w : set, w ∈ y → z < w) → Subq (SNoLev (SNoCut x y)) (SNoLev z) ∧ PNoEq_ (SNoLev (SNoCut x y)) (λw : set ⇒ w ∈ SNoCut x y) (λw : set ⇒ w ∈ z))
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoCut__34__2
Beginning of Section Conj_SNoCutP_SNoL_SNoR__5__1
Variable x : set
Hypothesis H0 : SNo x
Theorem. (
Conj_SNoCutP_SNoL_SNoR__5__1)
(∀y : set, y ∈ SNoL x → SNo y) → (∀y : set, y ∈ SNoL x → SNo y) ∧ (∀y : set, y ∈ SNoR x → SNo y) ∧ (∀y : set, y ∈ SNoL x → (∀z : set, z ∈ SNoR x → y < z))
Proof:The rest of the proof is missing.
End of Section Conj_SNoCutP_SNoL_SNoR__5__1
Beginning of Section Conj_SNo_eta__5__1
Variable x : set
Hypothesis H0 : SNo x
Proof:The rest of the proof is missing.
End of Section Conj_SNo_eta__5__1
Beginning of Section Conj_SNoCut_Le__3__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v ∈ y → SNo v)
Hypothesis H1 : SNo (SNoCut x y)
Hypothesis H2 : (∀v : set, v ∈ y → SNoCut x y < v)
Hypothesis H3 : (∀v : set, SNo v → (∀x2 : set, x2 ∈ x → x2 < v) → (∀x2 : set, x2 ∈ y → v < x2) → Subq (SNoLev (SNoCut x y)) (SNoLev v) ∧ SNoEq_ (SNoLev (SNoCut x y)) (SNoCut x y) v)
Hypothesis H4 : SNo u
Hypothesis H6 : u < SNoCut x y
Hypothesis H7 : (∀v : set, v ∈ x → v < u)
Proof:The rest of the proof is missing.
End of Section Conj_SNoCut_Le__3__5
Beginning of Section Conj_SNoCut_ext__2__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNoCutP x y
Hypothesis H1 : SNoCutP z w
Hypothesis H2 : (∀u : set, u ∈ x → u < SNoCut z w)
Hypothesis H4 : (∀u : set, u ∈ z → u < SNoCut x y)
Hypothesis H5 : (∀u : set, u ∈ w → SNoCut x y < u)
Proof:The rest of the proof is missing.
End of Section Conj_SNoCut_ext__2__3
Beginning of Section Conj_SNoCut_ext__2__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNoCutP x y
Hypothesis H1 : SNoCutP z w
Hypothesis H2 : (∀u : set, u ∈ x → u < SNoCut z w)
Hypothesis H3 : (∀u : set, u ∈ y → SNoCut z w < u)
Hypothesis H4 : (∀u : set, u ∈ z → u < SNoCut x y)
Proof:The rest of the proof is missing.
End of Section Conj_SNoCut_ext__2__5
Beginning of Section Conj_ordinal_SNoR__1__0
Variable x : set
Hypothesis H1 : SNo x
Proof:The rest of the proof is missing.
End of Section Conj_ordinal_SNoR__1__0
Beginning of Section Conj_ordinal_In_SNoLt__1__0
Variable x : set
Variable y : set
Hypothesis H2 : ordinal y
Hypothesis H3 : SNo y
Proof:The rest of the proof is missing.
End of Section Conj_ordinal_In_SNoLt__1__0
Beginning of Section Conj_ordinal_SNoLev_max_2__5__0
Variable x : set
Variable y : set
Hypothesis H1 : TransSet x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x = x
Hypothesis H5 : SNoLev y = x
Hypothesis H6 : ¬ y ≤ x
Proof:The rest of the proof is missing.
End of Section Conj_ordinal_SNoLev_max_2__5__0
Beginning of Section Conj_SNoL_1__1__0
Variable x : set
Hypothesis H1 : SNoLev x ∈ ordsucc Empty
Proof:The rest of the proof is missing.
End of Section Conj_SNoL_1__1__0
Beginning of Section Conj_SNo__eps___3__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : nat_p x
Hypothesis H1 : y ∈ ordsucc x
Hypothesis H2 : nat_p z
Theorem. (
Conj_SNo__eps___3__3)
nat_p y → exactly1of2 (SetAdjoin y (Sing (ordsucc Empty)) ∈ eps_ x) (y ∈ eps_ x)
Proof:The rest of the proof is missing.
End of Section Conj_SNo__eps___3__3
Beginning of Section Conj_SNo_pos_eps_Lt__1__3
Variable x : set
Variable y : set
Hypothesis H0 : Empty < y
Hypothesis H1 : ordinal (SNoLev y)
Hypothesis H2 : SNo y
Proof:The rest of the proof is missing.
End of Section Conj_SNo_pos_eps_Lt__1__3
Beginning of Section Conj_SNo_pos_eps_Lt__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < y
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNoLev z ∈ eps_ x
Proof:The rest of the proof is missing.
End of Section Conj_SNo_pos_eps_Lt__2__3
Beginning of Section Conj_SNo_pos_eps_Le__1__3
Variable x : set
Variable y : set
Hypothesis H0 : Empty < y
Hypothesis H1 : ordinal (SNoLev y)
Hypothesis H2 : SNo y
Proof:The rest of the proof is missing.
End of Section Conj_SNo_pos_eps_Le__1__3
Beginning of Section Conj_SNo_pos_eps_Le__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < y
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNoLev z ∈ eps_ x
Proof:The rest of the proof is missing.
End of Section Conj_SNo_pos_eps_Le__2__3
Beginning of Section Conj_eps_SNoCut__5__2
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z ∈ Repl x eps_ → SNo z)
Hypothesis H1 : SNo (SNoCut (Sing Empty) (Repl x eps_))
Hypothesis H3 : (∀z : set, SNo z → (∀w : set, w ∈ Sing Empty → w < z) → (∀w : set, w ∈ Repl x eps_ → z < w) → Subq (SNoLev (SNoCut (Sing Empty) (Repl x eps_))) (SNoLev z) ∧ SNoEq_ (SNoLev (SNoCut (Sing Empty) (Repl x eps_))) (SNoCut (Sing Empty) (Repl x eps_)) z)
Hypothesis H4 : SNo y
Hypothesis H5 : SNoLev y ∈ binintersect (SNoLev (eps_ x)) (SNoLev (SNoCut (Sing Empty) (Repl x eps_)))
Hypothesis H6 : y < SNoCut (Sing Empty) (Repl x eps_)
Hypothesis H7 : (∀z : set, z ∈ Sing Empty → z < y)
Proof:The rest of the proof is missing.
End of Section Conj_eps_SNoCut__5__2
Beginning of Section Conj_eps_SNoCut__6__5
Variable x : set
Variable y : set
Hypothesis H1 : (∀z : set, z ∈ Repl x eps_ → SNo z)
Hypothesis H2 : SNo (SNoCut (Sing Empty) (Repl x eps_))
Hypothesis H3 : (∀z : set, z ∈ Repl x eps_ → SNoCut (Sing Empty) (Repl x eps_) < z)
Hypothesis H4 : (∀z : set, SNo z → (∀w : set, w ∈ Sing Empty → w < z) → (∀w : set, w ∈ Repl x eps_ → z < w) → Subq (SNoLev (SNoCut (Sing Empty) (Repl x eps_))) (SNoLev z) ∧ SNoEq_ (SNoLev (SNoCut (Sing Empty) (Repl x eps_))) (SNoCut (Sing Empty) (Repl x eps_)) z)
Hypothesis H6 : SNoLev y ∈ binintersect (SNoLev (eps_ x)) (SNoLev (SNoCut (Sing Empty) (Repl x eps_)))
Hypothesis H7 : eps_ x < y
Hypothesis H8 : y < SNoCut (Sing Empty) (Repl x eps_)
Proof:The rest of the proof is missing.
End of Section Conj_eps_SNoCut__6__5
Beginning of Section Conj_SNo_etaE__2__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : y < x
Hypothesis H2 : SNo_ z y
Hypothesis H3 : ordinal z
Hypothesis H4 : SNo y
Proof:The rest of the proof is missing.
End of Section Conj_SNo_etaE__2__1
Beginning of Section Conj_SNo_etaE__3__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : y < x
Hypothesis H1 : z ∈ SNoLev x
Hypothesis H3 : ordinal z
Proof:The rest of the proof is missing.
End of Section Conj_SNo_etaE__3__2
Beginning of Section Conj_SNo_etaE__5__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : z ∈ SNoLev x
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = z
Proof:The rest of the proof is missing.
End of Section Conj_SNo_etaE__5__0
Beginning of Section Conj_SNo_etaE__5__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : x < y
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = z
Proof:The rest of the proof is missing.
End of Section Conj_SNo_etaE__5__1
Beginning of Section Conj_SNo_etaE__7__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : z ∈ SNoLev x
Hypothesis H2 : SNo_ z y
Hypothesis H3 : ordinal z
Proof:The rest of the proof is missing.
End of Section Conj_SNo_etaE__7__0
Beginning of Section Conj_SNo_etaE__12__1
Variable x : set
Variable P : prop
Hypothesis H0 : SNo x
Proof:The rest of the proof is missing.
End of Section Conj_SNo_etaE__12__1
Beginning of Section Conj_SNo_rec2_eq_1__1__2
Variable P : (set → (set → ((set → (set → set)) → set)))
Variable x : set
Variable g : (set → (set → set))
Variable y : set
Variable f : (set → set)
Variable f2 : (set → set)
Hypothesis H0 : (∀z : set, SNo z → (∀w : set, SNo w → (∀h : set → set → set, ∀g2 : set → set → set, (∀u : set, u ∈ SNoS_ (SNoLev z) → (∀v : set, SNo v → h u v = g2 u v)) → (∀u : set, u ∈ SNoS_ (SNoLev w) → h z u = g2 z u) → P z w h = P z w g2)))
Hypothesis H1 : SNo x
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev y) → f z = f2 z)
Theorem. (
Conj_SNo_rec2_eq_1__1__2)
(∀z : set, z ∈ SNoS_ (SNoLev x) → g z = g z) → P x y (λz : set ⇒ λw : set ⇒ If_i (z = x) (f w) (g z w)) = P x y (λz : set ⇒ λw : set ⇒ If_i (z = x) (f2 w) (g z w))
Proof:The rest of the proof is missing.
End of Section Conj_SNo_rec2_eq_1__1__2
Beginning of Section Conj_SNo_rec2_eq__1__1
Variable P : (set → (set → ((set → (set → set)) → set)))
Variable x : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable y : set
Hypothesis H0 : (∀z : set, SNo z → (∀w : set, SNo w → (∀g2 : set → set → set, ∀h2 : set → set → set, (∀u : set, u ∈ SNoS_ (SNoLev z) → (∀v : set, SNo v → g2 u v = h2 u v)) → (∀u : set, u ∈ SNoS_ (SNoLev w) → g2 z u = h2 z u) → P z w g2 = P z w h2)))
Hypothesis H2 : (∀z : set, z ∈ SNoS_ (SNoLev x) → g z = h z)
Hypothesis H3 : SNo y
Theorem. (
Conj_SNo_rec2_eq__1__1)
(∀z : set, ordinal z → (∀w : set, w ∈ SNoS_ z → SNo_rec_i (λu : set ⇒ λf : set → set ⇒ P x u (λv : set ⇒ λx2 : set ⇒ If_i (v = x) (f x2) (g v x2))) w = SNo_rec_i (λu : set ⇒ λf : set → set ⇒ P x u (λv : set ⇒ λx2 : set ⇒ If_i (v = x) (f x2) (h v x2))) w)) → SNo_rec_i (λz : set ⇒ λf : set → set ⇒ P x z (λw : set ⇒ λu : set ⇒ If_i (w = x) (f u) (g w u))) y = SNo_rec_i (λz : set ⇒ λf : set → set ⇒ P x z (λw : set ⇒ λu : set ⇒ If_i (w = x) (f u) (h w u))) y
Proof:The rest of the proof is missing.
End of Section Conj_SNo_rec2_eq__1__1
Beginning of Section Conj_SNo_rec2_eq__4__1
Variable P : (set → (set → ((set → (set → set)) → set)))
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, SNo z → (∀w : set, SNo w → (∀g : set → set → set, ∀h : set → set → set, (∀u : set, u ∈ SNoS_ (SNoLev z) → (∀v : set, SNo v → g u v = h u v)) → (∀u : set, u ∈ SNoS_ (SNoLev w) → g z u = h z u) → P z w g = P z w h)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀z : set, SNo z → (∀g : set → set → set, ∀h : set → set → set, (∀w : set, w ∈ SNoS_ (SNoLev z) → g w = h w) → (λw : set ⇒ If_i (SNo w) (SNo_rec_i (λu : set ⇒ λf : set → set ⇒ P z u (λv : set ⇒ λx2 : set ⇒ If_i (v = z) (f x2) (g v x2))) w) Empty) = (λw : set ⇒ If_i (SNo w) (SNo_rec_i (λu : set ⇒ λf : set → set ⇒ P z u (λv : set ⇒ λx2 : set ⇒ If_i (v = z) (f x2) (h v x2))) w) Empty)))
Hypothesis H4 : (∀z : set, z ∈ SNoS_ (SNoLev x) → (∀w : set, SNo w → If_i (z = x) (SNo_rec_i (λu : set ⇒ λf : set → set ⇒ P x u (λv : set ⇒ λx2 : set ⇒ If_i (v = x) (f x2) (SNo_rec_ii (λy2 : set ⇒ λg : set → set → set ⇒ λz2 : set ⇒ If_i (SNo z2) (SNo_rec_i (λw2 : set ⇒ λf2 : set → set ⇒ P y2 w2 (λu2 : set ⇒ λv2 : set ⇒ If_i (u2 = y2) (f2 v2) (g u2 v2))) z2) Empty) v x2))) w) (SNo_rec_ii (λu : set ⇒ λg : set → set → set ⇒ λv : set ⇒ If_i (SNo v) (SNo_rec_i (λx2 : set ⇒ λf : set → set ⇒ P u x2 (λy2 : set ⇒ λz2 : set ⇒ If_i (y2 = u) (f z2) (g y2 z2))) v) Empty) z w) = SNo_rec_ii (λu : set ⇒ λg : set → set → set ⇒ λv : set ⇒ If_i (SNo v) (SNo_rec_i (λx2 : set ⇒ λf : set → set ⇒ P u x2 (λy2 : set ⇒ λz2 : set ⇒ If_i (y2 = u) (f z2) (g y2 z2))) v) Empty) z w))
Theorem. (
Conj_SNo_rec2_eq__4__1)
(∀z : set, z ∈ SNoS_ (SNoLev y) → If_i (x = x) (SNo_rec_i (λw : set ⇒ λf : set → set ⇒ P x w (λu : set ⇒ λv : set ⇒ If_i (u = x) (f v) (SNo_rec_ii (λx2 : set ⇒ λg : set → set → set ⇒ λy2 : set ⇒ If_i (SNo y2) (SNo_rec_i (λz2 : set ⇒ λf2 : set → set ⇒ P x2 z2 (λw2 : set ⇒ λu2 : set ⇒ If_i (w2 = x2) (f2 u2) (g w2 u2))) y2) Empty) u v))) z) (SNo_rec_ii (λw : set ⇒ λg : set → set → set ⇒ λu : set ⇒ If_i (SNo u) (SNo_rec_i (λv : set ⇒ λf : set → set ⇒ P w v (λx2 : set ⇒ λy2 : set ⇒ If_i (x2 = w) (f y2) (g x2 y2))) u) Empty) x z) = SNo_rec_ii (λw : set ⇒ λg : set → set → set ⇒ λu : set ⇒ If_i (SNo u) (SNo_rec_i (λv : set ⇒ λf : set → set ⇒ P w v (λx2 : set ⇒ λy2 : set ⇒ If_i (x2 = w) (f y2) (g x2 y2))) u) Empty) x z) → P x y (λz : set ⇒ λw : set ⇒ If_i (z = x) (SNo_rec_i (λu : set ⇒ λf : set → set ⇒ P x u (λv : set ⇒ λx2 : set ⇒ If_i (v = x) (f x2) (SNo_rec_ii (λy2 : set ⇒ λg : set → set → set ⇒ λz2 : set ⇒ If_i (SNo z2) (SNo_rec_i (λw2 : set ⇒ λf2 : set → set ⇒ P y2 w2 (λu2 : set ⇒ λv2 : set ⇒ If_i (u2 = y2) (f2 v2) (g u2 v2))) z2) Empty) v x2))) w) (SNo_rec_ii (λu : set ⇒ λg : set → set → set ⇒ λv : set ⇒ If_i (SNo v) (SNo_rec_i (λx2 : set ⇒ λf : set → set ⇒ P u x2 (λy2 : set ⇒ λz2 : set ⇒ If_i (y2 = u) (f z2) (g y2 z2))) v) Empty) z w)) = P x y (SNo_rec_ii (λz : set ⇒ λg : set → set → set ⇒ λw : set ⇒ If_i (SNo w) (SNo_rec_i (λu : set ⇒ λf : set → set ⇒ P z u (λv : set ⇒ λx2 : set ⇒ If_i (v = z) (f x2) (g v x2))) w) Empty))
Proof:The rest of the proof is missing.
End of Section Conj_SNo_rec2_eq__4__1
Beginning of Section Conj_SNo_ordinal_ind__2__1
Variable p : (set → prop)
Variable x : set
Hypothesis H0 : (∀y : set, ordinal y → (∀z : set, z ∈ SNoS_ y → p z))
Hypothesis H2 : ordinal (SNoLev x)
Proof:The rest of the proof is missing.
End of Section Conj_SNo_ordinal_ind__2__1
Beginning of Section Conj_SNo_ordinal_ind2__5__1
Variable r : (set → (set → prop))
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, ordinal z → (∀w : set, ordinal w → (∀u : set, u ∈ SNoS_ z → (∀v : set, v ∈ SNoS_ w → r u v))))
Hypothesis H2 : SNo y
Hypothesis H3 : ordinal (SNoLev x)
Proof:The rest of the proof is missing.
End of Section Conj_SNo_ordinal_ind2__5__1
Beginning of Section Conj_SNo_ordinal_ind3__6__1
Variable P : (set → (set → (set → prop)))
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : (∀w : set, ordinal w → (∀u : set, ordinal u → (∀v : set, ordinal v → (∀x2 : set, x2 ∈ SNoS_ w → (∀y2 : set, y2 ∈ SNoS_ u → (∀z2 : set, z2 ∈ SNoS_ v → P x2 y2 z2))))))
Hypothesis H2 : SNo z
Hypothesis H3 : ordinal (ordsucc (SNoLev x))
Hypothesis H4 : x ∈ SNoS_ (ordsucc (SNoLev x))
Proof:The rest of the proof is missing.
End of Section Conj_SNo_ordinal_ind3__6__1
Beginning of Section Conj_restr_SNo__1__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : y ∈ SNoLev x
Theorem. (
Conj_restr_SNo__1__2)
SNo_ y (binintersect x (SNoElts_ y)) → SNo (binintersect x (SNoElts_ y))
Proof:The rest of the proof is missing.
End of Section Conj_restr_SNo__1__2
Beginning of Section Conj_minus_SNo_prop1__1__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀z : set, z ∈ SNoS_ (SNoLev x) → SNo (- z) ∧ (∀w : set, w ∈ SNoL z → - z < - w) ∧ (∀w : set, w ∈ SNoR z → - w < - z) ∧ SNoCutP (Repl (SNoR z) minus_SNo) (Repl (SNoL z) minus_SNo))
Hypothesis H3 : SNoLev y ∈ SNoLev x
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_prop1__1__2
Beginning of Section Conj_minus_SNo_prop1__2__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀z : set, z ∈ SNoS_ (SNoLev x) → SNo (- z) ∧ (∀w : set, w ∈ SNoL z → - z < - w) ∧ (∀w : set, w ∈ SNoR z → - w < - z) ∧ SNoCutP (Repl (SNoR z) minus_SNo) (Repl (SNoL z) minus_SNo))
Hypothesis H3 : SNoLev y ∈ SNoLev x
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_prop1__2__2
Beginning of Section Conj_minus_SNo_prop1__4__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → SNo (- u) ∧ (∀v : set, v ∈ SNoL u → - u < - v) ∧ (∀v : set, v ∈ SNoR u → - v < - u) ∧ SNoCutP (Repl (SNoR u) minus_SNo) (Repl (SNoL u) minus_SNo))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y ∈ SNoLev x
Hypothesis H4 : SNo z
Hypothesis H6 : (∀u : set, u ∈ SNoR z → - u < - z)
Hypothesis H7 : SNo (- y)
Hypothesis H8 : (∀u : set, u ∈ SNoL y → - y < - u)
Hypothesis H9 : SNo w
Hypothesis H10 : z < w
Hypothesis H11 : w < y
Hypothesis H12 : SNoLev w ∈ SNoLev z
Hypothesis H13 : SNoLev w ∈ SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_prop1__4__5
Beginning of Section Conj_minus_SNo_prop1__5__7
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → SNo (- w) ∧ (∀u : set, u ∈ SNoL w → - w < - u) ∧ (∀u : set, u ∈ SNoR w → - u < - w) ∧ SNoCutP (Repl (SNoR w) minus_SNo) (Repl (SNoL w) minus_SNo))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y ∈ SNoLev x
Hypothesis H4 : x < y
Hypothesis H5 : SNo z
Hypothesis H6 : z < x
Hypothesis H8 : (∀w : set, w ∈ SNoR z → - w < - z)
Hypothesis H9 : SNo (- y)
Hypothesis H10 : (∀w : set, w ∈ SNoL y → - y < - w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_prop1__5__7
Beginning of Section Conj_minus_SNo_prop1__5__9
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → SNo (- w) ∧ (∀u : set, u ∈ SNoL w → - w < - u) ∧ (∀u : set, u ∈ SNoR w → - u < - w) ∧ SNoCutP (Repl (SNoR w) minus_SNo) (Repl (SNoL w) minus_SNo))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y ∈ SNoLev x
Hypothesis H4 : x < y
Hypothesis H5 : SNo z
Hypothesis H6 : z < x
Hypothesis H7 : SNo (- z)
Hypothesis H8 : (∀w : set, w ∈ SNoR z → - w < - z)
Hypothesis H10 : (∀w : set, w ∈ SNoL y → - y < - w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_prop1__5__9
Beginning of Section Conj_minus_SNo_prop1__9__3
Variable x : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y : set, y ∈ SNoS_ (SNoLev x) → SNo (- y) ∧ (∀z : set, z ∈ SNoL y → - y < - z) ∧ (∀z : set, z ∈ SNoR y → - z < - y) ∧ SNoCutP (Repl (SNoR y) minus_SNo) (Repl (SNoL y) minus_SNo))
Hypothesis H2 : (∀y : set, y ∈ SNoL x → SNo (- y) ∧ (∀z : set, z ∈ SNoL y → - y < - z) ∧ (∀z : set, z ∈ SNoR y → - z < - y))
Theorem. (
Conj_minus_SNo_prop1__9__3)
SNoCutP (Repl (SNoR x) minus_SNo) (Repl (SNoL x) minus_SNo) → SNo (- x) ∧ (∀y : set, y ∈ SNoL x → - x < - y) ∧ (∀y : set, y ∈ SNoR x → - y < - x) ∧ SNoCutP (Repl (SNoR x) minus_SNo) (Repl (SNoL x) minus_SNo)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_prop1__9__3
Beginning of Section Conj_minus_SNo_prop1__11__0
Variable x : set
Hypothesis H1 : (∀y : set, y ∈ SNoS_ (SNoLev x) → SNo (- y) ∧ (∀z : set, z ∈ SNoL y → - y < - z) ∧ (∀z : set, z ∈ SNoR y → - z < - y) ∧ SNoCutP (Repl (SNoR y) minus_SNo) (Repl (SNoL y) minus_SNo))
Theorem. (
Conj_minus_SNo_prop1__11__0)
(∀y : set, y ∈ SNoL x → SNo (- y) ∧ (∀z : set, z ∈ SNoL y → - y < - z) ∧ (∀z : set, z ∈ SNoR y → - z < - y)) → SNo (- x) ∧ (∀y : set, y ∈ SNoL x → - x < - y) ∧ (∀y : set, y ∈ SNoR x → - y < - x) ∧ SNoCutP (Repl (SNoR x) minus_SNo) (Repl (SNoL x) minus_SNo)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_prop1__11__0
Beginning of Section Conj_minus_SNo_Lev_lem1__1__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : y ∈ ordsucc (SNoLev z)
Hypothesis H1 : z = - w
Hypothesis H3 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H4 : Subq (SNoLev x) y
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__1__2
Beginning of Section Conj_minus_SNo_Lev_lem1__3__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w ∈ SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H5 : ordinal (SNoLev (- w))
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__3__1
Beginning of Section Conj_minus_SNo_Lev_lem1__3__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H5 : ordinal (SNoLev (- w))
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__3__3
Beginning of Section Conj_minus_SNo_Lev_lem1__3__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w ∈ SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__3__5
Beginning of Section Conj_minus_SNo_Lev_lem1__4__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w ∈ SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__4__5
Beginning of Section Conj_minus_SNo_Lev_lem1__6__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w ∈ SNoLev x
Hypothesis H5 : Subq (SNoLev (- w)) (SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__6__0
Beginning of Section Conj_minus_SNo_Lev_lem1__6__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNo w
Hypothesis H5 : Subq (SNoLev (- w)) (SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__6__4
Beginning of Section Conj_minus_SNo_Lev_lem1__7__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v ∈ x → (∀x2 : set, x2 ∈ SNoS_ v → Subq (SNoLev (- x2)) (SNoLev x2)))
Hypothesis H2 : z ∈ ordsucc (SNoLev w)
Hypothesis H3 : w = - u
Hypothesis H4 : SNo u
Hypothesis H5 : SNoLev u ∈ SNoLev y
Hypothesis H6 : u ∈ SNoS_ (ordsucc (SNoLev u))
Hypothesis H7 : ordsucc (SNoLev u) ∈ x
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__7__1
Beginning of Section Conj_minus_SNo_Lev_lem1__10__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : y ∈ ordsucc (SNoLev z)
Hypothesis H1 : z = - w
Hypothesis H3 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H4 : Subq (SNoLev x) y
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__10__2
Beginning of Section Conj_minus_SNo_Lev_lem1__12__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w ∈ SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H5 : ordinal (SNoLev (- w))
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__12__1
Beginning of Section Conj_minus_SNo_Lev_lem1__12__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H5 : ordinal (SNoLev (- w))
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__12__3
Beginning of Section Conj_minus_SNo_Lev_lem1__12__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w ∈ SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__12__5
Beginning of Section Conj_minus_SNo_Lev_lem1__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w ∈ SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__13__5
Beginning of Section Conj_minus_SNo_Lev_lem1__15__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w ∈ SNoLev x
Hypothesis H5 : Subq (SNoLev (- w)) (SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__15__0
Beginning of Section Conj_minus_SNo_Lev_lem1__15__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ∈ ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNo w
Hypothesis H5 : Subq (SNoLev (- w)) (SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__15__4
Beginning of Section Conj_minus_SNo_Lev_lem1__16__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v ∈ x → (∀x2 : set, x2 ∈ SNoS_ v → Subq (SNoLev (- x2)) (SNoLev x2)))
Hypothesis H2 : z ∈ ordsucc (SNoLev w)
Hypothesis H3 : w = - u
Hypothesis H4 : SNo u
Hypothesis H5 : SNoLev u ∈ SNoLev y
Hypothesis H6 : u ∈ SNoS_ (ordsucc (SNoLev u))
Hypothesis H7 : ordsucc (SNoLev u) ∈ x
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__16__1
Beginning of Section Conj_minus_SNo_Lev_lem1__22__2
Variable x : set
Variable y : set
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀z : set, z ∈ x → (∀w : set, w ∈ SNoS_ z → Subq (SNoLev (- w)) (SNoLev w)))
Hypothesis H3 : ordinal (SNoLev y)
Hypothesis H4 : SNo y
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_Lev_lem1__22__2
Beginning of Section Conj_minus_SNo_invol__5__6
Variable x : set
Variable y : set
Hypothesis H0 : SNoCutP x y
Hypothesis H1 : (∀z : set, z ∈ x → - (- z) = z)
Hypothesis H2 : (∀z : set, z ∈ y → - (- z) = z)
Hypothesis H3 : (∀z : set, z ∈ x → SNo z)
Hypothesis H4 : (∀z : set, z ∈ y → SNo z)
Hypothesis H5 : SNo (SNoCut x y)
Hypothesis H7 : SNo (- (- (SNoCut x y)))
Theorem. (
Conj_minus_SNo_invol__5__6)
Subq (SNoLev (SNoCut x y)) (SNoLev (- (- (SNoCut x y)))) ∧ SNoEq_ (SNoLev (SNoCut x y)) (SNoCut x y) (- (- (SNoCut x y))) → - (- (SNoCut x y)) = SNoCut x y
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_invol__5__6
Beginning of Section Conj_minus_SNo_invol__8__0
Variable x : set
Variable y : set
Hypothesis H1 : (∀z : set, z ∈ x → - (- z) = z)
Hypothesis H2 : (∀z : set, z ∈ y → - (- z) = z)
Hypothesis H3 : (∀z : set, z ∈ x → SNo z)
Hypothesis H4 : (∀z : set, z ∈ y → SNo z)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_invol__8__0
Beginning of Section Conj_minus_SNo_invol__8__2
Variable x : set
Variable y : set
Hypothesis H0 : SNoCutP x y
Hypothesis H1 : (∀z : set, z ∈ x → - (- z) = z)
Hypothesis H3 : (∀z : set, z ∈ x → SNo z)
Hypothesis H4 : (∀z : set, z ∈ y → SNo z)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNo_invol__8__2
Beginning of Section Conj_minus_SNoCut_eq_lem__5__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → (∀u : set, ∀v : set, SNoCutP u v → w = SNoCut u v → - w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H3 : (∀w : set, w ∈ z → SNo w)
Hypothesis H4 : x = SNoCut y z
Hypothesis H5 : SNoCutP (Repl z minus_SNo) (Repl y minus_SNo)
Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H7 : SNoLev (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w))) ∈ SNoLev (- x)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNoCut_eq_lem__5__2
Beginning of Section Conj_minus_SNoCut_eq_lem__6__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → (∀u : set, ∀v : set, SNoCutP u v → w = SNoCut u v → - w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H3 : (∀w : set, w ∈ z → SNo w)
Hypothesis H4 : x = SNoCut y z
Hypothesis H5 : SNoCutP (Repl z minus_SNo) (Repl y minus_SNo)
Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w)))) (SNoLev (- x))
Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w)))) (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w))) (- x)
Hypothesis H9 : ordinal (SNoLev (SNoCut (Repl z minus_SNo) (Repl y minus_SNo)))
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNoCut_eq_lem__6__2
Beginning of Section Conj_minus_SNoCut_eq_lem__6__9
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → (∀u : set, ∀v : set, SNoCutP u v → w = SNoCut u v → - w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : (∀w : set, w ∈ y → SNo w)
Hypothesis H3 : (∀w : set, w ∈ z → SNo w)
Hypothesis H4 : x = SNoCut y z
Hypothesis H5 : SNoCutP (Repl z minus_SNo) (Repl y minus_SNo)
Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w)))) (SNoLev (- x))
Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w)))) (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w))) (- x)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNoCut_eq_lem__6__9
Beginning of Section Conj_minus_SNoCut_eq_lem__7__5
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → (∀u : set, ∀v : set, SNoCutP u v → w = SNoCut u v → - w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : (∀w : set, w ∈ y → SNo w)
Hypothesis H3 : (∀w : set, w ∈ z → SNo w)
Hypothesis H4 : x = SNoCut y z
Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w)))) (SNoLev (- x))
Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w)))) (SNoCut (Repl z (λw : set ⇒ - w)) (Repl y (λw : set ⇒ - w))) (- x)
Theorem. (
Conj_minus_SNoCut_eq_lem__7__5)
ordinal (SNoLev (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))) → - x = SNoCut (Repl z minus_SNo) (Repl y minus_SNo)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNoCut_eq_lem__7__5
Beginning of Section Conj_minus_SNoCut_eq_lem__8__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → (∀u : set, ∀v : set, SNoCutP u v → w = SNoCut u v → - w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : SNoCutP y z
Hypothesis H4 : (∀w : set, w ∈ z → SNo w)
Hypothesis H5 : x = SNoCut y z
Hypothesis H6 : SNoCutP (Repl z minus_SNo) (Repl y minus_SNo)
Hypothesis H7 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H8 : (∀w : set, SNo w → (∀u : set, u ∈ Repl z minus_SNo → u < w) → (∀u : set, u ∈ Repl y minus_SNo → w < u) → Subq (SNoLev (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))) (SNoLev w) ∧ SNoEq_ (SNoLev (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))) (SNoCut (Repl z minus_SNo) (Repl y minus_SNo)) w)
Hypothesis H9 : (∀w : set, w ∈ Repl z minus_SNo → w < - x)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNoCut_eq_lem__8__3
Beginning of Section Conj_minus_SNoCut_eq_lem__11__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → (∀u : set, ∀v : set, SNoCutP u v → w = SNoCut u v → - w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : SNoCutP y z
Hypothesis H4 : (∀w : set, w ∈ z → SNo w)
Hypothesis H5 : x = SNoCut y z
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNoCut_eq_lem__11__3
Beginning of Section Conj_minus_SNoCut_eq_lem__11__5
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → (∀u : set, ∀v : set, SNoCutP u v → w = SNoCut u v → - w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : SNoCutP y z
Hypothesis H3 : (∀w : set, w ∈ y → SNo w)
Hypothesis H4 : (∀w : set, w ∈ z → SNo w)
Proof:The rest of the proof is missing.
End of Section Conj_minus_SNoCut_eq_lem__11__5
Beginning of Section Conj_add_SNo_prop1__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNoLev z ∈ SNoLev x
Theorem. (
Conj_add_SNo_prop1__1__1)
z ∈ SNoS_ (SNoLev x) → SNo (z + y) ∧ (∀w : set, w ∈ SNoL z → (w + y) < z + y) ∧ (∀w : set, w ∈ SNoR z → (z + y) < w + y) ∧ (∀w : set, w ∈ SNoL y → (z + w) < z + y) ∧ (∀w : set, w ∈ SNoR y → (z + y) < z + w) ∧ SNoCutP (binunion (Repl (SNoL z) (λw : set ⇒ w + y)) (Repl (SNoL y) (add_SNo z))) (binunion (Repl (SNoR z) (λw : set ⇒ w + y)) (Repl (SNoR y) (add_SNo z)))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__1__1
Beginning of Section Conj_add_SNo_prop1__2__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNoLev z ∈ SNoLev x
Theorem. (
Conj_add_SNo_prop1__2__1)
z ∈ SNoS_ (SNoLev x) → SNo (z + y) ∧ (∀w : set, w ∈ SNoL z → (w + y) < z + y) ∧ (∀w : set, w ∈ SNoR z → (z + y) < w + y) ∧ (∀w : set, w ∈ SNoL y → (z + w) < z + y) ∧ (∀w : set, w ∈ SNoR y → (z + y) < z + w) ∧ SNoCutP (binunion (Repl (SNoL z) (λw : set ⇒ w + y)) (Repl (SNoL y) (add_SNo z))) (binunion (Repl (SNoR z) (λw : set ⇒ w + y)) (Repl (SNoR y) (add_SNo z)))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__2__1
Beginning of Section Conj_add_SNo_prop1__3__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev y) → SNo (x + w) ∧ (∀u : set, u ∈ SNoL x → (u + w) < x + w) ∧ (∀u : set, u ∈ SNoR x → (x + w) < u + w) ∧ (∀u : set, u ∈ SNoL w → (x + u) < x + w) ∧ (∀u : set, u ∈ SNoR w → (x + w) < x + u) ∧ SNoCutP (binunion (Repl (SNoL x) (λu : set ⇒ u + w)) (Repl (SNoL w) (add_SNo x))) (binunion (Repl (SNoR x) (λu : set ⇒ u + w)) (Repl (SNoR w) (add_SNo x))))
Hypothesis H3 : SNoLev z ∈ SNoLev y
Theorem. (
Conj_add_SNo_prop1__3__2)
z ∈ SNoS_ (SNoLev y) → SNo (x + z) ∧ (∀w : set, w ∈ SNoL x → (w + z) < x + z) ∧ (∀w : set, w ∈ SNoR x → (x + z) < w + z) ∧ (∀w : set, w ∈ SNoL z → (x + w) < x + z) ∧ (∀w : set, w ∈ SNoR z → (x + z) < x + w) ∧ SNoCutP (binunion (Repl (SNoL x) (λw : set ⇒ w + z)) (Repl (SNoL z) (add_SNo x))) (binunion (Repl (SNoR x) (λw : set ⇒ w + z)) (Repl (SNoR z) (add_SNo x)))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__3__2
Beginning of Section Conj_add_SNo_prop1__4__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev y) → SNo (x + w) ∧ (∀u : set, u ∈ SNoL x → (u + w) < x + w) ∧ (∀u : set, u ∈ SNoR x → (x + w) < u + w) ∧ (∀u : set, u ∈ SNoL w → (x + u) < x + w) ∧ (∀u : set, u ∈ SNoR w → (x + w) < x + u) ∧ SNoCutP (binunion (Repl (SNoL x) (λu : set ⇒ u + w)) (Repl (SNoL w) (add_SNo x))) (binunion (Repl (SNoR x) (λu : set ⇒ u + w)) (Repl (SNoR w) (add_SNo x))))
Hypothesis H3 : SNoLev z ∈ SNoLev y
Theorem. (
Conj_add_SNo_prop1__4__2)
z ∈ SNoS_ (SNoLev y) → SNo (x + z) ∧ (∀w : set, w ∈ SNoL x → (w + z) < x + z) ∧ (∀w : set, w ∈ SNoR x → (x + z) < w + z) ∧ (∀w : set, w ∈ SNoL z → (x + w) < x + z) ∧ (∀w : set, w ∈ SNoR z → (x + z) < x + w) ∧ SNoCutP (binunion (Repl (SNoL x) (λw : set ⇒ w + z)) (Repl (SNoL z) (add_SNo x))) (binunion (Repl (SNoR x) (λw : set ⇒ w + z)) (Repl (SNoR z) (add_SNo x)))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__4__2
Beginning of Section Conj_add_SNo_prop1__5__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v))) → (∀P : prop, (SNo (v + x2) → (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) → (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) → (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) → (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) → P) → P))
Hypothesis H1 : (∀v : set, v ∈ SNoS_ (SNoLev y) → SNo (x + v) ∧ (∀x2 : set, x2 ∈ SNoL x → (x2 + v) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR x → (x + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (x + x2) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (x + v) < x + x2) ∧ SNoCutP (binunion (Repl (SNoL x) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H2 : SNo z
Hypothesis H3 : SNo (x + z)
Hypothesis H4 : (∀v : set, v ∈ SNoR z → (x + z) < x + v)
Hypothesis H6 : SNo (x + w)
Hypothesis H7 : (∀v : set, v ∈ SNoL w → (x + v) < x + w)
Hypothesis H8 : SNo u
Hypothesis H9 : z < u
Hypothesis H10 : u < w
Hypothesis H11 : SNoLev u ∈ SNoLev z
Hypothesis H12 : SNoLev u ∈ SNoLev w
Hypothesis H13 : u ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__5__5
Beginning of Section Conj_add_SNo_prop1__5__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v))) → (∀P : prop, (SNo (v + x2) → (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) → (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) → (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) → (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) → P) → P))
Hypothesis H1 : (∀v : set, v ∈ SNoS_ (SNoLev y) → SNo (x + v) ∧ (∀x2 : set, x2 ∈ SNoL x → (x2 + v) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR x → (x + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (x + x2) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (x + v) < x + x2) ∧ SNoCutP (binunion (Repl (SNoL x) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H2 : SNo z
Hypothesis H3 : SNo (x + z)
Hypothesis H4 : (∀v : set, v ∈ SNoR z → (x + z) < x + v)
Hypothesis H5 : SNo w
Hypothesis H6 : SNo (x + w)
Hypothesis H7 : (∀v : set, v ∈ SNoL w → (x + v) < x + w)
Hypothesis H8 : SNo u
Hypothesis H9 : z < u
Hypothesis H10 : u < w
Hypothesis H11 : SNoLev u ∈ SNoLev z
Hypothesis H12 : SNoLev u ∈ SNoLev w
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__5__13
Beginning of Section Conj_add_SNo_prop1__6__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v))) → (∀P : prop, (SNo (v + x2) → (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) → (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) → (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) → (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) → P) → P))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀v : set, v ∈ SNoS_ (SNoLev y) → SNo (x + v) ∧ (∀x2 : set, x2 ∈ SNoL x → (x2 + v) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR x → (x + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (x + x2) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (x + v) < x + x2) ∧ SNoCutP (binunion (Repl (SNoL x) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H3 : SNo z
Hypothesis H5 : (∀v : set, v ∈ SNoR z → (x + z) < x + v)
Hypothesis H6 : SNo w
Hypothesis H7 : SNo (x + w)
Hypothesis H8 : (∀v : set, v ∈ SNoL w → (x + v) < x + w)
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : u < w
Hypothesis H12 : SNoLev u ∈ SNoLev z
Hypothesis H13 : SNoLev u ∈ SNoLev w
Hypothesis H14 : SNoLev u ∈ SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__6__4
Beginning of Section Conj_add_SNo_prop1__8__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, ∀v : set, SNo (u + v) ∧ (∀x2 : set, x2 ∈ SNoL u → (x2 + v) < u + v) ∧ (∀x2 : set, x2 ∈ SNoR u → (u + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (u + x2) < u + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (u + v) < u + x2) ∧ SNoCutP (binunion (Repl (SNoL u) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo u))) (binunion (Repl (SNoR u) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo u))) → (∀P : prop, (SNo (u + v) → (∀x2 : set, x2 ∈ SNoL u → (x2 + v) < u + v) → (∀x2 : set, x2 ∈ SNoR u → (u + v) < x2 + v) → (∀x2 : set, x2 ∈ SNoL v → (u + x2) < u + v) → (∀x2 : set, x2 ∈ SNoR v → (u + v) < u + x2) → P) → P))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → SNo (x + u) ∧ (∀v : set, v ∈ SNoL x → (v + u) < x + u) ∧ (∀v : set, v ∈ SNoR x → (x + u) < v + u) ∧ (∀v : set, v ∈ SNoL u → (x + v) < x + u) ∧ (∀v : set, v ∈ SNoR u → (x + u) < x + v) ∧ SNoCutP (binunion (Repl (SNoL x) (λv : set ⇒ v + u)) (Repl (SNoL u) (add_SNo x))) (binunion (Repl (SNoR x) (λv : set ⇒ v + u)) (Repl (SNoR u) (add_SNo x))))
Hypothesis H3 : TransSet (SNoLev y)
Hypothesis H4 : SNo z
Hypothesis H5 : z < y
Hypothesis H6 : SNo (x + z)
Hypothesis H7 : (∀u : set, u ∈ SNoR z → (x + z) < x + u)
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w ∈ SNoLev y
Hypothesis H10 : y < w
Hypothesis H11 : SNo (x + w)
Hypothesis H12 : (∀u : set, u ∈ SNoL w → (x + u) < x + w)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__8__1
Beginning of Section Conj_add_SNo_prop1__8__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, ∀v : set, SNo (u + v) ∧ (∀x2 : set, x2 ∈ SNoL u → (x2 + v) < u + v) ∧ (∀x2 : set, x2 ∈ SNoR u → (u + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (u + x2) < u + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (u + v) < u + x2) ∧ SNoCutP (binunion (Repl (SNoL u) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo u))) (binunion (Repl (SNoR u) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo u))) → (∀P : prop, (SNo (u + v) → (∀x2 : set, x2 ∈ SNoL u → (x2 + v) < u + v) → (∀x2 : set, x2 ∈ SNoR u → (u + v) < x2 + v) → (∀x2 : set, x2 ∈ SNoL v → (u + x2) < u + v) → (∀x2 : set, x2 ∈ SNoR v → (u + v) < u + x2) → P) → P))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → SNo (x + u) ∧ (∀v : set, v ∈ SNoL x → (v + u) < x + u) ∧ (∀v : set, v ∈ SNoR x → (x + u) < v + u) ∧ (∀v : set, v ∈ SNoL u → (x + v) < x + u) ∧ (∀v : set, v ∈ SNoR u → (x + u) < x + v) ∧ SNoCutP (binunion (Repl (SNoL x) (λv : set ⇒ v + u)) (Repl (SNoL u) (add_SNo x))) (binunion (Repl (SNoR x) (λv : set ⇒ v + u)) (Repl (SNoR u) (add_SNo x))))
Hypothesis H3 : TransSet (SNoLev y)
Hypothesis H4 : SNo z
Hypothesis H5 : z < y
Hypothesis H6 : SNo (x + z)
Hypothesis H7 : (∀u : set, u ∈ SNoR z → (x + z) < x + u)
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w ∈ SNoLev y
Hypothesis H11 : SNo (x + w)
Hypothesis H12 : (∀u : set, u ∈ SNoL w → (x + u) < x + w)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__8__10
Beginning of Section Conj_add_SNo_prop1__10__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v))) → (∀P : prop, (SNo (v + x2) → (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) → (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) → (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) → (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) → P) → P))
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev y) → SNo (x + v) ∧ (∀x2 : set, x2 ∈ SNoL x → (x2 + v) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR x → (x + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (x + x2) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (x + v) < x + x2) ∧ SNoCutP (binunion (Repl (SNoL x) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v)))))
Hypothesis H5 : TransSet (SNoLev y)
Hypothesis H6 : (∀v : set, v ∈ SNoR x → SNo (v + y) ∧ (∀x2 : set, x2 ∈ SNoL v → (x2 + y) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR v → (v + y) < x2 + y) ∧ (∀x2 : set, x2 ∈ SNoL y → (v + x2) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR y → (v + y) < v + x2) ∧ SNoCutP (binunion (Repl (SNoL v) (λx2 : set ⇒ x2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : set ⇒ x2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H7 : (∀v : set, v ∈ SNoL y → SNo (x + v) ∧ (∀x2 : set, x2 ∈ SNoL x → (x2 + v) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR x → (x + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (x + x2) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (x + v) < x + x2) ∧ SNoCutP (binunion (Repl (SNoL x) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H8 : (∀v : set, v ∈ SNoR y → SNo (x + v) ∧ (∀x2 : set, x2 ∈ SNoL x → (x2 + v) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR x → (x + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (x + x2) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (x + v) < x + x2) ∧ SNoCutP (binunion (Repl (SNoL x) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H10 : u ∈ SNoL y
Hypothesis H11 : z = x + u
Hypothesis H12 : SNo u
Hypothesis H13 : SNoLev u ∈ SNoLev y
Hypothesis H14 : u < y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__10__9
Beginning of Section Conj_add_SNo_prop1__11__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v))) → (∀P : prop, (SNo (v + x2) → (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) → (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) → (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) → (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) → P) → P))
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v)))))
Hypothesis H4 : (∀v : set, v ∈ SNoR y → SNo (x + v) ∧ (∀x2 : set, x2 ∈ SNoL x → (x2 + v) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR x → (x + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (x + x2) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (x + v) < x + x2) ∧ SNoCutP (binunion (Repl (SNoL x) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H7 : w < x
Hypothesis H9 : SNo (w + y)
Hypothesis H10 : (∀v : set, v ∈ SNoR y → (w + y) < w + v)
Hypothesis H11 : u ∈ SNoR y
Hypothesis H12 : z = x + u
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev y
Hypothesis H15 : y < u
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__11__8
Beginning of Section Conj_add_SNo_prop1__13__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v))) → (∀P : prop, (SNo (v + x2) → (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) → (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) → (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) → (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) → P) → P))
Hypothesis H1 : SNo x
Hypothesis H2 : (∀v : set, v ∈ SNoS_ (SNoLev x) → SNo (v + y) ∧ (∀x2 : set, x2 ∈ SNoL v → (x2 + y) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR v → (v + y) < x2 + y) ∧ (∀x2 : set, x2 ∈ SNoL y → (v + x2) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR y → (v + y) < v + x2) ∧ SNoCutP (binunion (Repl (SNoL v) (λx2 : set ⇒ x2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : set ⇒ x2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H3 : SNo z
Hypothesis H4 : SNo (z + y)
Hypothesis H5 : (∀v : set, v ∈ SNoR z → (z + y) < v + y)
Hypothesis H6 : SNo w
Hypothesis H7 : SNo (w + y)
Hypothesis H8 : (∀v : set, v ∈ SNoL w → (v + y) < w + y)
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : u < w
Hypothesis H12 : SNoLev u ∈ SNoLev z
Hypothesis H14 : SNoLev u ∈ SNoLev x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__13__13
Beginning of Section Conj_add_SNo_prop1__14__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v))) → (∀P : prop, (SNo (v + x2) → (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) → (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) → (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) → (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) → P) → P))
Hypothesis H1 : SNo x
Hypothesis H2 : (∀v : set, v ∈ SNoS_ (SNoLev x) → SNo (v + y) ∧ (∀x2 : set, x2 ∈ SNoL v → (x2 + y) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR v → (v + y) < x2 + y) ∧ (∀x2 : set, x2 ∈ SNoL y → (v + x2) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR y → (v + y) < v + x2) ∧ SNoCutP (binunion (Repl (SNoL v) (λx2 : set ⇒ x2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : set ⇒ x2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z ∈ SNoLev x
Hypothesis H6 : SNo (z + y)
Hypothesis H7 : (∀v : set, v ∈ SNoR z → (z + y) < v + y)
Hypothesis H8 : SNo w
Hypothesis H9 : SNo (w + y)
Hypothesis H10 : (∀v : set, v ∈ SNoL w → (v + y) < w + y)
Hypothesis H11 : SNo u
Hypothesis H12 : z < u
Hypothesis H13 : u < w
Hypothesis H14 : SNoLev u ∈ SNoLev z
Hypothesis H15 : SNoLev u ∈ SNoLev w
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__14__3
Beginning of Section Conj_add_SNo_prop1__16__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v))) → (∀P : prop, (SNo (v + x2) → (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) → (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) → (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) → (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) → P) → P))
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → SNo (v + y) ∧ (∀x2 : set, x2 ∈ SNoL v → (x2 + y) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR v → (v + y) < x2 + y) ∧ (∀x2 : set, x2 ∈ SNoL y → (v + x2) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR y → (v + y) < v + x2) ∧ SNoCutP (binunion (Repl (SNoL v) (λx2 : set ⇒ x2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : set ⇒ x2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H4 : (∀v : set, v ∈ SNoS_ (SNoLev x) → (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → SNo (v + x2) ∧ (∀y2 : set, y2 ∈ SNoL v → (y2 + x2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR v → (v + x2) < y2 + x2) ∧ (∀y2 : set, y2 ∈ SNoL x2 → (v + y2) < v + x2) ∧ (∀y2 : set, y2 ∈ SNoR x2 → (v + x2) < v + y2) ∧ SNoCutP (binunion (Repl (SNoL v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : set ⇒ y2 + x2)) (Repl (SNoR x2) (add_SNo v)))))
Hypothesis H6 : (∀v : set, v ∈ SNoL x → SNo (v + y) ∧ (∀x2 : set, x2 ∈ SNoL v → (x2 + y) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR v → (v + y) < x2 + y) ∧ (∀x2 : set, x2 ∈ SNoL y → (v + x2) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR y → (v + y) < v + x2) ∧ SNoCutP (binunion (Repl (SNoL v) (λx2 : set ⇒ x2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : set ⇒ x2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H7 : (∀v : set, v ∈ SNoR x → SNo (v + y) ∧ (∀x2 : set, x2 ∈ SNoL v → (x2 + y) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR v → (v + y) < x2 + y) ∧ (∀x2 : set, x2 ∈ SNoL y → (v + x2) < v + y) ∧ (∀x2 : set, x2 ∈ SNoR y → (v + y) < v + x2) ∧ SNoCutP (binunion (Repl (SNoL v) (λx2 : set ⇒ x2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : set ⇒ x2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H8 : (∀v : set, v ∈ SNoR y → SNo (x + v) ∧ (∀x2 : set, x2 ∈ SNoL x → (x2 + v) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR x → (x + v) < x2 + v) ∧ (∀x2 : set, x2 ∈ SNoL v → (x + x2) < x + v) ∧ (∀x2 : set, x2 ∈ SNoR v → (x + v) < x + x2) ∧ SNoCutP (binunion (Repl (SNoL x) (λx2 : set ⇒ x2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : set ⇒ x2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H9 : w ∈ binunion (Repl (SNoR x) (λv : set ⇒ v + y)) (Repl (SNoR y) (add_SNo x))
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : z = u + y
Hypothesis H12 : SNo u
Hypothesis H13 : SNoLev u ∈ SNoLev x
Hypothesis H14 : u < x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__16__5
Beginning of Section Conj_add_SNo_prop1__21__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Theorem. (
Conj_add_SNo_prop1__21__2)
SNo (SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x)))) → SNo (x + y) ∧ (∀z : set, z ∈ SNoL x → (z + y) < x + y) ∧ (∀z : set, z ∈ SNoR x → (x + y) < z + y) ∧ (∀z : set, z ∈ SNoL y → (x + z) < x + y) ∧ (∀z : set, z ∈ SNoR y → (x + y) < x + z) ∧ SNoCutP (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x)))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__21__2
Beginning of Section Conj_add_SNo_prop1__28__1
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, ∀w : set, SNo (z + w) ∧ (∀u : set, u ∈ SNoL z → (u + w) < z + w) ∧ (∀u : set, u ∈ SNoR z → (z + w) < u + w) ∧ (∀u : set, u ∈ SNoL w → (z + u) < z + w) ∧ (∀u : set, u ∈ SNoR w → (z + w) < z + u) ∧ SNoCutP (binunion (Repl (SNoL z) (λu : set ⇒ u + w)) (Repl (SNoL w) (add_SNo z))) (binunion (Repl (SNoR z) (λu : set ⇒ u + w)) (Repl (SNoR w) (add_SNo z))) → (∀P : prop, (SNo (z + w) → (∀u : set, u ∈ SNoL z → (u + w) < z + w) → (∀u : set, u ∈ SNoR z → (z + w) < u + w) → (∀u : set, u ∈ SNoL w → (z + u) < z + w) → (∀u : set, u ∈ SNoR w → (z + w) < z + u) → P) → P))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev x) → SNo (z + y) ∧ (∀w : set, w ∈ SNoL z → (w + y) < z + y) ∧ (∀w : set, w ∈ SNoR z → (z + y) < w + y) ∧ (∀w : set, w ∈ SNoL y → (z + w) < z + y) ∧ (∀w : set, w ∈ SNoR y → (z + y) < z + w) ∧ SNoCutP (binunion (Repl (SNoL z) (λw : set ⇒ w + y)) (Repl (SNoL y) (add_SNo z))) (binunion (Repl (SNoR z) (λw : set ⇒ w + y)) (Repl (SNoR y) (add_SNo z))))
Hypothesis H4 : (∀z : set, z ∈ SNoS_ (SNoLev y) → SNo (x + z) ∧ (∀w : set, w ∈ SNoL x → (w + z) < x + z) ∧ (∀w : set, w ∈ SNoR x → (x + z) < w + z) ∧ (∀w : set, w ∈ SNoL z → (x + w) < x + z) ∧ (∀w : set, w ∈ SNoR z → (x + z) < x + w) ∧ SNoCutP (binunion (Repl (SNoL x) (λw : set ⇒ w + z)) (Repl (SNoL z) (add_SNo x))) (binunion (Repl (SNoR x) (λw : set ⇒ w + z)) (Repl (SNoR z) (add_SNo x))))
Hypothesis H5 : (∀z : set, z ∈ SNoS_ (SNoLev x) → (∀w : set, w ∈ SNoS_ (SNoLev y) → SNo (z + w) ∧ (∀u : set, u ∈ SNoL z → (u + w) < z + w) ∧ (∀u : set, u ∈ SNoR z → (z + w) < u + w) ∧ (∀u : set, u ∈ SNoL w → (z + u) < z + w) ∧ (∀u : set, u ∈ SNoR w → (z + w) < z + u) ∧ SNoCutP (binunion (Repl (SNoL z) (λu : set ⇒ u + w)) (Repl (SNoL w) (add_SNo z))) (binunion (Repl (SNoR z) (λu : set ⇒ u + w)) (Repl (SNoR w) (add_SNo z)))))
Hypothesis H6 : TransSet (SNoLev x)
Theorem. (
Conj_add_SNo_prop1__28__1)
ordinal (SNoLev y) → SNo (x + y) ∧ (∀z : set, z ∈ SNoL x → (z + y) < x + y) ∧ (∀z : set, z ∈ SNoR x → (x + y) < z + y) ∧ (∀z : set, z ∈ SNoL y → (x + z) < x + y) ∧ (∀z : set, z ∈ SNoR y → (x + y) < x + z) ∧ SNoCutP (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x)))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_prop1__28__1
Beginning of Section Conj_add_SNo_com__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNoLev z ∈ SNoLev x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_com__1__1
Beginning of Section Conj_add_SNo_com__1__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → w + y = y + w)
Hypothesis H2 : SNo z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_com__1__3
Beginning of Section Conj_add_SNo_com__2__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNoLev z ∈ SNoLev x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_com__2__1
Beginning of Section Conj_add_SNo_com__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → w + y = y + w)
Hypothesis H2 : SNo z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_com__2__3
Beginning of Section Conj_add_SNo_com__6__2
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z ∈ SNoR x → z + y = y + z)
Hypothesis H1 : (∀z : set, z ∈ SNoR y → x + z = z + x)
Hypothesis H3 : Repl (SNoL y) (add_SNo x) = Repl (SNoL y) (λz : set ⇒ z + x)
Theorem. (
Conj_add_SNo_com__6__2)
Repl (SNoR x) (λz : set ⇒ z + y) = Repl (SNoR x) (add_SNo y) → SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x))) = SNoCut (binunion (Repl (SNoL y) (λz : set ⇒ z + x)) (Repl (SNoL x) (add_SNo y))) (binunion (Repl (SNoR y) (λz : set ⇒ z + x)) (Repl (SNoR x) (add_SNo y)))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_com__6__2
Beginning of Section Conj_add_SNo_com__9__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z ∈ SNoS_ (SNoLev y) → x + z = z + x)
Hypothesis H3 : (∀z : set, z ∈ SNoL x → z + y = y + z)
Hypothesis H4 : (∀z : set, z ∈ SNoR x → z + y = y + z)
Hypothesis H5 : (∀z : set, z ∈ SNoL y → x + z = z + x)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_com__9__0
Beginning of Section Conj_add_SNo_com__10__1
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H2 : (∀z : set, z ∈ SNoS_ (SNoLev y) → x + z = z + x)
Hypothesis H3 : (∀z : set, z ∈ SNoL x → z + y = y + z)
Hypothesis H4 : (∀z : set, z ∈ SNoR x → z + y = y + z)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_com__10__1
Beginning of Section Conj_add_SNo_minus_SNo_linv__4__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : SNo (- x)
Hypothesis H2 : y = z + x
Hypothesis H3 : SNo z
Hypothesis H4 : - x < z
Hypothesis H5 : SNo (- z)
Hypothesis H6 : - z + z = Empty
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_minus_SNo_linv__4__0
Beginning of Section Conj_add_SNo_minus_SNo_linv__8__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → - w + w = Empty)
Hypothesis H2 : SNo (- x)
Hypothesis H3 : y = - x + z
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z ∈ SNoLev x
Hypothesis H7 : SNo (- z)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_minus_SNo_linv__8__6
Beginning of Section Conj_add_SNo_minus_SNo_linv__9__5
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w ∈ SNoS_ (SNoLev x) → - w + w = Empty)
Hypothesis H2 : SNo (- x)
Hypothesis H3 : y = - x + z
Hypothesis H4 : SNo z
Hypothesis H6 : z < x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_minus_SNo_linv__9__5
Beginning of Section Conj_add_SNo_ordinal_ordinal__3__3
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Hypothesis H2 : SNo x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_ordinal__3__3
Beginning of Section Conj_add_SNo_ordinal_ordinal__4__1
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H2 : SNo x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_ordinal__4__1
Beginning of Section Conj_add_SNo_ordinal_ordinal__4__2
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_ordinal__4__2
Beginning of Section Conj_add_SNo_ordinal_SL__1__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : ordinal (x + y)
Hypothesis H4 : SNo (ordsucc x)
Hypothesis H5 : ordinal (ordsucc (x + y))
Hypothesis H6 : SNo (ordsucc (x + y))
Hypothesis H7 : SNoLev z ∈ y
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Hypothesis H10 : ordsucc x + SNoLev z = ordsucc (x + SNoLev z)
Hypothesis H11 : SNo (ordsucc x + z)
Hypothesis H12 : ordinal (x + SNoLev z)
Hypothesis H13 : ordinal (ordsucc x + SNoLev z)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SL__1__0
Beginning of Section Conj_add_SNo_ordinal_SL__1__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal y
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : ordinal (x + y)
Hypothesis H5 : ordinal (ordsucc (x + y))
Hypothesis H6 : SNo (ordsucc (x + y))
Hypothesis H7 : SNoLev z ∈ y
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Hypothesis H10 : ordsucc x + SNoLev z = ordsucc (x + SNoLev z)
Hypothesis H11 : SNo (ordsucc x + z)
Hypothesis H12 : ordinal (x + SNoLev z)
Hypothesis H13 : ordinal (ordsucc x + SNoLev z)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SL__1__4
Beginning of Section Conj_add_SNo_ordinal_SL__6__8
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : ordinal (x + y)
Hypothesis H4 : ordinal (ordsucc (x + y))
Hypothesis H5 : SNo (ordsucc (x + y))
Hypothesis H6 : SNoLev z ∈ ordsucc x
Hypothesis H7 : ordinal (SNoLev z)
Hypothesis H9 : ordinal (SNoLev z + y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SL__6__8
Beginning of Section Conj_add_SNo_ordinal_SL__7__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : ordinal (x + y)
Hypothesis H5 : ordinal (ordsucc (x + y))
Hypothesis H6 : SNo (ordsucc (x + y))
Hypothesis H7 : SNoLev z ∈ ordsucc x
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SL__7__1
Beginning of Section Conj_add_SNo_ordinal_SL__7__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Hypothesis H2 : SNo x
Hypothesis H4 : ordinal (x + y)
Hypothesis H5 : ordinal (ordsucc (x + y))
Hypothesis H6 : SNo (ordsucc (x + y))
Hypothesis H7 : SNoLev z ∈ ordsucc x
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SL__7__3
Beginning of Section Conj_add_SNo_ordinal_SL__11__9
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Hypothesis H2 : (∀z : set, z ∈ y → ordsucc x + z = ordsucc (x + z))
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : ordinal (x + y)
Hypothesis H6 : ordinal (ordsucc x)
Hypothesis H7 : SNo (ordsucc x)
Hypothesis H8 : ordinal (ordsucc x + y)
Hypothesis H10 : ordsucc (x + y) ∈ ordsucc x + y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SL__11__9
Beginning of Section Conj_add_SNo_ordinal_SL__14__0
Variable x : set
Variable y : set
Hypothesis H1 : ordinal y
Hypothesis H2 : (∀z : set, z ∈ y → ordsucc x + z = ordsucc (x + z))
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : ordinal (x + y)
Hypothesis H6 : ordinal (ordsucc x)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SL__14__0
Beginning of Section Conj_add_SNo_ordinal_SR__4__0
Variable x : set
Variable y : set
Hypothesis H1 : ordinal y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SR__4__0
Beginning of Section Conj_add_SNo_ordinal_SR__5__1
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_SR__5__1
Beginning of Section Conj_add_SNo_ordinal_InR__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : ordinal z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_ordinal_InR__1__1
Beginning of Section Conj_add_nat_add_SNo__1__1
Variable x : set
Hypothesis H0 : ordinal x
Proof:The rest of the proof is missing.
End of Section Conj_add_nat_add_SNo__1__1
Beginning of Section Conj_add_SNo_SNoL_interpolate__2__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : SNo z
Hypothesis H4 : (∀u : set, u ∈ SNoS_ (SNoLev z) → SNoLev u ∈ SNoLev (x + y) → u < x + y → (∃v : set, v ∈ SNoL x ∧ u ≤ v + y) ∨ (∃v : set, v ∈ SNoL y ∧ u ≤ x + v))
Hypothesis H5 : SNoLev z ∈ SNoLev (x + y)
Hypothesis H6 : ¬ ((∃u : set, u ∈ SNoL x ∧ z ≤ u + y) ∨ (∃u : set, u ∈ SNoL y ∧ z ≤ x + u))
Hypothesis H7 : w ∈ SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w ∈ SNoLev z
Hypothesis H10 : z < w
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_SNoL_interpolate__2__11
Beginning of Section Conj_add_SNo_SNoR_interpolate__1__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H2 : ¬ ((∃u : set, u ∈ SNoR x ∧ (u + y) ≤ z) ∨ (∃u : set, u ∈ SNoR y ∧ (x + u) ≤ z))
Hypothesis H3 : w ∈ SNoR y
Hypothesis H4 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_SNoR_interpolate__1__1
Beginning of Section Conj_add_SNo_assoc__3__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → v + y + z = (v + y) + z)
Hypothesis H4 : SNo (y + z)
Hypothesis H5 : SNo w
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : (u + y) ≤ w
Hypothesis H8 : SNo u
Hypothesis H9 : x < u
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_assoc__3__0
Beginning of Section Conj_add_SNo_assoc__6__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev x) → v + y + z = (v + y) + z)
Hypothesis H4 : SNo (y + z)
Hypothesis H5 : SNo w
Hypothesis H6 : u ∈ SNoL x
Hypothesis H8 : SNo u
Hypothesis H9 : u < x
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_assoc__6__7
Beginning of Section Conj_add_SNo_assoc__7__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNo (x + y)
Hypothesis H5 : SNo w
Hypothesis H6 : u ∈ SNoR z
Hypothesis H7 : (y + u) ≤ w
Hypothesis H8 : SNo u
Hypothesis H9 : z < u
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_assoc__7__3
Beginning of Section Conj_add_SNo_assoc__10__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v ∈ SNoS_ (SNoLev z) → x + y + v = (x + y) + v)
Hypothesis H4 : SNo (x + y)
Hypothesis H5 : SNo w
Hypothesis H6 : u ∈ SNoL z
Hypothesis H7 : w ≤ y + u
Hypothesis H8 : SNo u
Hypothesis H9 : u < z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_assoc__10__0
Beginning of Section Conj_add_SNo_assoc__14__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀w : set, w ∈ SNoS_ (SNoLev x) → w + y + z = (w + y) + z)
Hypothesis H5 : (∀w : set, w ∈ SNoS_ (SNoLev z) → x + y + w = (x + y) + w)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo (y + z)
Theorem. (
Conj_add_SNo_assoc__14__4)
SNoCutP (binunion (Repl (SNoL x) (λw : set ⇒ w + y + z)) (Repl (SNoL (y + z)) (add_SNo x))) (binunion (Repl (SNoR x) (λw : set ⇒ w + y + z)) (Repl (SNoR (y + z)) (add_SNo x))) → SNoCut (binunion (Repl (SNoL x) (λw : set ⇒ w + y + z)) (Repl (SNoL (y + z)) (add_SNo x))) (binunion (Repl (SNoR x) (λw : set ⇒ w + y + z)) (Repl (SNoR (y + z)) (add_SNo x))) = SNoCut (binunion (Repl (SNoL (x + y)) (λw : set ⇒ w + z)) (Repl (SNoL z) (add_SNo (x + y)))) (binunion (Repl (SNoR (x + y)) (λw : set ⇒ w + z)) (Repl (SNoR z) (add_SNo (x + y))))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_assoc__14__4
Beginning of Section Conj_add_SNo_cancel_L__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNo (- x)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_cancel_L__2__3
Beginning of Section Conj_minus_add_SNo_distr__1__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (- x)
Hypothesis H3 : SNo (- y)
Hypothesis H4 : SNo (x + y)
Proof:The rest of the proof is missing.
End of Section Conj_minus_add_SNo_distr__1__0
Beginning of Section Conj_minus_add_SNo_distr__3__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Proof:The rest of the proof is missing.
End of Section Conj_minus_add_SNo_distr__3__2
Beginning of Section Conj_add_SNo_Lev_bd__3__0
Variable x : set
Variable y : set
Variable z : set
Variable p : (set → prop)
Variable w : set
Hypothesis H1 : w ∈ SNoR x
Hypothesis H2 : z = w + y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__3__0
Beginning of Section Conj_add_SNo_Lev_bd__6__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : z ∈ ordsucc (SNoLev (x + w))
Hypothesis H4 : ordinal z
Hypothesis H5 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : Subq (SNoLev (x + w)) (SNoLev x + SNoLev w)
Hypothesis H7 : SNoLev x + SNoLev w ∈ SNoLev x + SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__6__2
Beginning of Section Conj_add_SNo_Lev_bd__7__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w ∈ SNoLev y
Hypothesis H5 : z ∈ ordsucc (SNoLev (x + w))
Hypothesis H6 : ordinal z
Hypothesis H8 : Subq (SNoLev (x + w)) (SNoLev x + SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__7__7
Beginning of Section Conj_add_SNo_Lev_bd__10__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : SNo w
Hypothesis H2 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H3 : ordinal z
Hypothesis H4 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : SNoLev w + SNoLev y ∈ SNoLev x + SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__10__5
Beginning of Section Conj_add_SNo_Lev_bd__11__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H4 : ordinal z
Hypothesis H5 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Hypothesis H7 : SNoLev w + SNoLev y ∈ SNoLev x + SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__11__2
Beginning of Section Conj_add_SNo_Lev_bd__12__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w ∈ SNoLev x
Hypothesis H5 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H7 : Subq (SNoLev x + SNoLev y) z
Hypothesis H8 : Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__12__6
Beginning of Section Conj_add_SNo_Lev_bd__13__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H7 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__13__3
Beginning of Section Conj_add_SNo_Lev_bd__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev x) → Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H7 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__13__5
Beginning of Section Conj_add_SNo_Lev_bd__13__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev x) → Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H7 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__13__6
Beginning of Section Conj_add_SNo_Lev_bd__13__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev x) → Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__13__7
Beginning of Section Conj_add_SNo_Lev_bd__14__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev x) → Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H7 : z ∈ ordsucc (SNoLev (w + y))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__14__5
Beginning of Section Conj_add_SNo_Lev_bd__16__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : z ∈ ordsucc (SNoLev (x + w))
Hypothesis H4 : ordinal z
Hypothesis H5 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : Subq (SNoLev (x + w)) (SNoLev x + SNoLev w)
Hypothesis H7 : SNoLev x + SNoLev w ∈ SNoLev x + SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__16__2
Beginning of Section Conj_add_SNo_Lev_bd__17__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w ∈ SNoLev y
Hypothesis H5 : z ∈ ordsucc (SNoLev (x + w))
Hypothesis H6 : ordinal z
Hypothesis H8 : Subq (SNoLev (x + w)) (SNoLev x + SNoLev w)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__17__7
Beginning of Section Conj_add_SNo_Lev_bd__20__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : SNo w
Hypothesis H2 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H3 : ordinal z
Hypothesis H4 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : SNoLev w + SNoLev y ∈ SNoLev x + SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__20__5
Beginning of Section Conj_add_SNo_Lev_bd__21__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H4 : ordinal z
Hypothesis H5 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Hypothesis H7 : SNoLev w + SNoLev y ∈ SNoLev x + SNoLev y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__21__2
Beginning of Section Conj_add_SNo_Lev_bd__22__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w ∈ SNoLev x
Hypothesis H5 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H7 : Subq (SNoLev x + SNoLev y) z
Hypothesis H8 : Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__22__6
Beginning of Section Conj_add_SNo_Lev_bd__23__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H7 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__23__3
Beginning of Section Conj_add_SNo_Lev_bd__23__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev x) → Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H7 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__23__5
Beginning of Section Conj_add_SNo_Lev_bd__23__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev x) → Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H7 : z ∈ ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__23__6
Beginning of Section Conj_add_SNo_Lev_bd__23__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev x) → Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__23__7
Beginning of Section Conj_add_SNo_Lev_bd__24__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev x) → Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w ∈ SNoS_ (SNoLev x)
Hypothesis H6 : SNoLev w ∈ SNoLev x
Hypothesis H7 : z ∈ ordsucc (SNoLev (w + y))
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__24__5
Beginning of Section Conj_add_SNo_Lev_bd__29__1
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev x) → Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))
Hypothesis H4 : (∀z : set, z ∈ SNoS_ (SNoLev y) → Subq (SNoLev (x + z)) (SNoLev x + SNoLev z))
Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x)))) ∈ ordsucc (binunion (famunion (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (λz : set ⇒ ordsucc (SNoLev z))) (famunion (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x))) (λz : set ⇒ ordsucc (SNoLev z))))
Hypothesis H6 : (∀z : set, z ∈ Repl (SNoL x) (λw : set ⇒ w + y) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev x) → z = w + y → SNo w → SNoLev w ∈ SNoLev x → w < x → p (w + y)) → p z))
Hypothesis H7 : (∀z : set, z ∈ Repl (SNoL y) (add_SNo x) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev y) → z = x + w → SNo w → SNoLev w ∈ SNoLev y → w < y → p (x + w)) → p z))
Hypothesis H8 : (∀z : set, z ∈ Repl (SNoR x) (λw : set ⇒ w + y) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev x) → z = w + y → SNo w → SNoLev w ∈ SNoLev x → x < w → p (w + y)) → p z))
Hypothesis H9 : (∀z : set, z ∈ Repl (SNoR y) (add_SNo x) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev y) → z = x + w → SNo w → SNoLev w ∈ SNoLev y → y < w → p (x + w)) → p z))
Hypothesis H10 : (∀z : set, z ∈ Repl (SNoL x) (λw : set ⇒ w + y) → SNo z)
Hypothesis H11 : (∀z : set, z ∈ Repl (SNoL y) (add_SNo x) → SNo z)
Theorem. (
Conj_add_SNo_Lev_bd__29__1)
(∀z : set, z ∈ Repl (SNoR x) (λw : set ⇒ w + y) → SNo z) → Subq (SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x))))) (SNoLev x + SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__29__1
Beginning of Section Conj_add_SNo_Lev_bd__29__4
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev x) → Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))
Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x)))) ∈ ordsucc (binunion (famunion (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (λz : set ⇒ ordsucc (SNoLev z))) (famunion (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x))) (λz : set ⇒ ordsucc (SNoLev z))))
Hypothesis H6 : (∀z : set, z ∈ Repl (SNoL x) (λw : set ⇒ w + y) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev x) → z = w + y → SNo w → SNoLev w ∈ SNoLev x → w < x → p (w + y)) → p z))
Hypothesis H7 : (∀z : set, z ∈ Repl (SNoL y) (add_SNo x) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev y) → z = x + w → SNo w → SNoLev w ∈ SNoLev y → w < y → p (x + w)) → p z))
Hypothesis H8 : (∀z : set, z ∈ Repl (SNoR x) (λw : set ⇒ w + y) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev x) → z = w + y → SNo w → SNoLev w ∈ SNoLev x → x < w → p (w + y)) → p z))
Hypothesis H9 : (∀z : set, z ∈ Repl (SNoR y) (add_SNo x) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev y) → z = x + w → SNo w → SNoLev w ∈ SNoLev y → y < w → p (x + w)) → p z))
Hypothesis H10 : (∀z : set, z ∈ Repl (SNoL x) (λw : set ⇒ w + y) → SNo z)
Hypothesis H11 : (∀z : set, z ∈ Repl (SNoL y) (add_SNo x) → SNo z)
Theorem. (
Conj_add_SNo_Lev_bd__29__4)
(∀z : set, z ∈ Repl (SNoR x) (λw : set ⇒ w + y) → SNo z) → Subq (SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x))))) (SNoLev x + SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__29__4
Beginning of Section Conj_add_SNo_Lev_bd__29__5
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev x) → Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))
Hypothesis H4 : (∀z : set, z ∈ SNoS_ (SNoLev y) → Subq (SNoLev (x + z)) (SNoLev x + SNoLev z))
Hypothesis H6 : (∀z : set, z ∈ Repl (SNoL x) (λw : set ⇒ w + y) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev x) → z = w + y → SNo w → SNoLev w ∈ SNoLev x → w < x → p (w + y)) → p z))
Hypothesis H7 : (∀z : set, z ∈ Repl (SNoL y) (add_SNo x) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev y) → z = x + w → SNo w → SNoLev w ∈ SNoLev y → w < y → p (x + w)) → p z))
Hypothesis H8 : (∀z : set, z ∈ Repl (SNoR x) (λw : set ⇒ w + y) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev x) → z = w + y → SNo w → SNoLev w ∈ SNoLev x → x < w → p (w + y)) → p z))
Hypothesis H9 : (∀z : set, z ∈ Repl (SNoR y) (add_SNo x) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev y) → z = x + w → SNo w → SNoLev w ∈ SNoLev y → y < w → p (x + w)) → p z))
Hypothesis H10 : (∀z : set, z ∈ Repl (SNoL x) (λw : set ⇒ w + y) → SNo z)
Hypothesis H11 : (∀z : set, z ∈ Repl (SNoL y) (add_SNo x) → SNo z)
Theorem. (
Conj_add_SNo_Lev_bd__29__5)
(∀z : set, z ∈ Repl (SNoR x) (λw : set ⇒ w + y) → SNo z) → Subq (SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x))))) (SNoLev x + SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__29__5
Beginning of Section Conj_add_SNo_Lev_bd__34__6
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev x) → Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))
Hypothesis H4 : (∀z : set, z ∈ SNoS_ (SNoLev y) → Subq (SNoLev (x + z)) (SNoLev x + SNoLev z))
Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x)))) ∈ ordsucc (binunion (famunion (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (λz : set ⇒ ordsucc (SNoLev z))) (famunion (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x))) (λz : set ⇒ ordsucc (SNoLev z))))
Theorem. (
Conj_add_SNo_Lev_bd__34__6)
(∀z : set, z ∈ Repl (SNoL y) (add_SNo x) → (∀p : set → prop, (∀w : set, w ∈ SNoS_ (SNoLev y) → z = x + w → SNo w → SNoLev w ∈ SNoLev y → w < y → p (x + w)) → p z)) → Subq (SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : set ⇒ z + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : set ⇒ z + y)) (Repl (SNoR y) (add_SNo x))))) (SNoLev x + SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__34__6
Beginning of Section Conj_add_SNo_Lev_bd__38__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Theorem. (
Conj_add_SNo_Lev_bd__38__0)
SNo (x + y) → (∀z : set, z ∈ SNoS_ (SNoLev x) → Subq (SNoLev (z + y)) (SNoLev z + SNoLev y)) → (∀z : set, z ∈ SNoS_ (SNoLev y) → Subq (SNoLev (x + z)) (SNoLev x + SNoLev z)) → (∀z : set, z ∈ SNoS_ (SNoLev x) → (∀w : set, w ∈ SNoS_ (SNoLev y) → Subq (SNoLev (z + w)) (SNoLev z + SNoLev w))) → Subq (SNoLev (x + y)) (SNoLev x + SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lev_bd__38__0
Beginning of Section Conj_add_SNo_SNoS_omega__1__2
Variable x : set
Variable y : set
Hypothesis H0 : SNoLev x ∈ ω
Hypothesis H1 : SNo x
Hypothesis H3 : SNo y
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_SNoS_omega__1__2
Beginning of Section Conj_add_SNo_minus_Lt_lem__2__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H7 : SNo (- z)
Hypothesis H8 : SNo (- v)
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_minus_Lt_lem__2__6
Beginning of Section Conj_add_SNo_Lt_subprop3c__2__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H6 : (y + v) < u
Hypothesis H7 : (x + z) < v + w
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lt_subprop3c__2__3
Beginning of Section Conj_add_SNo_Lt_subprop3c__2__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H6 : (y + v) < u
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lt_subprop3c__2__7
Beginning of Section Conj_add_SNo_Lt_subprop3c__3__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H6 : SNo x2
Hypothesis H7 : SNo y2
Hypothesis H8 : (x + v) < x2 + y2
Hypothesis H9 : (y + y2) < u
Hypothesis H10 : (x2 + z) < w + v
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lt_subprop3c__3__0
Beginning of Section Conj_add_SNo_Lt_subprop3c__3__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H7 : SNo y2
Hypothesis H8 : (x + v) < x2 + y2
Hypothesis H9 : (y + y2) < u
Hypothesis H10 : (x2 + z) < w + v
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lt_subprop3c__3__6
Beginning of Section Conj_add_SNo_Lt_subprop3d__2__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H5 : SNo v
Hypothesis H6 : (x + u) < v + w
Proof:The rest of the proof is missing.
End of Section Conj_add_SNo_Lt_subprop3d__2__4
Beginning of Section Conj_mul_SNo_eq__1__0
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H1 : z ∈ SNoS_ (SNoLev x)
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__1__0
Beginning of Section Conj_mul_SNo_eq__1__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__1__1
Beginning of Section Conj_mul_SNo_eq__1__2
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H1 : z ∈ SNoS_ (SNoLev x)
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__1__2
Beginning of Section Conj_mul_SNo_eq__2__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H2 : z ∈ SNoS_ (SNoLev x)
Hypothesis H4 : SNo w
Hypothesis H5 : g z y = h z y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__2__3
Beginning of Section Conj_mul_SNo_eq__3__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : w ∈ SNoS_ (SNoLev y)
Hypothesis H5 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__3__3
Beginning of Section Conj_mul_SNo_eq__3__4
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__3__4
Beginning of Section Conj_mul_SNo_eq__4__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : w ∈ SNoL y
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : w ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__4__1
Beginning of Section Conj_mul_SNo_eq__4__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : w ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__4__3
Beginning of Section Conj_mul_SNo_eq__5__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : w ∈ SNoL y
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__5__1
Beginning of Section Conj_mul_SNo_eq__6__0
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : z ∈ SNoL x
Hypothesis H5 : w ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__6__0
Beginning of Section Conj_mul_SNo_eq__7__0
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H1 : z ∈ SNoS_ (SNoLev x)
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__7__0
Beginning of Section Conj_mul_SNo_eq__7__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__7__1
Beginning of Section Conj_mul_SNo_eq__7__2
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H1 : z ∈ SNoS_ (SNoLev x)
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__7__2
Beginning of Section Conj_mul_SNo_eq__8__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H2 : z ∈ SNoS_ (SNoLev x)
Hypothesis H4 : SNo w
Hypothesis H5 : g z y = h z y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__8__3
Beginning of Section Conj_mul_SNo_eq__9__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : w ∈ SNoS_ (SNoLev y)
Hypothesis H5 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__9__3
Beginning of Section Conj_mul_SNo_eq__9__4
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__9__4
Beginning of Section Conj_mul_SNo_eq__10__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : w ∈ SNoR y
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : w ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__10__1
Beginning of Section Conj_mul_SNo_eq__10__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : w ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__10__3
Beginning of Section Conj_mul_SNo_eq__12__4
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H5 : w ∈ SNoR y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__12__4
Beginning of Section Conj_mul_SNo_eq__13__0
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H1 : z ∈ SNoS_ (SNoLev x)
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__13__0
Beginning of Section Conj_mul_SNo_eq__13__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__13__1
Beginning of Section Conj_mul_SNo_eq__13__2
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H1 : z ∈ SNoS_ (SNoLev x)
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__13__2
Beginning of Section Conj_mul_SNo_eq__14__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H2 : z ∈ SNoS_ (SNoLev x)
Hypothesis H4 : SNo w
Hypothesis H5 : g z y = h z y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__14__3
Beginning of Section Conj_mul_SNo_eq__15__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : w ∈ SNoS_ (SNoLev y)
Hypothesis H5 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__15__3
Beginning of Section Conj_mul_SNo_eq__15__4
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__15__4
Beginning of Section Conj_mul_SNo_eq__16__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : w ∈ SNoR y
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : w ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__16__1
Beginning of Section Conj_mul_SNo_eq__16__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : w ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__16__3
Beginning of Section Conj_mul_SNo_eq__18__4
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H5 : w ∈ SNoR y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__18__4
Beginning of Section Conj_mul_SNo_eq__19__0
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H1 : z ∈ SNoS_ (SNoLev x)
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__19__0
Beginning of Section Conj_mul_SNo_eq__19__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__19__1
Beginning of Section Conj_mul_SNo_eq__19__2
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H1 : z ∈ SNoS_ (SNoLev x)
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__19__2
Beginning of Section Conj_mul_SNo_eq__20__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H2 : z ∈ SNoS_ (SNoLev x)
Hypothesis H4 : SNo w
Hypothesis H5 : g z y = h z y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__20__3
Beginning of Section Conj_mul_SNo_eq__21__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : w ∈ SNoS_ (SNoLev y)
Hypothesis H5 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__21__3
Beginning of Section Conj_mul_SNo_eq__21__4
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__21__4
Beginning of Section Conj_mul_SNo_eq__22__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : w ∈ SNoL y
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : w ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__22__1
Beginning of Section Conj_mul_SNo_eq__22__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Hypothesis H5 : w ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__22__3
Beginning of Section Conj_mul_SNo_eq__23__1
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev y) → g x u = h x u)
Hypothesis H3 : w ∈ SNoL y
Hypothesis H4 : z ∈ SNoS_ (SNoLev x)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__23__1
Beginning of Section Conj_mul_SNo_eq__24__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → g u v = h u v))
Hypothesis H4 : z ∈ SNoR x
Hypothesis H5 : w ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__24__3
Beginning of Section Conj_mul_SNo_eq__25__0
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z ∈ SNoS_ (SNoLev x) → (∀w : set, SNo w → g z w = h z w))
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev y) → g x z = h x z)
Hypothesis H4 : Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H5 : Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H6 : Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (
Conj_mul_SNo_eq__25__0)
Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))) → SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__25__0
Beginning of Section Conj_mul_SNo_eq__25__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z ∈ SNoS_ (SNoLev x) → (∀w : set, SNo w → g z w = h z w))
Hypothesis H4 : Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H5 : Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H6 : Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (
Conj_mul_SNo_eq__25__3)
Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))) → SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__25__3
Beginning of Section Conj_mul_SNo_eq__25__4
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z ∈ SNoS_ (SNoLev x) → (∀w : set, SNo w → g z w = h z w))
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev y) → g x z = h x z)
Hypothesis H5 : Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H6 : Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (
Conj_mul_SNo_eq__25__4)
Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))) → SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__25__4
Beginning of Section Conj_mul_SNo_eq__26__3
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z ∈ SNoS_ (SNoLev x) → (∀w : set, SNo w → g z w = h z w))
Hypothesis H4 : Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H5 : Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (
Conj_mul_SNo_eq__26__3)
Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))) → SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__26__3
Beginning of Section Conj_mul_SNo_eq__27__2
Variable x : set
Variable y : set
Variable g : (set → (set → set))
Variable h : (set → (set → set))
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀z : set, z ∈ SNoS_ (SNoLev y) → g x z = h x z)
Hypothesis H4 : Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (
Conj_mul_SNo_eq__27__2)
Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))) → SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ g (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : set ⇒ h (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq__27__2
Beginning of Section Conj_mul_SNo_prop_1__2__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (w * v)
Hypothesis H2 : SNo (z * y)
Hypothesis H3 : SNo (x * u)
Hypothesis H4 : SNo (w * y)
Hypothesis H5 : SNo (x * v)
Hypothesis H6 : (z * y + x * u + w * v) < w * y + x * v + z * u
Theorem. (
Conj_mul_SNo_prop_1__2__0)
(z * y + x * u + - (z * u)) + z * u + w * v = z * y + x * u + w * v → ((z * y + x * u + - (z * u)) + z * u + w * v) < (w * y + x * v + - (w * v)) + z * u + w * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__2__0
Beginning of Section Conj_mul_SNo_prop_1__3__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀P : prop, (SNo (z2 * w2) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoL w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoR w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoR w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoL w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → P) → P)))
Hypothesis H1 : v ∈ SNoS_ (SNoLev x)
Hypothesis H2 : SNo x2
Hypothesis H3 : SNo (u * x2)
Hypothesis H4 : SNo (v * y2)
Hypothesis H5 : SNo (u * y)
Hypothesis H7 : SNo (v * y)
Hypothesis H8 : SNo (x * y2)
Hypothesis H9 : SNo (u * y2)
Theorem. (
Conj_mul_SNo_prop_1__3__6)
SNo (v * x2) → (∀P : prop, (SNo (u * y) → SNo (x * x2) → SNo (u * x2) → SNo (v * y) → SNo (x * y2) → SNo (v * y2) → SNo (u * y2) → SNo (v * x2) → (z = u * y + x * x2 + - (u * x2) → w = v * y + x * y2 + - (v * y2) → (u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2 → z < w) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__3__6
Beginning of Section Conj_mul_SNo_prop_1__6__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀P : prop, (SNo (z2 * w2) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoL w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoR w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoR w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoL w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → P) → P)))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * z2) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoR z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoL z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → P) → P))
Hypothesis H3 : u ∈ SNoS_ (SNoLev x)
Hypothesis H4 : v ∈ SNoS_ (SNoLev x)
Hypothesis H5 : y2 ∈ SNoS_ (SNoLev y)
Hypothesis H6 : SNo x2
Hypothesis H7 : SNo y2
Hypothesis H8 : SNo (u * x2)
Hypothesis H9 : SNo (v * y2)
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (x * x2)
Theorem. (
Conj_mul_SNo_prop_1__6__1)
SNo (v * y) → (∀P : prop, (SNo (u * y) → SNo (x * x2) → SNo (u * x2) → SNo (v * y) → SNo (x * y2) → SNo (v * y2) → SNo (u * y2) → SNo (v * x2) → (z = u * y + x * x2 + - (u * x2) → w = v * y + x * y2 + - (v * y2) → (u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2 → z < w) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__6__1
Beginning of Section Conj_mul_SNo_prop_1__7__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀P : prop, (SNo (z2 * w2) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoL w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoR w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoR w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoL w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → P) → P)))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * z2) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoR z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoL z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → P) → P))
Hypothesis H3 : u ∈ SNoS_ (SNoLev x)
Hypothesis H4 : v ∈ SNoS_ (SNoLev x)
Hypothesis H5 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H6 : y2 ∈ SNoS_ (SNoLev y)
Hypothesis H7 : SNo x2
Hypothesis H8 : SNo y2
Hypothesis H9 : SNo (u * x2)
Hypothesis H10 : SNo (v * y2)
Theorem. (
Conj_mul_SNo_prop_1__7__11)
SNo (x * x2) → (∀P : prop, (SNo (u * y) → SNo (x * x2) → SNo (u * x2) → SNo (v * y) → SNo (x * y2) → SNo (v * y2) → SNo (u * y2) → SNo (v * x2) → (z = u * y + x * x2 + - (u * x2) → w = v * y + x * y2 + - (v * y2) → (u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2 → z < w) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__7__11
Beginning of Section Conj_mul_SNo_prop_1__8__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀P : prop, (SNo (z2 * w2) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoL w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoR w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoR w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoL w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → P) → P)))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * z2) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoR z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoL z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → P) → P))
Hypothesis H3 : u ∈ SNoS_ (SNoLev x)
Hypothesis H4 : v ∈ SNoS_ (SNoLev x)
Hypothesis H6 : y2 ∈ SNoS_ (SNoLev y)
Hypothesis H7 : SNo x2
Hypothesis H8 : SNo y2
Hypothesis H9 : SNo (u * x2)
Hypothesis H10 : SNo (v * y2)
Theorem. (
Conj_mul_SNo_prop_1__8__5)
SNo (u * y) → (∀P : prop, (SNo (u * y) → SNo (x * x2) → SNo (u * x2) → SNo (v * y) → SNo (x * y2) → SNo (v * y2) → SNo (u * y2) → SNo (v * x2) → (z = u * y + x * x2 + - (u * x2) → w = v * y + x * y2 + - (v * y2) → (u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2 → z < w) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__8__5
Beginning of Section Conj_mul_SNo_prop_1__9__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀P : prop, (SNo (z2 * w2) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoL w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoR w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoR w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoL w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → P) → P)))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * z2) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoR z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoL z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → P) → P))
Hypothesis H3 : u ∈ SNoS_ (SNoLev x)
Hypothesis H4 : v ∈ SNoS_ (SNoLev x)
Hypothesis H5 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H6 : y2 ∈ SNoS_ (SNoLev y)
Hypothesis H7 : SNo x2
Hypothesis H8 : SNo y2
Hypothesis H9 : SNo (u * x2)
Theorem. (
Conj_mul_SNo_prop_1__9__1)
SNo (v * y2) → (∀P : prop, (SNo (u * y) → SNo (x * x2) → SNo (u * x2) → SNo (v * y) → SNo (x * y2) → SNo (v * y2) → SNo (u * y2) → SNo (v * x2) → (z = u * y + x * x2 + - (u * x2) → w = v * y + x * y2 + - (v * y2) → (u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2 → z < w) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__9__1
Beginning of Section Conj_mul_SNo_prop_1__9__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev x) → (∀w2 : set, SNo w2 → (∀P : prop, (SNo (z2 * w2) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoL w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoR w2 → (u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2)) → (∀u2 : set, u2 ∈ SNoL z2 → (∀v2 : set, v2 ∈ SNoR w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → (∀u2 : set, u2 ∈ SNoR z2 → (∀v2 : set, v2 ∈ SNoL w2 → (z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2)) → P) → P)))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * z2) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + x * u2) < x * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL x → (∀u2 : set, u2 ∈ SNoR z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → (∀w2 : set, w2 ∈ SNoR x → (∀u2 : set, u2 ∈ SNoL z2 → (x * z2 + w2 * u2) < w2 * z2 + x * u2)) → P) → P))
Hypothesis H3 : u ∈ SNoS_ (SNoLev x)
Hypothesis H4 : v ∈ SNoS_ (SNoLev x)
Hypothesis H5 : x2 ∈ SNoS_ (SNoLev y)
Hypothesis H7 : SNo x2
Hypothesis H8 : SNo y2
Hypothesis H9 : SNo (u * x2)
Theorem. (
Conj_mul_SNo_prop_1__9__6)
SNo (v * y2) → (∀P : prop, (SNo (u * y) → SNo (x * x2) → SNo (u * x2) → SNo (v * y) → SNo (x * y2) → SNo (v * y2) → SNo (u * y2) → SNo (v * x2) → (z = u * y + x * x2 + - (u * x2) → w = v * y + x * y2 + - (v * y2) → (u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2 → z < w) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__9__6
Beginning of Section Conj_mul_SNo_prop_1__13__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : z ∈ SNoR y
Hypothesis H3 : w ∈ SNoL y
Hypothesis H5 : SNo (x * w)
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : SNo (u * z)
Hypothesis H8 : SNo (u * w)
Hypothesis H9 : v ∈ SNoL z
Hypothesis H10 : v ∈ SNoR w
Hypothesis H11 : v ∈ SNoS_ (SNoLev y)
Hypothesis H12 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__13__4
Beginning of Section Conj_mul_SNo_prop_1__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : z ∈ SNoR y
Hypothesis H3 : w ∈ SNoL y
Hypothesis H4 : SNo (x * z)
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : SNo (u * z)
Hypothesis H8 : SNo (u * w)
Hypothesis H9 : v ∈ SNoL z
Hypothesis H10 : v ∈ SNoR w
Hypothesis H11 : v ∈ SNoS_ (SNoLev y)
Hypothesis H12 : SNo (u * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__13__5
Beginning of Section Conj_mul_SNo_prop_1__17__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * v) → (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL v → (x2 * v + x * y2) < x * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR v → (x2 * v + x * y2) < x * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR v → (x * v + x2 * y2) < x2 * v + x * y2)) → (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL v → (x * v + x2 * y2) < x2 * v + x * y2)) → P) → P))
Hypothesis H2 : (∀v : set, v ∈ SNoR x → (∀x2 : set, SNo x2 → SNo (v * x2)))
Hypothesis H3 : z ∈ SNoR y
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z ∈ SNoLev y
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : w < z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__17__11
Beginning of Section Conj_mul_SNo_prop_1__18__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → SNo (y2 * y))
Hypothesis H6 : v ∈ SNoL y
Hypothesis H7 : SNo v
Hypothesis H8 : SNo (z * y)
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : SNo (z * w)
Hypothesis H11 : SNo (u * y)
Hypothesis H12 : SNo (x * v)
Hypothesis H13 : SNo (u * v)
Hypothesis H14 : SNo (z * v)
Hypothesis H15 : (x * w + z * v) < z * w + x * v
Hypothesis H16 : x2 ∈ SNoL u
Hypothesis H17 : x2 ∈ SNoR x
Hypothesis H18 : (z * y + x2 * v) < x2 * y + z * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__18__5
Beginning of Section Conj_mul_SNo_prop_1__19__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → SNo (y2 * y))
Hypothesis H6 : u ∈ SNoR x
Hypothesis H7 : v ∈ SNoL y
Hypothesis H8 : SNo v
Hypothesis H9 : SNo (z * y)
Hypothesis H10 : SNo (x * w)
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : SNo (u * y)
Hypothesis H13 : SNo (x * v)
Hypothesis H14 : SNo (u * v)
Hypothesis H15 : SNo (z * v)
Hypothesis H16 : (x * w + z * v) < z * w + x * v
Hypothesis H17 : x2 ∈ SNoR z
Hypothesis H18 : x2 ∈ SNoL u
Hypothesis H19 : x2 ∈ SNoR x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__19__5
Beginning of Section Conj_mul_SNo_prop_1__20__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → SNo (y2 * y))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z ∈ SNoLev x
Hypothesis H8 : x < z
Hypothesis H9 : u ∈ SNoR x
Hypothesis H10 : v ∈ SNoL y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo (z * y)
Hypothesis H13 : SNo (x * w)
Hypothesis H14 : SNo (z * w)
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (x * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (z * v)
Hypothesis H19 : (x * w + z * v) < z * w + x * v
Hypothesis H20 : x2 ∈ SNoR z
Hypothesis H21 : x2 ∈ SNoL u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNoLev x2 ∈ SNoLev z
Hypothesis H24 : z < x2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__20__0
Beginning of Section Conj_mul_SNo_prop_1__20__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → SNo (y2 * y))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z ∈ SNoLev x
Hypothesis H8 : x < z
Hypothesis H9 : u ∈ SNoR x
Hypothesis H10 : v ∈ SNoL y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo (z * y)
Hypothesis H13 : SNo (x * w)
Hypothesis H14 : SNo (z * w)
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (x * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (z * v)
Hypothesis H20 : x2 ∈ SNoR z
Hypothesis H21 : x2 ∈ SNoL u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNoLev x2 ∈ SNoLev z
Hypothesis H24 : z < x2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__20__19
Beginning of Section Conj_mul_SNo_prop_1__20__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → SNo (y2 * y))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z ∈ SNoLev x
Hypothesis H8 : x < z
Hypothesis H9 : u ∈ SNoR x
Hypothesis H10 : v ∈ SNoL y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo (z * y)
Hypothesis H13 : SNo (x * w)
Hypothesis H14 : SNo (z * w)
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (x * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (z * v)
Hypothesis H19 : (x * w + z * v) < z * w + x * v
Hypothesis H20 : x2 ∈ SNoR z
Hypothesis H21 : x2 ∈ SNoL u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNoLev x2 ∈ SNoLev z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__20__24
Beginning of Section Conj_mul_SNo_prop_1__23__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : u ∈ SNoR x
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u ∈ SNoLev x
Hypothesis H11 : x < u
Hypothesis H12 : SNo (z * y)
Hypothesis H13 : SNo (x * w)
Hypothesis H14 : SNo (z * w)
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (x * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u * w)
Hypothesis H19 : (x * w + u * v) < u * w + x * v
Hypothesis H20 : x2 ∈ SNoL z
Hypothesis H21 : x2 ∈ SNoR u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNoLev x2 ∈ SNoLev u
Hypothesis H24 : u < x2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__23__4
Beginning of Section Conj_mul_SNo_prop_1__25__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : x < z
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoR x
Hypothesis H12 : v ∈ SNoL y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : x < u
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H25 : (x * w + z * v) < z * w + x * v
Hypothesis H26 : (x * w + u * v) < u * w + x * v
Theorem. (
Conj_mul_SNo_prop_1__25__24)
((z * y + u * v) < u * y + z * v → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__25__24
Beginning of Section Conj_mul_SNo_prop_1__26__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : x < z
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoR x
Hypothesis H12 : v ∈ SNoL y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (∀x2 : set, x2 ∈ SNoR x → (x * w + x2 * v) < x2 * w + x * v)
Hypothesis H26 : (x * w + z * v) < z * w + x * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__26__15
Beginning of Section Conj_mul_SNo_prop_1__27__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo z
Hypothesis H9 : x < z
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoR x
Hypothesis H12 : v ∈ SNoL y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : x < u
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (∀x2 : set, x2 ∈ SNoR x → (x * w + x2 * v) < x2 * w + x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__27__8
Beginning of Section Conj_mul_SNo_prop_1__28__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoR x
Hypothesis H7 : w ∈ SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : u ∈ SNoR x
Hypothesis H14 : v ∈ SNoL y
Hypothesis H15 : SNo u
Hypothesis H16 : SNoLev u ∈ SNoLev x
Hypothesis H17 : x < u
Hypothesis H18 : SNo v
Hypothesis H19 : SNo (z * y)
Hypothesis H20 : SNo (x * w)
Hypothesis H21 : SNo (z * w)
Hypothesis H22 : SNo (u * y)
Hypothesis H23 : SNo (x * v)
Hypothesis H24 : SNo (u * v)
Hypothesis H25 : SNo (z * v)
Hypothesis H26 : SNo (u * w)
Hypothesis H27 : v < w
Theorem. (
Conj_mul_SNo_prop_1__28__0)
(∀x2 : set, x2 ∈ SNoR x → (x * w + x2 * v) < x2 * w + x * v) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__28__0
Beginning of Section Conj_mul_SNo_prop_1__28__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoR x
Hypothesis H7 : w ∈ SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H14 : v ∈ SNoL y
Hypothesis H15 : SNo u
Hypothesis H16 : SNoLev u ∈ SNoLev x
Hypothesis H17 : x < u
Hypothesis H18 : SNo v
Hypothesis H19 : SNo (z * y)
Hypothesis H20 : SNo (x * w)
Hypothesis H21 : SNo (z * w)
Hypothesis H22 : SNo (u * y)
Hypothesis H23 : SNo (x * v)
Hypothesis H24 : SNo (u * v)
Hypothesis H25 : SNo (z * v)
Hypothesis H26 : SNo (u * w)
Hypothesis H27 : v < w
Theorem. (
Conj_mul_SNo_prop_1__28__13)
(∀x2 : set, x2 ∈ SNoR x → (x * w + x2 * v) < x2 * w + x * v) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__28__13
Beginning of Section Conj_mul_SNo_prop_1__28__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoR x
Hypothesis H7 : w ∈ SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : u ∈ SNoR x
Hypothesis H14 : v ∈ SNoL y
Hypothesis H15 : SNo u
Hypothesis H16 : SNoLev u ∈ SNoLev x
Hypothesis H17 : x < u
Hypothesis H19 : SNo (z * y)
Hypothesis H20 : SNo (x * w)
Hypothesis H21 : SNo (z * w)
Hypothesis H22 : SNo (u * y)
Hypothesis H23 : SNo (x * v)
Hypothesis H24 : SNo (u * v)
Hypothesis H25 : SNo (z * v)
Hypothesis H26 : SNo (u * w)
Hypothesis H27 : v < w
Theorem. (
Conj_mul_SNo_prop_1__28__18)
(∀x2 : set, x2 ∈ SNoR x → (x * w + x2 * v) < x2 * w + x * v) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__28__18
Beginning of Section Conj_mul_SNo_prop_1__29__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoR x
Hypothesis H7 : w ∈ SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u ∈ SNoR x
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u ∈ SNoLev x
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H26 : SNo (u * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__29__15
Beginning of Section Conj_mul_SNo_prop_1__29__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoR x
Hypothesis H7 : w ∈ SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u ∈ SNoR x
Hypothesis H15 : v ∈ SNoL y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u ∈ SNoLev x
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (z * y)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H26 : SNo (u * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__29__22
Beginning of Section Conj_mul_SNo_prop_1__29__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoR x
Hypothesis H7 : w ∈ SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u ∈ SNoR x
Hypothesis H15 : v ∈ SNoL y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u ∈ SNoLev x
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H26 : SNo (u * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__29__23
Beginning of Section Conj_mul_SNo_prop_1__29__26
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoR x
Hypothesis H7 : w ∈ SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u ∈ SNoR x
Hypothesis H15 : v ∈ SNoL y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u ∈ SNoLev x
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__29__26
Beginning of Section Conj_mul_SNo_prop_1__30__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H4 : SNo (z * y)
Hypothesis H5 : SNo (w * y)
Hypothesis H6 : u ∈ SNoR y
Hypothesis H7 : SNo (z * u)
Hypothesis H8 : SNo (w * u)
Hypothesis H9 : v ∈ SNoR w
Hypothesis H10 : SNo (v * u)
Hypothesis H11 : SNo (v * y)
Hypothesis H12 : (z * y + v * u) < z * u + v * y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__30__3
Beginning of Section Conj_mul_SNo_prop_1__31__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u ∈ SNoR y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v ∈ SNoL z
Hypothesis H11 : v ∈ SNoR w
Hypothesis H12 : SNo (v * u)
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__31__4
Beginning of Section Conj_mul_SNo_prop_1__32__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoR x
Hypothesis H4 : w ∈ SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H7 : u ∈ SNoR y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v ∈ SNoL z
Hypothesis H11 : v ∈ SNoR w
Hypothesis H12 : v ∈ SNoS_ (SNoLev x)
Hypothesis H13 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__32__6
Beginning of Section Conj_mul_SNo_prop_1__32__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoR x
Hypothesis H4 : w ∈ SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v ∈ SNoL z
Hypothesis H11 : v ∈ SNoR w
Hypothesis H12 : v ∈ SNoS_ (SNoLev x)
Hypothesis H13 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__32__7
Beginning of Section Conj_mul_SNo_prop_1__33__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H3 : z ∈ SNoR x
Hypothesis H4 : w ∈ SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u ∈ SNoR y
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (z * u)
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : v ∈ SNoR w
Hypothesis H13 : v ∈ SNoS_ (SNoLev x)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__33__2
Beginning of Section Conj_mul_SNo_prop_1__33__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoR x
Hypothesis H4 : w ∈ SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H7 : u ∈ SNoR y
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (z * u)
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : v ∈ SNoL z
Hypothesis H12 : v ∈ SNoR w
Hypothesis H13 : v ∈ SNoS_ (SNoLev x)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__33__6
Beginning of Section Conj_mul_SNo_prop_1__35__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H3 : z ∈ SNoR x
Hypothesis H4 : SNoLev z ∈ SNoLev x
Hypothesis H5 : w ∈ SNoL x
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (w * y)
Hypothesis H8 : u ∈ SNoR y
Hypothesis H9 : SNo u
Hypothesis H10 : SNo (z * u)
Hypothesis H11 : SNo (w * u)
Hypothesis H12 : v ∈ SNoL z
Hypothesis H13 : v ∈ SNoR w
Hypothesis H14 : SNo v
Hypothesis H15 : SNoLev v ∈ SNoLev z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__35__2
Beginning of Section Conj_mul_SNo_prop_1__39__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * y2) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → P) → P))
Hypothesis H2 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR y → SNo (x * y2))
Hypothesis H4 : w ∈ SNoR y
Hypothesis H5 : u ∈ SNoL x
Hypothesis H6 : v ∈ SNoR y
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (x * v)
Hypothesis H12 : SNo (u * v)
Hypothesis H13 : SNo (u * w)
Hypothesis H14 : (z * y + u * w) < u * y + z * w
Hypothesis H16 : x2 ∈ SNoL v
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 ∈ SNoR y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__39__15
Beginning of Section Conj_mul_SNo_prop_1__42__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * y2) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → P) → P))
Hypothesis H2 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR y → SNo (x * y2))
Hypothesis H4 : z ∈ SNoR x
Hypothesis H5 : w ∈ SNoR y
Hypothesis H6 : v ∈ SNoR y
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (x * v)
Hypothesis H12 : SNo (u * v)
Hypothesis H13 : SNo (z * v)
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : x2 ∈ SNoL w
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 ∈ SNoR y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__42__16
Beginning of Section Conj_mul_SNo_prop_1__43__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * y2) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → P) → P))
Hypothesis H2 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR y → SNo (x * y2))
Hypothesis H4 : z ∈ SNoR x
Hypothesis H5 : w ∈ SNoR y
Hypothesis H6 : v ∈ SNoR y
Hypothesis H7 : SNo v
Hypothesis H8 : SNoLev v ∈ SNoLev y
Hypothesis H10 : SNo (z * y)
Hypothesis H11 : SNo (x * w)
Hypothesis H12 : SNo (z * w)
Hypothesis H13 : SNo (u * y)
Hypothesis H14 : SNo (x * v)
Hypothesis H15 : SNo (u * v)
Hypothesis H16 : SNo (z * v)
Hypothesis H17 : (z * y + u * v) < u * y + z * v
Hypothesis H18 : x2 ∈ SNoL w
Hypothesis H19 : x2 ∈ SNoR v
Hypothesis H20 : SNo x2
Hypothesis H21 : SNoLev x2 ∈ SNoLev v
Hypothesis H22 : v < x2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__43__9
Beginning of Section Conj_mul_SNo_prop_1__43__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * y2) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → P) → P))
Hypothesis H2 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoR y → SNo (x * y2))
Hypothesis H4 : z ∈ SNoR x
Hypothesis H5 : w ∈ SNoR y
Hypothesis H6 : v ∈ SNoR y
Hypothesis H7 : SNo v
Hypothesis H8 : SNoLev v ∈ SNoLev y
Hypothesis H9 : y < v
Hypothesis H10 : SNo (z * y)
Hypothesis H11 : SNo (x * w)
Hypothesis H12 : SNo (z * w)
Hypothesis H13 : SNo (u * y)
Hypothesis H14 : SNo (x * v)
Hypothesis H15 : SNo (u * v)
Hypothesis H16 : SNo (z * v)
Hypothesis H18 : x2 ∈ SNoL w
Hypothesis H19 : x2 ∈ SNoR v
Hypothesis H20 : SNo x2
Hypothesis H21 : SNoLev x2 ∈ SNoLev v
Hypothesis H22 : v < x2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__43__17
Beginning of Section Conj_mul_SNo_prop_1__44__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR y → SNo (x * x2))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : y < w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR y
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : y < v
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Hypothesis H25 : (x * w + u * v) < u * w + x * v → (z * y + x * w + u * v) < u * y + x * v + z * w
Theorem. (
Conj_mul_SNo_prop_1__44__12)
((x * w + z * v) < x * v + z * w → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__44__12
Beginning of Section Conj_mul_SNo_prop_1__44__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR y → SNo (x * x2))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : y < w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : y < v
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Hypothesis H25 : (x * w + u * v) < u * w + x * v → (z * y + x * w + u * v) < u * y + x * v + z * w
Theorem. (
Conj_mul_SNo_prop_1__44__19)
((x * w + z * v) < x * v + z * w → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__44__19
Beginning of Section Conj_mul_SNo_prop_1__44__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR y → SNo (x * x2))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : y < w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : y < v
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Theorem. (
Conj_mul_SNo_prop_1__44__25)
((x * w + z * v) < x * v + z * w → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__44__25
Beginning of Section Conj_mul_SNo_prop_1__45__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR y → SNo (x * x2))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : y < w
Hypothesis H11 : v ∈ SNoR y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : y < v
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Theorem. (
Conj_mul_SNo_prop_1__45__10)
((x * w + u * v) < u * w + x * v → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__45__10
Beginning of Section Conj_mul_SNo_prop_1__46__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoR y → SNo (x * x2))
Hypothesis H5 : z ∈ SNoR x
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : y < w
Hypothesis H10 : u ∈ SNoL x
Hypothesis H11 : v ∈ SNoR y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : y < v
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (∀x2 : set, x2 ∈ SNoR y → (z * y + u * x2) < u * y + z * x2)
Hypothesis H24 : (z * y + u * w) < u * y + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__46__15
Beginning of Section Conj_mul_SNo_prop_1__48__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoR y → SNo (x * x2))
Hypothesis H7 : z ∈ SNoR x
Hypothesis H8 : w ∈ SNoR y
Hypothesis H9 : SNo z
Hypothesis H10 : SNoLev z ∈ SNoLev x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u ∈ SNoL x
Hypothesis H15 : v ∈ SNoR y
Hypothesis H16 : SNo u
Hypothesis H17 : SNo v
Hypothesis H18 : SNoLev v ∈ SNoLev y
Hypothesis H19 : y < v
Hypothesis H20 : SNo (z * y)
Hypothesis H21 : SNo (x * w)
Hypothesis H22 : SNo (z * w)
Hypothesis H23 : SNo (u * y)
Hypothesis H24 : SNo (x * v)
Hypothesis H25 : SNo (u * v)
Hypothesis H26 : SNo (z * v)
Hypothesis H27 : SNo (u * w)
Hypothesis H28 : u < z
Theorem. (
Conj_mul_SNo_prop_1__48__5)
(∀x2 : set, x2 ∈ SNoR y → (z * y + u * x2) < u * y + z * x2) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__48__5
Beginning of Section Conj_mul_SNo_prop_1__49__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoR y → SNo (x * x2))
Hypothesis H7 : z ∈ SNoR x
Hypothesis H8 : w ∈ SNoR y
Hypothesis H10 : SNoLev z ∈ SNoLev x
Hypothesis H11 : x < z
Hypothesis H12 : SNo w
Hypothesis H13 : SNoLev w ∈ SNoLev y
Hypothesis H14 : y < w
Hypothesis H15 : u ∈ SNoL x
Hypothesis H16 : v ∈ SNoR y
Hypothesis H17 : SNo u
Hypothesis H18 : u < x
Hypothesis H19 : SNo v
Hypothesis H20 : SNoLev v ∈ SNoLev y
Hypothesis H21 : y < v
Hypothesis H22 : SNo (z * y)
Hypothesis H23 : SNo (x * w)
Hypothesis H24 : SNo (z * w)
Hypothesis H25 : SNo (u * y)
Hypothesis H26 : SNo (x * v)
Hypothesis H27 : SNo (u * v)
Hypothesis H28 : SNo (z * v)
Hypothesis H29 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__49__9
Beginning of Section Conj_mul_SNo_prop_1__49__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoR y → SNo (x * x2))
Hypothesis H7 : z ∈ SNoR x
Hypothesis H8 : w ∈ SNoR y
Hypothesis H9 : SNo z
Hypothesis H10 : SNoLev z ∈ SNoLev x
Hypothesis H11 : x < z
Hypothesis H12 : SNo w
Hypothesis H13 : SNoLev w ∈ SNoLev y
Hypothesis H14 : y < w
Hypothesis H16 : v ∈ SNoR y
Hypothesis H17 : SNo u
Hypothesis H18 : u < x
Hypothesis H19 : SNo v
Hypothesis H20 : SNoLev v ∈ SNoLev y
Hypothesis H21 : y < v
Hypothesis H22 : SNo (z * y)
Hypothesis H23 : SNo (x * w)
Hypothesis H24 : SNo (z * w)
Hypothesis H25 : SNo (u * y)
Hypothesis H26 : SNo (x * v)
Hypothesis H27 : SNo (u * v)
Hypothesis H28 : SNo (z * v)
Hypothesis H29 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__49__15
Beginning of Section Conj_mul_SNo_prop_1__51__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoL x
Hypothesis H4 : w ∈ SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u ∈ SNoL y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v ∈ SNoL w
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : SNo (v * u)
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__51__0
Beginning of Section Conj_mul_SNo_prop_1__51__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H3 : z ∈ SNoL x
Hypothesis H4 : w ∈ SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u ∈ SNoL y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v ∈ SNoL w
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : SNo (v * u)
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__51__2
Beginning of Section Conj_mul_SNo_prop_1__51__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoL x
Hypothesis H4 : w ∈ SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u ∈ SNoL y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v ∈ SNoL w
Hypothesis H11 : v ∈ SNoR z
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__51__12
Beginning of Section Conj_mul_SNo_prop_1__52__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoL x
Hypothesis H4 : w ∈ SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u ∈ SNoL y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v ∈ SNoL w
Hypothesis H11 : v ∈ SNoR z
Hypothesis H13 : SNo (v * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__52__12
Beginning of Section Conj_mul_SNo_prop_1__54__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u ∈ SNoL y
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (z * u)
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : v ∈ SNoL w
Hypothesis H12 : v ∈ SNoR z
Hypothesis H13 : SNo v
Hypothesis H14 : SNoLev v ∈ SNoLev x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__54__4
Beginning of Section Conj_mul_SNo_prop_1__55__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : z ∈ SNoL x
Hypothesis H4 : SNoLev z ∈ SNoLev x
Hypothesis H5 : w ∈ SNoR x
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (w * y)
Hypothesis H8 : u ∈ SNoL y
Hypothesis H9 : SNo u
Hypothesis H10 : SNo (z * u)
Hypothesis H11 : SNo (w * u)
Hypothesis H12 : v ∈ SNoL w
Hypothesis H13 : v ∈ SNoR z
Hypothesis H14 : SNo v
Hypothesis H15 : SNoLev v ∈ SNoLev z
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__55__1
Beginning of Section Conj_mul_SNo_prop_1__58__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * y2) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → P) → P))
Hypothesis H2 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoL y → SNo (x * y2))
Hypothesis H4 : z ∈ SNoL x
Hypothesis H5 : v ∈ SNoL y
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : SNo (z * w)
Hypothesis H9 : SNo (u * y)
Hypothesis H10 : SNo (x * v)
Hypothesis H12 : SNo (z * v)
Hypothesis H13 : (z * y + u * v) < u * y + z * v
Hypothesis H14 : x2 ∈ SNoL v
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 ∈ SNoL y
Hypothesis H17 : (x * w + z * x2) < x * x2 + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__58__11
Beginning of Section Conj_mul_SNo_prop_1__58__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * y2) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → P) → P))
Hypothesis H2 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoL y → SNo (x * y2))
Hypothesis H4 : z ∈ SNoL x
Hypothesis H5 : v ∈ SNoL y
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : SNo (z * w)
Hypothesis H9 : SNo (u * y)
Hypothesis H10 : SNo (x * v)
Hypothesis H11 : SNo (u * v)
Hypothesis H12 : SNo (z * v)
Hypothesis H13 : (z * y + u * v) < u * y + z * v
Hypothesis H14 : x2 ∈ SNoL v
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__58__17
Beginning of Section Conj_mul_SNo_prop_1__62__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * y2) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → P) → P))
Hypothesis H2 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoL y → SNo (x * y2))
Hypothesis H4 : w ∈ SNoL y
Hypothesis H5 : u ∈ SNoR x
Hypothesis H6 : v ∈ SNoL y
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : SNo (z * w)
Hypothesis H11 : SNo (x * v)
Hypothesis H12 : SNo (u * v)
Hypothesis H13 : SNo (u * w)
Hypothesis H14 : (z * y + u * w) < u * y + z * w
Hypothesis H15 : x2 ∈ SNoL w
Hypothesis H16 : x2 ∈ SNoR v
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__62__10
Beginning of Section Conj_mul_SNo_prop_1__62__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * y2) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x * w2) < x * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y2 → (x * y2 + z2 * w2) < z2 * y2 + x * w2)) → P) → P))
Hypothesis H2 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoL y → SNo (x * y2))
Hypothesis H4 : w ∈ SNoL y
Hypothesis H5 : u ∈ SNoR x
Hypothesis H6 : v ∈ SNoL y
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (x * v)
Hypothesis H12 : SNo (u * v)
Hypothesis H13 : SNo (u * w)
Hypothesis H14 : (z * y + u * w) < u * y + z * w
Hypothesis H15 : x2 ∈ SNoL w
Hypothesis H16 : x2 ∈ SNoR v
Hypothesis H18 : x2 ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__62__17
Beginning of Section Conj_mul_SNo_prop_1__65__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL y → SNo (x * x2))
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : w < y
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : v < y
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Theorem. (
Conj_mul_SNo_prop_1__65__5)
((x * w + u * v) < u * w + x * v → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__65__5
Beginning of Section Conj_mul_SNo_prop_1__65__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL y → SNo (x * x2))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : w < y
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : v < y
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Theorem. (
Conj_mul_SNo_prop_1__65__15)
((x * w + u * v) < u * w + x * v → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__65__15
Beginning of Section Conj_mul_SNo_prop_1__66__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL y → SNo (x * x2))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : w < y
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : v < y
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (∀x2 : set, x2 ∈ SNoL y → (z * y + u * x2) < u * y + z * x2)
Hypothesis H24 : (z * y + u * w) < u * y + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__66__7
Beginning of Section Conj_mul_SNo_prop_1__67__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL y → SNo (x * x2))
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w ∈ SNoLev y
Hypothesis H9 : w < y
Hypothesis H10 : u ∈ SNoR x
Hypothesis H11 : v ∈ SNoL y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v ∈ SNoLev y
Hypothesis H14 : v < y
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (∀x2 : set, x2 ∈ SNoL y → (z * y + u * x2) < u * y + z * x2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__67__5
Beginning of Section Conj_mul_SNo_prop_1__68__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoL y → SNo (x * x2))
Hypothesis H7 : z ∈ SNoL x
Hypothesis H8 : w ∈ SNoL y
Hypothesis H9 : SNo z
Hypothesis H10 : SNoLev z ∈ SNoLev x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H14 : u ∈ SNoR x
Hypothesis H15 : v ∈ SNoL y
Hypothesis H16 : SNo u
Hypothesis H17 : SNo v
Hypothesis H18 : SNoLev v ∈ SNoLev y
Hypothesis H19 : v < y
Hypothesis H20 : SNo (z * y)
Hypothesis H21 : SNo (x * w)
Hypothesis H22 : SNo (z * w)
Hypothesis H23 : SNo (u * y)
Hypothesis H24 : SNo (x * v)
Hypothesis H25 : SNo (u * v)
Hypothesis H26 : SNo (z * v)
Hypothesis H27 : SNo (u * w)
Hypothesis H28 : z < u
Theorem. (
Conj_mul_SNo_prop_1__68__13)
(∀x2 : set, x2 ∈ SNoL y → (z * y + u * x2) < u * y + z * x2) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__68__13
Beginning of Section Conj_mul_SNo_prop_1__69__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 ∈ SNoL y → SNo (x * x2))
Hypothesis H7 : z ∈ SNoL x
Hypothesis H8 : w ∈ SNoL y
Hypothesis H9 : SNo z
Hypothesis H10 : SNoLev z ∈ SNoLev x
Hypothesis H11 : z < x
Hypothesis H12 : SNo w
Hypothesis H13 : SNoLev w ∈ SNoLev y
Hypothesis H14 : w < y
Hypothesis H15 : u ∈ SNoR x
Hypothesis H16 : v ∈ SNoL y
Hypothesis H17 : SNo u
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : SNoLev v ∈ SNoLev y
Hypothesis H21 : v < y
Hypothesis H22 : SNo (z * y)
Hypothesis H23 : SNo (x * w)
Hypothesis H24 : SNo (z * w)
Hypothesis H25 : SNo (u * y)
Hypothesis H26 : SNo (x * v)
Hypothesis H27 : SNo (u * v)
Hypothesis H28 : SNo (z * v)
Hypothesis H29 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__69__0
Beginning of Section Conj_mul_SNo_prop_1__71__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : z ∈ SNoL y
Hypothesis H3 : w ∈ SNoR y
Hypothesis H4 : SNo (x * z)
Hypothesis H5 : SNo (x * w)
Hypothesis H6 : u ∈ SNoL x
Hypothesis H7 : SNo (u * z)
Hypothesis H8 : SNo (u * w)
Hypothesis H9 : v ∈ SNoL w
Hypothesis H11 : SNo (u * v)
Hypothesis H12 : SNo (x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__71__10
Beginning of Section Conj_mul_SNo_prop_1__73__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H2 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H3 : z ∈ SNoL y
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (x * w)
Hypothesis H7 : u ∈ SNoL x
Hypothesis H8 : SNo (u * z)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : v ∈ SNoL w
Hypothesis H11 : v ∈ SNoR z
Hypothesis H12 : SNo v
Hypothesis H13 : v ∈ SNoS_ (SNoLev y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__73__4
Beginning of Section Conj_mul_SNo_prop_1__76__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : (∀v : set, v ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * v) → (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoL v → (x2 * v + x * y2) < x * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoR v → (x2 * v + x * y2) < x * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, y2 ∈ SNoR v → (x * v + x2 * y2) < x2 * v + x * y2)) → (∀x2 : set, x2 ∈ SNoR x → (∀y2 : set, y2 ∈ SNoL v → (x * v + x2 * y2) < x2 * v + x * y2)) → P) → P))
Hypothesis H2 : (∀v : set, v ∈ SNoL x → (∀x2 : set, SNo x2 → SNo (v * x2)))
Hypothesis H3 : z ∈ SNoL y
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z ∈ SNoLev y
Hypothesis H6 : w ∈ SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : z < w
Hypothesis H11 : u ∈ SNoL x
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__76__0
Beginning of Section Conj_mul_SNo_prop_1__78__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoL x → SNo (y2 * y))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : SNoLev u ∈ SNoLev x
Hypothesis H10 : u < x
Hypothesis H11 : SNo (z * y)
Hypothesis H12 : SNo (x * w)
Hypothesis H13 : SNo (z * w)
Hypothesis H14 : SNo (u * y)
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (u * v)
Hypothesis H17 : SNo (u * w)
Hypothesis H18 : (x * w + u * v) < u * w + x * v
Hypothesis H19 : x2 ∈ SNoR z
Hypothesis H20 : x2 ∈ SNoL u
Hypothesis H21 : (x2 * y + u * w) < u * y + x2 * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__78__0
Beginning of Section Conj_mul_SNo_prop_1__81__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H3 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, SNo z2 → SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoL x → SNo (y2 * y))
Hypothesis H5 : SNo z
Hypothesis H6 : SNoLev z ∈ SNoLev x
Hypothesis H7 : z < x
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : v ∈ SNoR y
Hypothesis H10 : SNo v
Hypothesis H11 : SNo (z * y)
Hypothesis H12 : SNo (x * w)
Hypothesis H13 : SNo (z * w)
Hypothesis H14 : SNo (u * y)
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (u * v)
Hypothesis H17 : SNo (z * v)
Hypothesis H18 : (x * w + z * v) < z * w + x * v
Hypothesis H19 : x2 ∈ SNoL z
Hypothesis H20 : x2 ∈ SNoR u
Hypothesis H21 : (z * y + x2 * v) < x2 * y + z * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__81__2
Beginning of Section Conj_mul_SNo_prop_1__81__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 ∈ SNoS_ (SNoLev x) → (∀z2 : set, SNo z2 → (∀P : prop, (SNo (y2 * z2) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoL z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoR z2 → (w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2)) → (∀w2 : set, w2 ∈ SNoL y2 → (∀u2 : set, u2 ∈ SNoR z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → (∀w2 : set, w2 ∈ SNoR y2 → (∀u2 : set, u2 ∈ SNoL z2 → (y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoL x → SNo (y2 * y))
Hypothesis H5 : SNo z
Hypothesis H6 : SNoLev z ∈ SNoLev x
Hypothesis H7 : z < x
Hypothesis H8 : u ∈ SNoL x
Hypothesis H9 : v ∈ SNoR y
Hypothesis H10 : SNo v
Hypothesis H11 : SNo (z * y)
Hypothesis H12 : SNo (x * w)
Hypothesis H13 : SNo (z * w)
Hypothesis H14 : SNo (u * y)
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (u * v)
Hypothesis H17 : SNo (z * v)
Hypothesis H18 : (x * w + z * v) < z * w + x * v
Hypothesis H19 : x2 ∈ SNoL z
Hypothesis H20 : x2 ∈ SNoR u
Hypothesis H21 : (z * y + x2 * v) < x2 * y + z * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__81__3
Beginning of Section Conj_mul_SNo_prop_1__83__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoL x
Hypothesis H12 : v ∈ SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (x * w + z * v) < z * w + x * v
Hypothesis H26 : (x * w + u * v) < u * w + x * v
Hypothesis H27 : (z * y + u * v) < u * y + z * v → (z * y + x * w + u * v) < u * y + x * v + z * w
Theorem. (
Conj_mul_SNo_prop_1__83__6)
((z * y + u * w) < u * y + z * w → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__83__6
Beginning of Section Conj_mul_SNo_prop_1__83__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoL x
Hypothesis H12 : v ∈ SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (x * w + z * v) < z * w + x * v
Hypothesis H26 : (x * w + u * v) < u * w + x * v
Hypothesis H27 : (z * y + u * v) < u * y + z * v → (z * y + x * w + u * v) < u * y + x * v + z * w
Theorem. (
Conj_mul_SNo_prop_1__83__21)
((z * y + u * w) < u * y + z * w → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__83__21
Beginning of Section Conj_mul_SNo_prop_1__84__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoL x
Hypothesis H12 : v ∈ SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (x * w + z * v) < z * w + x * v
Hypothesis H26 : (x * w + u * v) < u * w + x * v
Theorem. (
Conj_mul_SNo_prop_1__84__18)
((z * y + u * v) < u * y + z * v → (z * y + x * w + u * v) < u * y + x * v + z * w) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__84__18
Beginning of Section Conj_mul_SNo_prop_1__85__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoL x
Hypothesis H12 : v ∈ SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : u < x
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (∀x2 : set, x2 ∈ SNoL x → (x * w + x2 * v) < x2 * w + x * v)
Hypothesis H26 : (x * w + z * v) < z * w + x * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__85__16
Beginning of Section Conj_mul_SNo_prop_1__85__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoL x
Hypothesis H12 : v ∈ SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H25 : (∀x2 : set, x2 ∈ SNoL x → (x * w + x2 * v) < x2 * w + x * v)
Hypothesis H26 : (x * w + z * v) < z * w + x * v
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__85__24
Beginning of Section Conj_mul_SNo_prop_1__86__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H12 : v ∈ SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (∀x2 : set, x2 ∈ SNoL x → (x * w + x2 * v) < x2 * w + x * v)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__86__11
Beginning of Section Conj_mul_SNo_prop_1__86__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H5 : z ∈ SNoL x
Hypothesis H6 : w ∈ SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z ∈ SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u ∈ SNoL x
Hypothesis H12 : v ∈ SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u ∈ SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__86__25
Beginning of Section Conj_mul_SNo_prop_1__87__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoL x
Hypothesis H7 : w ∈ SNoL y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : z < x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : u ∈ SNoL x
Hypothesis H14 : v ∈ SNoR y
Hypothesis H15 : SNo u
Hypothesis H16 : SNoLev u ∈ SNoLev x
Hypothesis H17 : u < x
Hypothesis H18 : SNo v
Hypothesis H19 : SNo (z * y)
Hypothesis H20 : SNo (x * w)
Hypothesis H21 : SNo (z * w)
Hypothesis H22 : SNo (u * y)
Hypothesis H24 : SNo (u * v)
Hypothesis H25 : SNo (z * v)
Hypothesis H26 : SNo (u * w)
Hypothesis H27 : w < v
Theorem. (
Conj_mul_SNo_prop_1__87__23)
(∀x2 : set, x2 ∈ SNoL x → (x * w + x2 * v) < x2 * w + x * v) → (z * y + x * w + u * v) < u * y + x * v + z * w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__87__23
Beginning of Section Conj_mul_SNo_prop_1__88__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoL x
Hypothesis H7 : w ∈ SNoL y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : z < x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : w < y
Hypothesis H14 : u ∈ SNoL x
Hypothesis H15 : v ∈ SNoR y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u ∈ SNoLev x
Hypothesis H18 : u < x
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H26 : SNo (u * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__88__25
Beginning of Section Conj_mul_SNo_prop_1__88__27
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev x) → (∀y2 : set, SNo y2 → (∀P : prop, (SNo (x2 * y2) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoL y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoR y2 → (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2)) → (∀z2 : set, z2 ∈ SNoL x2 → (∀w2 : set, w2 ∈ SNoR y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → (∀z2 : set, z2 ∈ SNoR x2 → (∀w2 : set, w2 ∈ SNoL y2 → (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * x2) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoL x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR x2 → (y2 * x2 + x * z2) < x * x2 + y2 * z2)) → (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL x2 → (x * x2 + y2 * z2) < y2 * x2 + x * z2)) → P) → P))
Hypothesis H4 : (∀x2 : set, x2 ∈ SNoL x → (∀y2 : set, SNo y2 → SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 ∈ SNoL x → SNo (x2 * y))
Hypothesis H6 : z ∈ SNoL x
Hypothesis H7 : w ∈ SNoL y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z ∈ SNoLev x
Hypothesis H10 : z < x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w ∈ SNoLev y
Hypothesis H13 : w < y
Hypothesis H14 : u ∈ SNoL x
Hypothesis H15 : v ∈ SNoR y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u ∈ SNoLev x
Hypothesis H18 : u < x
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H26 : SNo (u * v)
Hypothesis H28 : SNo (u * w)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__88__27
Beginning of Section Conj_mul_SNo_prop_1__94__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H2 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H3 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H5 : x * y = SNoCut z w
Hypothesis H6 : (∀u : set, u ∈ SNoL x → (∀v : set, SNo v → SNo (u * v)))
Hypothesis H7 : (∀u : set, u ∈ SNoR x → (∀v : set, SNo v → SNo (u * v)))
Hypothesis H8 : (∀u : set, u ∈ SNoL y → SNo (x * u))
Hypothesis H9 : (∀u : set, u ∈ SNoR y → SNo (x * u))
Hypothesis H10 : SNoCutP z w
Theorem. (
Conj_mul_SNo_prop_1__94__4)
SNo (x * y) → (∀P : prop, (SNo (x * y) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → (x * y + u * v) < u * y + x * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → (x * y + u * v) < u * y + x * v)) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__94__4
Beginning of Section Conj_mul_SNo_prop_1__96__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → (∀P : prop, (SNo (u * v) → (∀x2 : set, x2 ∈ SNoL u → (∀y2 : set, y2 ∈ SNoL v → (x2 * v + u * y2) < u * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoR u → (∀y2 : set, y2 ∈ SNoR v → (x2 * v + u * y2) < u * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoL u → (∀y2 : set, y2 ∈ SNoR v → (u * v + x2 * y2) < x2 * v + u * y2)) → (∀x2 : set, x2 ∈ SNoR u → (∀y2 : set, y2 ∈ SNoL v → (u * v + x2 * y2) < x2 * v + u * y2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H4 : (∀u : set, u ∈ z → (∀P : prop, (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2) → P)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2) → P)) → P))
Hypothesis H5 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H6 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H7 : (∀u : set, u ∈ w → (∀P : prop, (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2) → P)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2) → P)) → P))
Hypothesis H8 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H9 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H10 : x * y = SNoCut z w
Hypothesis H11 : (∀u : set, u ∈ SNoL x → (∀v : set, SNo v → SNo (u * v)))
Hypothesis H12 : (∀u : set, u ∈ SNoR x → (∀v : set, SNo v → SNo (u * v)))
Hypothesis H13 : (∀u : set, u ∈ SNoL x → SNo (u * y))
Hypothesis H14 : (∀u : set, u ∈ SNoR x → SNo (u * y))
Hypothesis H15 : (∀u : set, u ∈ SNoL y → SNo (x * u))
Theorem. (
Conj_mul_SNo_prop_1__96__3)
(∀u : set, u ∈ SNoR y → SNo (x * u)) → (∀P : prop, (SNo (x * y) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → (x * y + u * v) < u * y + x * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → (x * y + u * v) < u * y + x * v)) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__96__3
Beginning of Section Conj_mul_SNo_prop_1__97__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → (∀P : prop, (SNo (u * v) → (∀x2 : set, x2 ∈ SNoL u → (∀y2 : set, y2 ∈ SNoL v → (x2 * v + u * y2) < u * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoR u → (∀y2 : set, y2 ∈ SNoR v → (x2 * v + u * y2) < u * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoL u → (∀y2 : set, y2 ∈ SNoR v → (u * v + x2 * y2) < x2 * v + u * y2)) → (∀x2 : set, x2 ∈ SNoR u → (∀y2 : set, y2 ∈ SNoL v → (u * v + x2 * y2) < x2 * v + u * y2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * u) → (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL u → (v * u + x * x2) < x * u + v * x2)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoR u → (v * u + x * x2) < x * u + v * x2)) → (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR u → (x * u + v * x2) < v * u + x * x2)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoL u → (x * u + v * x2) < v * u + x * x2)) → P) → P))
Hypothesis H4 : (∀u : set, u ∈ z → (∀P : prop, (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2) → P)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2) → P)) → P))
Hypothesis H5 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H7 : (∀u : set, u ∈ w → (∀P : prop, (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2) → P)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2) → P)) → P))
Hypothesis H8 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H9 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H10 : x * y = SNoCut z w
Hypothesis H11 : (∀u : set, u ∈ SNoL x → (∀v : set, SNo v → SNo (u * v)))
Hypothesis H12 : (∀u : set, u ∈ SNoR x → (∀v : set, SNo v → SNo (u * v)))
Hypothesis H13 : (∀u : set, u ∈ SNoL x → SNo (u * y))
Hypothesis H14 : (∀u : set, u ∈ SNoR x → SNo (u * y))
Theorem. (
Conj_mul_SNo_prop_1__97__6)
(∀u : set, u ∈ SNoL y → SNo (x * u)) → (∀P : prop, (SNo (x * y) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → (x * y + u * v) < u * y + x * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → (x * y + u * v) < u * y + x * v)) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__97__6
Beginning of Section Conj_mul_SNo_prop_1__98__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → (∀P : prop, (SNo (u * v) → (∀x2 : set, x2 ∈ SNoL u → (∀y2 : set, y2 ∈ SNoL v → (x2 * v + u * y2) < u * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoR u → (∀y2 : set, y2 ∈ SNoR v → (x2 * v + u * y2) < u * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoL u → (∀y2 : set, y2 ∈ SNoR v → (u * v + x2 * y2) < x2 * v + u * y2)) → (∀x2 : set, x2 ∈ SNoR u → (∀y2 : set, y2 ∈ SNoL v → (u * v + x2 * y2) < x2 * v + u * y2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * u) → (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL u → (v * u + x * x2) < x * u + v * x2)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoR u → (v * u + x * x2) < x * u + v * x2)) → (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR u → (x * u + v * x2) < v * u + x * x2)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoL u → (x * u + v * x2) < v * u + x * x2)) → P) → P))
Hypothesis H4 : (∀u : set, u ∈ z → (∀P : prop, (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2) → P)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2) → P)) → P))
Hypothesis H5 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H6 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H7 : (∀u : set, u ∈ w → (∀P : prop, (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2) → P)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2) → P)) → P))
Hypothesis H8 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H9 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H10 : x * y = SNoCut z w
Hypothesis H12 : (∀u : set, u ∈ SNoR x → (∀v : set, SNo v → SNo (u * v)))
Hypothesis H13 : (∀u : set, u ∈ SNoL x → SNo (u * y))
Theorem. (
Conj_mul_SNo_prop_1__98__11)
(∀u : set, u ∈ SNoR x → SNo (u * y)) → (∀P : prop, (SNo (x * y) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → (x * y + u * v) < u * y + x * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → (x * y + u * v) < u * y + x * v)) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__98__11
Beginning of Section Conj_mul_SNo_prop_1__101__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u ∈ SNoS_ (SNoLev x) → (∀v : set, SNo v → (∀P : prop, (SNo (u * v) → (∀x2 : set, x2 ∈ SNoL u → (∀y2 : set, y2 ∈ SNoL v → (x2 * v + u * y2) < u * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoR u → (∀y2 : set, y2 ∈ SNoR v → (x2 * v + u * y2) < u * v + x2 * y2)) → (∀x2 : set, x2 ∈ SNoL u → (∀y2 : set, y2 ∈ SNoR v → (u * v + x2 * y2) < x2 * v + u * y2)) → (∀x2 : set, x2 ∈ SNoR u → (∀y2 : set, y2 ∈ SNoL v → (u * v + x2 * y2) < x2 * v + u * y2)) → P) → P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀u : set, u ∈ SNoS_ (SNoLev y) → (∀P : prop, (SNo (x * u) → (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL u → (v * u + x * x2) < x * u + v * x2)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoR u → (v * u + x * x2) < x * u + v * x2)) → (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR u → (x * u + v * x2) < v * u + x * x2)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoL u → (x * u + v * x2) < v * u + x * x2)) → P) → P))
Hypothesis H5 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H6 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ z))
Hypothesis H7 : (∀u : set, u ∈ w → (∀P : prop, (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR y → u = v * y + x * x2 + - (v * x2) → P)) → (∀v : set, v ∈ SNoR x → (∀x2 : set, x2 ∈ SNoL y → u = v * y + x * x2 + - (v * x2) → P)) → P))
Hypothesis H8 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H9 : (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → u * y + x * v + - (u * v) ∈ w))
Hypothesis H10 : x * y = SNoCut z w
Theorem. (
Conj_mul_SNo_prop_1__101__4)
(∀u : set, u ∈ SNoL x → (∀v : set, SNo v → SNo (u * v))) → (∀P : prop, (SNo (x * y) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoL y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoR y → (u * y + x * v) < x * y + u * v)) → (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR y → (x * y + u * v) < u * y + x * v)) → (∀u : set, u ∈ SNoR x → (∀v : set, v ∈ SNoL y → (x * y + u * v) < u * y + x * v)) → P) → P)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_prop_1__101__4
Beginning of Section Conj_mul_SNo_eq_3__2__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : u ∈ SNoR x
Hypothesis H5 : v ∈ SNoR y
Hypothesis H6 : z = u * y + x * v + - (u * v)
Hypothesis H7 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (u * v)
Hypothesis H10 : x2 ∈ SNoR x
Hypothesis H11 : y2 ∈ SNoL y
Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo y2
Hypothesis H15 : SNo (x2 * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__2__1
Beginning of Section Conj_mul_SNo_eq_3__2__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (x * y)
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : u ∈ SNoR x
Hypothesis H5 : v ∈ SNoR y
Hypothesis H6 : z = u * y + x * v + - (u * v)
Hypothesis H7 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H10 : x2 ∈ SNoR x
Hypothesis H11 : y2 ∈ SNoL y
Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo y2
Hypothesis H15 : SNo (x2 * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__2__9
Beginning of Section Conj_mul_SNo_eq_3__3__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u ∈ SNoR x
Hypothesis H6 : v ∈ SNoR y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H11 : x2 ∈ SNoR x
Hypothesis H12 : y2 ∈ SNoL y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__3__10
Beginning of Section Conj_mul_SNo_eq_3__3__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoR y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u ∈ SNoR x
Hypothesis H6 : v ∈ SNoR y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 ∈ SNoR x
Hypothesis H12 : y2 ∈ SNoL y
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__3__13
Beginning of Section Conj_mul_SNo_eq_3__7__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 ∈ z → (∀P : prop, (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → P))
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR y → (y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H8 : v ∈ SNoR x
Hypothesis H9 : x2 ∈ SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__7__14
Beginning of Section Conj_mul_SNo_eq_3__8__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 ∈ z → (∀P : prop, (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → P))
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR y → (y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H8 : v ∈ SNoR x
Hypothesis H9 : x2 ∈ SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__8__0
Beginning of Section Conj_mul_SNo_eq_3__8__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR y → (y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H8 : v ∈ SNoR x
Hypothesis H9 : x2 ∈ SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__8__2
Beginning of Section Conj_mul_SNo_eq_3__8__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 ∈ z → (∀P : prop, (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → P))
Hypothesis H3 : SNo (x * y)
Hypothesis H5 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H8 : v ∈ SNoR x
Hypothesis H9 : x2 ∈ SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__8__4
Beginning of Section Conj_mul_SNo_eq_3__8__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 ∈ z → (∀P : prop, (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → P))
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR y → (y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H9 : x2 ∈ SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__8__8
Beginning of Section Conj_mul_SNo_eq_3__8__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 ∈ z → (∀P : prop, (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → y2 = z2 * y + x * w2 + - (z2 * w2) → P)) → P))
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoR y → (y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 ∈ SNoL x → (∀z2 : set, z2 ∈ SNoR y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 ∈ SNoR x → (∀z2 : set, z2 ∈ SNoL y → (x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H8 : v ∈ SNoR x
Hypothesis H9 : x2 ∈ SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H13 : SNo (v * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__8__12
Beginning of Section Conj_mul_SNo_eq_3__10__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : v ∈ SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 ∈ SNoR x
Hypothesis H10 : y2 ∈ SNoL y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H14 : SNo (x2 * y)
Hypothesis H15 : SNo (x * y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__10__3
Beginning of Section Conj_mul_SNo_eq_3__10__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u ∈ SNoL x
Hypothesis H4 : v ∈ SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 ∈ SNoR x
Hypothesis H10 : y2 ∈ SNoL y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H15 : SNo (x * y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__10__14
Beginning of Section Conj_mul_SNo_eq_3__10__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u ∈ SNoL x
Hypothesis H4 : v ∈ SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 ∈ SNoR x
Hypothesis H10 : y2 ∈ SNoL y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H14 : SNo (x2 * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__10__15
Beginning of Section Conj_mul_SNo_eq_3__12__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u ∈ SNoL x
Hypothesis H6 : v ∈ SNoL y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 ∈ SNoR x
Hypothesis H12 : y2 ∈ SNoL y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__12__1
Beginning of Section Conj_mul_SNo_eq_3__12__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoR x → (∀w2 : set, w2 ∈ SNoL y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u ∈ SNoL x
Hypothesis H6 : v ∈ SNoL y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 ∈ SNoR x
Hypothesis H12 : y2 ∈ SNoL y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__12__15
Beginning of Section Conj_mul_SNo_eq_3__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u ∈ SNoL x
Hypothesis H4 : v ∈ SNoL y
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 ∈ SNoL x
Hypothesis H10 : y2 ∈ SNoR y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H14 : SNo (x2 * y)
Hypothesis H15 : SNo (x * y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__13__5
Beginning of Section Conj_mul_SNo_eq_3__13__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u ∈ SNoL x
Hypothesis H4 : v ∈ SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H9 : x2 ∈ SNoL x
Hypothesis H10 : y2 ∈ SNoR y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H14 : SNo (x2 * y)
Hypothesis H15 : SNo (x * y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__13__8
Beginning of Section Conj_mul_SNo_eq_3__13__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u ∈ SNoL x
Hypothesis H4 : v ∈ SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 ∈ SNoL x
Hypothesis H10 : y2 ∈ SNoR y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H14 : SNo (x2 * y)
Hypothesis H15 : SNo (x * y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__13__13
Beginning of Section Conj_mul_SNo_eq_3__13__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u ∈ SNoL x
Hypothesis H4 : v ∈ SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 ∈ SNoL x
Hypothesis H10 : y2 ∈ SNoR y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H15 : SNo (x * y2)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__13__14
Beginning of Section Conj_mul_SNo_eq_3__14__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : u ∈ SNoL x
Hypothesis H5 : v ∈ SNoL y
Hypothesis H6 : z = u * y + x * v + - (u * v)
Hypothesis H7 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (u * v)
Hypothesis H10 : x2 ∈ SNoL x
Hypothesis H11 : y2 ∈ SNoR y
Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo y2
Hypothesis H15 : SNo (x2 * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__14__2
Beginning of Section Conj_mul_SNo_eq_3__14__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (x * y)
Hypothesis H2 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : u ∈ SNoL x
Hypothesis H5 : v ∈ SNoL y
Hypothesis H6 : z = u * y + x * v + - (u * v)
Hypothesis H7 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (u * v)
Hypothesis H10 : x2 ∈ SNoL x
Hypothesis H11 : y2 ∈ SNoR y
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo y2
Hypothesis H15 : SNo (x2 * y)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__14__12
Beginning of Section Conj_mul_SNo_eq_3__15__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H5 : u ∈ SNoL x
Hypothesis H6 : v ∈ SNoL y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 ∈ SNoL x
Hypothesis H12 : y2 ∈ SNoR y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo y2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__15__4
Beginning of Section Conj_mul_SNo_eq_3__15__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoL y → (z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 ∈ SNoL x → (∀w2 : set, w2 ∈ SNoR y → (x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u ∈ SNoL x
Hypothesis H6 : v ∈ SNoL y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 ∈ SNoL x
Hypothesis H12 : y2 ∈ SNoR y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_eq_3__15__15
Beginning of Section Conj_mul_SNo_Lt__8__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo z
Hypothesis H1 : SNo (x * y)
Hypothesis H2 : SNo (z * y)
Hypothesis H3 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoL y → (z * y + v * x2) < v * y + z * x2))
Hypothesis H4 : SNo (x * w)
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H7 : SNo (z * y + x * w)
Hypothesis H8 : SNo (x * y + z * w)
Hypothesis H9 : x ∈ SNoR z
Hypothesis H10 : SNo u
Hypothesis H11 : u ∈ SNoL y
Hypothesis H13 : SNo (x * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__8__12
Beginning of Section Conj_mul_SNo_Lt__10__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (z * y)
Hypothesis H6 : SNo (x * w)
Hypothesis H7 : SNo (z * w)
Hypothesis H8 : (∀v : set, v ∈ SNoR z → (∀x2 : set, x2 ∈ SNoR w → (v * w + z * x2) < z * w + v * x2))
Hypothesis H9 : SNo (z * y + x * w)
Hypothesis H10 : SNo (x * y + z * w)
Hypothesis H11 : x ∈ SNoR z
Hypothesis H12 : SNo u
Hypothesis H13 : w < u
Hypothesis H14 : SNoLev u ∈ SNoLev w
Hypothesis H15 : u ∈ SNoL y
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__10__5
Beginning of Section Conj_mul_SNo_Lt__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : SNo w
Hypothesis H2 : w < y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (z * y)
Hypothesis H6 : (∀u : set, u ∈ SNoL x → (∀v : set, v ∈ SNoR w → (x * w + u * v) < u * w + x * v))
Hypothesis H7 : SNo (z * w)
Hypothesis H8 : z ∈ SNoL x
Hypothesis H9 : SNoLev y ∈ SNoLev w
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__13__5
Beginning of Section Conj_mul_SNo_Lt__15__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H7 : z ∈ SNoL x
Hypothesis H8 : u ∈ SNoR w
Hypothesis H9 : SNo (x * u)
Hypothesis H10 : SNo (z * u)
Hypothesis H11 : SNo (z * y + x * u)
Hypothesis H12 : SNo (z * w + x * u)
Hypothesis H13 : SNo (x * y + z * u)
Hypothesis H14 : SNo (x * w + z * u)
Hypothesis H15 : (z * y + x * u) < x * y + z * u
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__15__6
Beginning of Section Conj_mul_SNo_Lt__18__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H2 : SNo (z * y)
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : SNo (z * y + x * w)
Hypothesis H7 : SNo (x * y + z * w)
Hypothesis H8 : z ∈ SNoL x
Hypothesis H10 : u ∈ SNoR w
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (z * u)
Hypothesis H13 : SNo (z * y + x * u)
Hypothesis H14 : SNo (z * w + x * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__18__9
Beginning of Section Conj_mul_SNo_Lt__19__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoL y → (v * y + x * x2) < x * y + v * x2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : (∀v : set, v ∈ SNoL x → (∀x2 : set, x2 ∈ SNoR w → (x * w + v * x2) < v * w + x * x2))
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : SNo (z * y + x * w)
Hypothesis H7 : SNo (x * y + z * w)
Hypothesis H8 : z ∈ SNoL x
Hypothesis H9 : u ∈ SNoL y
Hypothesis H10 : u ∈ SNoR w
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (z * u)
Hypothesis H13 : SNo (z * y + x * u)
Proof:The rest of the proof is missing.
End of Section Conj_mul_SNo_Lt__19__2