Beginning of Section Conj_ZF_UPair_closed__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : z UPair x y
Theorem. (Conj_ZF_UPair_closed__1__1)
If_i (x Empty) x y Repl (𝒫 (𝒫 x)) (λw : setIf_i (x w) x y)z Repl (𝒫 (𝒫 x)) (λw : setIf_i (x w) x y)
Proof:
The rest of the proof is missing.

End of Section Conj_ZF_UPair_closed__1__1
Beginning of Section Conj_ZF_UPair_closed__5__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ZF_closed x
Hypothesis H2 : z x
Theorem. (Conj_ZF_UPair_closed__5__1)
Repl (𝒫 (𝒫 y)) (λw : setIf_i (y w) y z) = UPair y zUPair y z x
Proof:
The rest of the proof is missing.

End of Section Conj_ZF_UPair_closed__5__1
Beginning of Section Conj_ordinal_ordsucc_In_eq__1__1
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Theorem. (Conj_ordinal_ordsucc_In_eq__1__1)
ordinal (ordsucc y)ordsucc y xx = ordsucc y
Proof:
The rest of the proof is missing.

End of Section Conj_ordinal_ordsucc_In_eq__1__1
Beginning of Section Conj_ordinal_famunion__2__0
Variable x : set
Variable f : (setset)
Variable y : set
Variable z : set
Hypothesis H1 : z x
Hypothesis H2 : y f z
Theorem. (Conj_ordinal_famunion__2__0)
ordinal (f z)TransSet y
Proof:
The rest of the proof is missing.

End of Section Conj_ordinal_famunion__2__0
Beginning of Section Conj_KnasterTarski_set__3__0
Variable x : set
Variable f : (setset)
Hypothesis H1 : Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z) 𝒫 x
Hypothesis H2 : f (Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z)) 𝒫 x
Hypothesis H3 : (∀y : set, y 𝒫 xSubq (f y) ySubq (Sep x (λz : set∀w : set, w 𝒫 xSubq (f w) wz w)) y)
Hypothesis H4 : Subq (f (Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z))) (Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z))
Theorem. (Conj_KnasterTarski_set__3__0)
Subq (f (f (Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z)))) (f (Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z)))(∃y : set, y 𝒫 xf y = y)
Proof:
The rest of the proof is missing.

End of Section Conj_KnasterTarski_set__3__0
Beginning of Section Conj_KnasterTarski_set__4__0
Variable x : set
Variable f : (setset)
Hypothesis H1 : Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z) 𝒫 x
Hypothesis H2 : f (Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z)) 𝒫 x
Hypothesis H3 : (∀y : set, y 𝒫 xSubq (f y) ySubq (Sep x (λz : set∀w : set, w 𝒫 xSubq (f w) wz w)) y)
Theorem. (Conj_KnasterTarski_set__4__0)
Subq (f (Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z))) (Sep x (λy : set∀z : set, z 𝒫 xSubq (f z) zy z))(∃y : set, y 𝒫 xf y = y)
Proof:
The rest of the proof is missing.

End of Section Conj_KnasterTarski_set__4__0
Beginning of Section Conj_SchroederBernstein__3__3
Variable x : set
Variable y : set
Variable f : (setset)
Variable f2 : (setset)
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : (∀x2 : set, x2 y(∀y2 : set, y2 yf2 x2 = f2 y2x2 = y2))
Hypothesis H1 : (λx2 : setRepl (setminus y (Repl (setminus x x2) (λy2 : setf y2))) (λy2 : setf2 y2)) z = z
Hypothesis H2 : w = f2 v
Hypothesis H4 : u z
Theorem. (Conj_SchroederBernstein__3__3)
u Repl (setminus y (Repl (setminus x z) f)) f2inv y f2 w = inv y f2 uw = u
Proof:
The rest of the proof is missing.

End of Section Conj_SchroederBernstein__3__3
Beginning of Section Conj_PigeonHole_nat__1__0
Variable x : set
Variable f : (setset)
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : z ordsucc (ordsucc x)
Hypothesis H2 : ordsucc w ordsucc (ordsucc x)
Hypothesis H3 : ¬ Subq y z
Hypothesis H4 : Subq y w
Hypothesis H5 : f z = f (ordsucc w)
Proof:
The rest of the proof is missing.

End of Section Conj_PigeonHole_nat__1__0
Beginning of Section Conj_PigeonHole_nat__5__1
Variable x : set
Variable f : (setset)
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : nat_p x
Hypothesis H2 : z ordsucc x
Hypothesis H3 : w ordsucc x
Hypothesis H4 : z ordsucc (ordsucc x)
Theorem. (Conj_PigeonHole_nat__5__1)
ordsucc z ordsucc (ordsucc x)If_i (Subq y z) (f (ordsucc z)) (f z) = If_i (Subq y w) (f (ordsucc w)) (f w)z = w
Proof:
The rest of the proof is missing.

End of Section Conj_PigeonHole_nat__5__1
Beginning of Section Conj_PigeonHole_nat_bij__2__2
Variable x : set
Variable f : (setset)
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u x(∀v : set, v xf u = f vu = v))
Hypothesis H1 : ¬ (∃u : set, u xf u = y)
Hypothesis H3 : w ordsucc x
Theorem. (Conj_PigeonHole_nat_bij__2__2)
(zxz x)If_i (z = x) y (f z) = If_i (w = x) y (f w)z = w
Proof:
The rest of the proof is missing.

End of Section Conj_PigeonHole_nat_bij__2__2
Beginning of Section Conj_finite_ind__2__4
Variable p : (setprop)
Variable x : set
Variable y : set
Variable f : (setset)
Hypothesis H0 : (∀z : set, ∀w : set, finite znIn w zp zp (binunion z (Sing w)))
Hypothesis H1 : nat_p x
Hypothesis H2 : (∀z : set, equip z xp z)
Hypothesis H3 : (∀z : set, z ordsucc xf z y)
Hypothesis H5 : (∀z : set, z y(∃w : set, w ordsucc xf w = z))
Theorem. (Conj_finite_ind__2__4)
y = binunion (Repl x f) (Sing (f x))p y
Proof:
The rest of the proof is missing.

End of Section Conj_finite_ind__2__4
Beginning of Section Conj_Descr_Vo1_prop__1__1
Variable P : ((setprop)prop)
Variable p : (setprop)
Hypothesis H0 : (∀q : setprop, ∀p2 : setprop, P qP p2q = p2)
Theorem. (Conj_Descr_Vo1_prop__1__1)
p = Descr_Vo1 PP (Descr_Vo1 P)
Proof:
The rest of the proof is missing.

End of Section Conj_Descr_Vo1_prop__1__1
Beginning of Section Conj_nat_setsum1_ordsucc__1__0
Variable x : set
Variable y : set
Hypothesis H1 : x = ordsucc y
Proof:
The rest of the proof is missing.

End of Section Conj_nat_setsum1_ordsucc__1__0
Beginning of Section Conj_PNoLt_trichotomy_or__6__2
Variable x : set
Variable y : set
Variable p : (setprop)
Variable q : (setprop)
Hypothesis H0 : TransSet y
Hypothesis H1 : PNoEq_ (binintersect x y) p q
Theorem. (Conj_PNoLt_trichotomy_or__6__2)
binintersect x y = xPNoLt x p y qx = yPNoEq_ x p qPNoLt y q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNoLt_trichotomy_or__6__2
Beginning of Section Conj_PNoLt_trichotomy_or__7__2
Variable x : set
Variable y : set
Variable p : (setprop)
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Hypothesis H3 : TransSet y
Theorem. (Conj_PNoLt_trichotomy_or__7__2)
ordinal (binintersect x y)PNoLt x p y qx = yPNoEq_ x p qPNoLt y q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNoLt_trichotomy_or__7__2
Beginning of Section Conj_PNoLt_tra__1__0
Variable x : set
Variable y : set
Variable z : set
Variable p : (setprop)
Variable q : (setprop)
Variable p2 : (setprop)
Variable w : set
Hypothesis H1 : ordinal y
Hypothesis H2 : TransSet z
Hypothesis H3 : PNoEq_ x p q
Hypothesis H4 : q x
Hypothesis H5 : w y
Hypothesis H6 : w z
Hypothesis H7 : PNoEq_ w q p2
Hypothesis H8 : ¬ q w
Hypothesis H9 : p2 w
Theorem. (Conj_PNoLt_tra__1__0)
ordinal wPNoLt x p z p2
Proof:
The rest of the proof is missing.

End of Section Conj_PNoLt_tra__1__0
Beginning of Section Conj_PNoLt_tra__2__12
Variable x : set
Variable y : set
Variable z : set
Variable p : (setprop)
Variable q : (setprop)
Variable p2 : (setprop)
Variable w : set
Variable u : set
Hypothesis H0 : ordinal y
Hypothesis H1 : TransSet x
Hypothesis H2 : TransSet z
Hypothesis H3 : w x
Hypothesis H4 : PNoEq_ w p q
Hypothesis H5 : ¬ p w
Hypothesis H6 : q w
Hypothesis H7 : ordinal w
Hypothesis H8 : u y
Hypothesis H9 : u z
Hypothesis H10 : PNoEq_ u q p2
Hypothesis H11 : ¬ q u
Theorem. (Conj_PNoLt_tra__2__12)
ordinal uPNoLt x p z p2
Proof:
The rest of the proof is missing.

End of Section Conj_PNoLt_tra__2__12
Beginning of Section Conj_PNoLe_tra__1__0
Variable x : set
Variable y : set
Variable z : set
Variable p : (setprop)
Variable q : (setprop)
Variable p2 : (setprop)
Hypothesis H1 : ordinal z
Hypothesis H2 : PNoLe y q z p2
Hypothesis H3 : x = y
Hypothesis H4 : PNoEq_ x p q
Theorem. (Conj_PNoLe_tra__1__0)
PNoEq_ y p qPNoLe y p z p2
Proof:
The rest of the proof is missing.

End of Section Conj_PNoLe_tra__1__0
Beginning of Section Conj_PNo_rel_strict_upperbd_antimon__6__1
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H2 : TransSet x
Theorem. (Conj_PNo_rel_strict_upperbd_antimon__6__1)
ordinal y(∀z : set, z x(∀q : setprop, PNo_downc P z qPNoLt z q x p))(∀z : set, z y(∀q : setprop, PNo_downc P z qPNoLt z q y p))
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_strict_upperbd_antimon__6__1
Beginning of Section Conj_PNo_rel_strict_upperbd_antimon__6__2
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : y x
Theorem. (Conj_PNo_rel_strict_upperbd_antimon__6__2)
ordinal y(∀z : set, z x(∀q : setprop, PNo_downc P z qPNoLt z q x p))(∀z : set, z y(∀q : setprop, PNo_downc P z qPNoLt z q y p))
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_strict_upperbd_antimon__6__2
Beginning of Section Conj_PNo_rel_strict_lowerbd_antimon__4__0
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable z : set
Variable q : (setprop)
Hypothesis H1 : TransSet x
Hypothesis H2 : TransSet y
Hypothesis H3 : (∀w : set, w x(∀p2 : setprop, PNo_upc P w p2PNoLt x p w p2))
Hypothesis H4 : z y
Hypothesis H5 : PNo_upc P z q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_strict_lowerbd_antimon__4__0
Beginning of Section Conj_PNo_rel_imv_ex__4__9
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀w : set, w x(∀p2 : setprop, PNo_upc P w p2PNoLt x p w p2))
Hypothesis H2 : PNoEq_ x p (λw : setp ww = x)
Hypothesis H3 : PNo_upc P y q
Hypothesis H4 : ordinal y
Hypothesis H5 : y = x
Hypothesis H6 : z x
Hypothesis H7 : PNoEq_ z q (λw : setp ww = x)
Hypothesis H8 : ¬ q z
Theorem. (Conj_PNo_rel_imv_ex__4__9)
ordinal zPNoLt (ordsucc x) (λw : setp ww = x) x q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__4__9
Beginning of Section Conj_PNo_rel_imv_ex__7__0
Variable x : set
Variable p : (setprop)
Variable q : (setprop)
Variable y : set
Hypothesis H1 : PNoEq_ x p (λz : setp zz = x)
Hypothesis H2 : y x
Hypothesis H3 : PNoEq_ y (λz : setp zz = x) q
Hypothesis H4 : ¬ (p yy = x)
Hypothesis H5 : ordinal y
Hypothesis H6 : PNoLt y q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__7__0
Beginning of Section Conj_PNo_rel_imv_ex__7__3
Variable x : set
Variable p : (setprop)
Variable q : (setprop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : PNoEq_ x p (λz : setp zz = x)
Hypothesis H2 : y x
Hypothesis H4 : ¬ (p yy = x)
Hypothesis H5 : ordinal y
Hypothesis H6 : PNoLt y q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__7__3
Beginning of Section Conj_PNo_rel_imv_ex__7__4
Variable x : set
Variable p : (setprop)
Variable q : (setprop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : PNoEq_ x p (λz : setp zz = x)
Hypothesis H2 : y x
Hypothesis H3 : PNoEq_ y (λz : setp zz = x) q
Hypothesis H5 : ordinal y
Hypothesis H6 : PNoLt y q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__7__4
Beginning of Section Conj_PNo_rel_imv_ex__15__3
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : ¬ (∃q : setprop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H1 : x = ordsucc y
Hypothesis H2 : ordinal y
Hypothesis H4 : binintersect y (ordsucc y) = y
Hypothesis H5 : binintersect (ordsucc y) y = y
Hypothesis H6 : (∀z : set, z y(∀q : setprop, PNo_downc P z qPNoLt z q y p))
Hypothesis H7 : (∀z : set, z y(∀q : setprop, PNo_upc Q z qPNoLt y p z q))
Hypothesis H8 : (∀q : setprop, PNo_rel_strict_imv P Q y qPNoEq_ y p q)
Hypothesis H9 : PNoEq_ y p (λz : setp zz = y)
Hypothesis H10 : PNoLt y p (ordsucc y) (λz : setp zz = y)
Hypothesis H11 : ¬ (PNo_rel_strict_imv P Q x (λz : setp zzy)PNo_rel_strict_imv P Q x (λz : setp zz = y))
Hypothesis H12 : (∀q : setprop, PNo_upc Q y q¬ PNoEq_ y p q)
Theorem. (Conj_PNo_rel_imv_ex__15__3)
¬ PNo_rel_strict_imv P Q (ordsucc y) (λz : setp zz = y)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__15__3
Beginning of Section Conj_PNo_rel_imv_ex__15__11
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : ¬ (∃q : setprop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H1 : x = ordsucc y
Hypothesis H2 : ordinal y
Hypothesis H3 : ordinal (ordsucc y)
Hypothesis H4 : binintersect y (ordsucc y) = y
Hypothesis H5 : binintersect (ordsucc y) y = y
Hypothesis H6 : (∀z : set, z y(∀q : setprop, PNo_downc P z qPNoLt z q y p))
Hypothesis H7 : (∀z : set, z y(∀q : setprop, PNo_upc Q z qPNoLt y p z q))
Hypothesis H8 : (∀q : setprop, PNo_rel_strict_imv P Q y qPNoEq_ y p q)
Hypothesis H9 : PNoEq_ y p (λz : setp zz = y)
Hypothesis H10 : PNoLt y p (ordsucc y) (λz : setp zz = y)
Hypothesis H12 : (∀q : setprop, PNo_upc Q y q¬ PNoEq_ y p q)
Theorem. (Conj_PNo_rel_imv_ex__15__11)
¬ PNo_rel_strict_imv P Q (ordsucc y) (λz : setp zz = y)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__15__11
Beginning of Section Conj_PNo_rel_imv_ex__16__2
Variable x : set
Variable p : (setprop)
Variable q : (setprop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : PNoEq_ x (λz : setp zzx) p
Hypothesis H3 : PNoEq_ y q (λz : setp zzx)
Hypothesis H4 : p yyx
Hypothesis H5 : ordinal y
Hypothesis H6 : PNoLt x p y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__16__2
Beginning of Section Conj_PNo_rel_imv_ex__17__0
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Variable z : set
Hypothesis H1 : (∀w : set, w x(∀p2 : setprop, PNo_upc P w p2PNoLt x p w p2))
Hypothesis H2 : PNoEq_ x (λw : setp wwx) p
Hypothesis H3 : PNo_upc P y q
Hypothesis H4 : ordinal y
Hypothesis H5 : y = x
Hypothesis H6 : z x
Hypothesis H7 : PNoEq_ z q (λw : setp wwx)
Hypothesis H8 : ¬ q z
Hypothesis H9 : p zzx
Hypothesis H10 : ordinal z
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__17__0
Beginning of Section Conj_PNo_rel_imv_ex__19__3
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : binintersect x (ordsucc x) = x
Hypothesis H4 : PNoEq_ x (λz : setp zzx) p
Hypothesis H5 : PNoLt (ordsucc x) (λz : setp zzx) x p
Hypothesis H6 : y ordsucc x
Hypothesis H7 : PNo_upc P y q
Theorem. (Conj_PNo_rel_imv_ex__19__3)
ordinal yPNoLt (ordsucc x) (λz : setp zzx) y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__19__3
Beginning of Section Conj_PNo_rel_imv_ex__20__5
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀w : set, w x(∀p2 : setprop, PNo_downc P w p2PNoLt w p2 x p))
Hypothesis H2 : PNo_downc P y q
Hypothesis H3 : ordinal y
Hypothesis H4 : y = x
Hypothesis H6 : q z
Hypothesis H7 : ordinal z
Hypothesis H8 : PNoLt x p z q
Theorem. (Conj_PNo_rel_imv_ex__20__5)
PNoLt z q x pPNoLt x q (ordsucc x) (λw : setp wwx)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__20__5
Beginning of Section Conj_PNo_rel_imv_ex__22__6
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀w : set, w x(∀p2 : setprop, PNo_downc P w p2PNoLt w p2 x p))
Hypothesis H2 : PNoEq_ x (λw : setp wwx) p
Hypothesis H3 : PNo_downc P y q
Hypothesis H4 : ordinal y
Hypothesis H5 : y = x
Hypothesis H7 : PNoEq_ z (λw : setp wwx) q
Hypothesis H8 : ¬ (p zzx)
Hypothesis H9 : q z
Theorem. (Conj_PNo_rel_imv_ex__22__6)
ordinal zPNoLt x q (ordsucc x) (λw : setp wwx)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__22__6
Beginning of Section Conj_PNo_rel_imv_ex__29__1
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : ¬ (∃q : setprop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H2 : ordinal y
Hypothesis H3 : ordinal (ordsucc y)
Hypothesis H4 : binintersect y (ordsucc y) = y
Hypothesis H5 : binintersect (ordsucc y) y = y
Hypothesis H6 : (∀z : set, z y(∀q : setprop, PNo_downc P z qPNoLt z q y p))
Hypothesis H7 : (∀z : set, z y(∀q : setprop, PNo_upc Q z qPNoLt y p z q))
Hypothesis H8 : (∀q : setprop, PNo_rel_strict_imv P Q y qPNoEq_ y p q)
Hypothesis H9 : PNoEq_ y (λz : setp zzy) p
Hypothesis H10 : PNoLt (ordsucc y) (λz : setp zzy) y p
Hypothesis H11 : ¬ (PNo_rel_strict_imv P Q x (λz : setp zzy)PNo_rel_strict_imv P Q x (λz : setp zz = y))
Hypothesis H12 : (∀q : setprop, PNo_downc P y q¬ PNoEq_ y p q)
Theorem. (Conj_PNo_rel_imv_ex__29__1)
¬ PNo_rel_strict_imv P Q (ordsucc y) (λz : setp zzy)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__29__1
Beginning of Section Conj_PNo_rel_imv_ex__32__9
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ¬ (∃q : setprop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H2 : ¬ (∃z : set, z x(∃q : setprop, PNo_rel_strict_split_imv P Q z q))
Hypothesis H3 : y x
Hypothesis H4 : x = ordsucc y
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal (ordsucc y)
Hypothesis H7 : binintersect y (ordsucc y) = y
Hypothesis H8 : binintersect (ordsucc y) y = y
Hypothesis H10 : (∀z : set, z y(∀q : setprop, PNo_upc Q z qPNoLt y p z q))
Hypothesis H11 : (∀q : setprop, PNo_rel_strict_imv P Q y qPNoEq_ y p q)
Hypothesis H12 : PNoEq_ y (λz : setp zzy) p
Hypothesis H13 : PNoLt (ordsucc y) (λz : setp zzy) y p
Hypothesis H14 : PNoEq_ y p (λz : setp zz = y)
Hypothesis H15 : p yy = y
Theorem. (Conj_PNo_rel_imv_ex__32__9)
¬ PNoLt y p (ordsucc y) (λz : setp zz = y)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__32__9
Beginning of Section Conj_PNo_rel_imv_ex__32__11
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ¬ (∃q : setprop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H2 : ¬ (∃z : set, z x(∃q : setprop, PNo_rel_strict_split_imv P Q z q))
Hypothesis H3 : y x
Hypothesis H4 : x = ordsucc y
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal (ordsucc y)
Hypothesis H7 : binintersect y (ordsucc y) = y
Hypothesis H8 : binintersect (ordsucc y) y = y
Hypothesis H9 : (∀z : set, z y(∀q : setprop, PNo_downc P z qPNoLt z q y p))
Hypothesis H10 : (∀z : set, z y(∀q : setprop, PNo_upc Q z qPNoLt y p z q))
Hypothesis H12 : PNoEq_ y (λz : setp zzy) p
Hypothesis H13 : PNoLt (ordsucc y) (λz : setp zzy) y p
Hypothesis H14 : PNoEq_ y p (λz : setp zz = y)
Hypothesis H15 : p yy = y
Theorem. (Conj_PNo_rel_imv_ex__32__11)
¬ PNoLt y p (ordsucc y) (λz : setp zz = y)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__32__11
Beginning of Section Conj_PNo_rel_imv_ex__37__7
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ¬ (∃q : setprop, PNo_rel_strict_uniq_imv P Q x q)
Hypothesis H2 : ¬ (∃z : set, z x(∃q : setprop, PNo_rel_strict_split_imv P Q z q))
Hypothesis H3 : y x
Hypothesis H4 : x = ordsucc y
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal (ordsucc y)
Hypothesis H8 : binintersect (ordsucc y) y = y
Hypothesis H9 : (∀z : set, z y(∀q : setprop, PNo_downc P z qPNoLt z q y p))
Hypothesis H10 : (∀z : set, z y(∀q : setprop, PNo_upc Q z qPNoLt y p z q))
Hypothesis H11 : (∀q : setprop, PNo_rel_strict_imv P Q y qPNoEq_ y p q)
Theorem. (Conj_PNo_rel_imv_ex__37__7)
¬ PNoEq_ y (λz : setp zzy) p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__37__7
Beginning of Section Conj_PNo_rel_imv_ex__38__8
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ¬ (∃p : setprop, PNo_rel_strict_uniq_imv P Q x p)
Hypothesis H2 : ¬ (∃z : set, z x(∃p : setprop, PNo_rel_strict_split_imv P Q z p))
Hypothesis H3 : (∀z : set, z x(∃p : setprop, PNo_rel_strict_uniq_imv P Q z p))
Hypothesis H4 : y x
Hypothesis H5 : x = ordsucc y
Hypothesis H6 : ordinal y
Hypothesis H7 : ordinal (ordsucc y)
Theorem. (Conj_PNo_rel_imv_ex__38__8)
binintersect (ordsucc y) yy
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__38__8
Beginning of Section Conj_PNo_rel_imv_ex__39__1
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H2 : ¬ (∃z : set, z x(∃p : setprop, PNo_rel_strict_split_imv P Q z p))
Hypothesis H3 : (∀z : set, z x(∃p : setprop, PNo_rel_strict_uniq_imv P Q z p))
Hypothesis H4 : y x
Hypothesis H5 : x = ordsucc y
Hypothesis H6 : ordinal y
Hypothesis H7 : ordinal (ordsucc y)
Theorem. (Conj_PNo_rel_imv_ex__39__1)
binintersect y (ordsucc y)y
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__39__1
Beginning of Section Conj_PNo_rel_imv_ex__40__5
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Hypothesis H0 : PNoLt_pwise (PNo_downc P) (PNo_upc Q)
Hypothesis H1 : ordinal x
Hypothesis H2 : ¬ (∃p : setprop, PNo_rel_strict_uniq_imv P Q x p)
Hypothesis H3 : ¬ (∃z : set, z x(∃p : setprop, PNo_rel_strict_split_imv P Q z p))
Hypothesis H4 : (∀z : set, z x(∃p : setprop, PNo_rel_strict_uniq_imv P Q z p))
Hypothesis H6 : x = ordsucc y
Hypothesis H7 : ordinal y
Theorem. (Conj_PNo_rel_imv_ex__40__5)
¬ ordinal (ordsucc y)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__40__5
Beginning of Section Conj_PNo_rel_imv_ex__45__7
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : TransSet x
Hypothesis H1 : ordinal y
Hypothesis H2 : (∀z : set, z yz xPNo_rel_strict_uniq_imv P Q z (λw : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc w) qq w))
Hypothesis H3 : y x
Hypothesis H4 : PNo_rel_strict_imv P Q y p
Hypothesis H5 : PNo_rel_strict_upperbd P y p
Hypothesis H6 : PNo_rel_strict_lowerbd Q y p
Theorem. (Conj_PNo_rel_imv_ex__45__7)
PNoEq_ y (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z) pPNo_rel_strict_imv P Q y (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z)(∀q : setprop, PNo_rel_strict_imv P Q y qPNoEq_ y (λz : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc z) p2p2 z) q)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__45__7
Beginning of Section Conj_PNo_rel_imv_ex__49__2
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : PNo_upc Q y p
Hypothesis H1 : ordinal y
Hypothesis H3 : PNoEq_ y p (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z)
Hypothesis H4 : (∀q : setprop, PNo_rel_strict_imv P Q (ordsucc y) qq y)
Hypothesis H5 : PNo_rel_strict_lowerbd Q (ordsucc y) (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z)
Theorem. (Conj_PNo_rel_imv_ex__49__2)
PNoLt (ordsucc y) (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z) y pPNoLt x (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z) y p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__49__2
Beginning of Section Conj_PNo_rel_imv_ex__54__4
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Hypothesis H0 : (∀w : set, w xordsucc w x)
Hypothesis H1 : (∀w : set, w xPNo_rel_strict_uniq_imv P Q w (λu : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc u) qq u))
Hypothesis H2 : PNo_upc Q y p
Hypothesis H3 : ordinal y
Hypothesis H5 : z x
Hypothesis H6 : PNoEq_ z p (λw : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc w) qq w)
Hypothesis H7 : ¬ p z
Hypothesis H8 : (∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z)
Theorem. (Conj_PNo_rel_imv_ex__54__4)
ordinal zPNoLt x (λw : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc w) qq w) y p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__54__4
Beginning of Section Conj_PNo_rel_imv_ex__58__3
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_imv P Q (ordsucc x) p
Hypothesis H4 : p y
Hypothesis H5 : (∀q : setprop, PNo_rel_strict_imv P Q (ordsucc y) qPNoEq_ (ordsucc y) (λz : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc z) p2p2 z) q)
Theorem. (Conj_PNo_rel_imv_ex__58__3)
PNoEq_ (ordsucc y) (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z) p(∀q : setprop, PNo_rel_strict_imv P Q (ordsucc y) qq y)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__58__3
Beginning of Section Conj_PNo_rel_imv_ex__62__6
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable q : (setprop)
Variable z : set
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀w : set, w xordsucc w x)
Hypothesis H2 : (∀w : set, w xPNo_rel_strict_uniq_imv P Q w (λu : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc u) p2p2 u))
Hypothesis H3 : y x
Hypothesis H4 : ordinal y
Hypothesis H5 : ordinal (ordsucc y)
Hypothesis H7 : PNo_rel_strict_imv P Q (ordsucc y) q
Hypothesis H8 : z y
Hypothesis H9 : ¬ p z
Hypothesis H10 : q z
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__62__6
Beginning of Section Conj_PNo_rel_imv_ex__64__8
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable q : (setprop)
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀z : set, z xordsucc z x)
Hypothesis H2 : (∀z : set, z xPNo_rel_strict_uniq_imv P Q z (λw : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc w) p2p2 w))
Hypothesis H3 : y x
Hypothesis H4 : PNo_downc P y p
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal (ordsucc y)
Hypothesis H7 : PNoEq_ y (λz : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc z) p2p2 z) p
Hypothesis H9 : PNo_rel_strict_upperbd P (ordsucc y) q
Theorem. (Conj_PNo_rel_imv_ex__64__8)
PNoLt y p (ordsucc y) qq y
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__64__8
Beginning of Section Conj_PNo_rel_imv_ex__65__3
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_imv P Q (ordsucc x) p
Hypothesis H4 : p y
Hypothesis H5 : (∀q : setprop, PNo_rel_strict_imv P Q (ordsucc y) qPNoEq_ (ordsucc y) (λz : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc z) p2p2 z) q)
Theorem. (Conj_PNo_rel_imv_ex__65__3)
PNoEq_ (ordsucc y) (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z) p(∀q : setprop, PNo_rel_strict_imv P Q (ordsucc y) qq y)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__65__3
Beginning of Section Conj_PNo_rel_imv_ex__68__8
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Variable z : set
Hypothesis H0 : (∀w : set, w xordsucc w x)
Hypothesis H1 : (∀w : set, w xPNo_rel_strict_uniq_imv P Q w (λu : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc u) p2p2 u))
Hypothesis H2 : PNoEq_ y (λw : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc w) p2p2 w) p
Hypothesis H3 : ordinal y
Hypothesis H4 : ordinal (ordsucc y)
Hypothesis H5 : PNo_rel_strict_imv P Q (ordsucc y) q
Hypothesis H6 : z y
Hypothesis H7 : ¬ p z
Hypothesis H9 : z x
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__68__8
Beginning of Section Conj_PNo_rel_imv_ex__71__8
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀w : set, w xordsucc w x)
Hypothesis H2 : (∀w : set, w xPNo_rel_strict_uniq_imv P Q w (λu : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc u) p2p2 u))
Hypothesis H3 : PNo_downc P y p
Hypothesis H4 : ordinal y
Hypothesis H5 : z x
Hypothesis H6 : z y
Hypothesis H7 : PNoEq_ z (λw : set∀p2 : setprop, PNo_rel_strict_imv P Q (ordsucc w) p2p2 w) p
Hypothesis H9 : ordinal z
Hypothesis H10 : ordinal (ordsucc z)
Hypothesis H11 : PNo_rel_strict_imv P Q (ordsucc z) q
Hypothesis H12 : PNo_rel_strict_upperbd P (ordsucc z) q
Theorem. (Conj_PNo_rel_imv_ex__71__8)
PNoLt z p (ordsucc z) qq z
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__71__8
Beginning of Section Conj_PNo_rel_imv_ex__73__4
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀w : set, w xordsucc w x)
Hypothesis H2 : (∀w : set, w xPNo_rel_strict_uniq_imv P Q w (λu : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc u) qq u))
Hypothesis H3 : PNo_downc P y p
Hypothesis H5 : z x
Hypothesis H6 : z y
Hypothesis H7 : PNoEq_ z (λw : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc w) qq w) p
Hypothesis H8 : ¬ (∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z)
Hypothesis H9 : p z
Theorem. (Conj_PNo_rel_imv_ex__73__4)
ordinal zPNoLt y p x (λw : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc w) qq w)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__73__4
Beginning of Section Conj_PNo_rel_imv_ex__75__0
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H1 : TransSet x
Hypothesis H2 : (∀z : set, z xordsucc z x)
Hypothesis H3 : (∀z : set, z xPNo_rel_strict_uniq_imv P Q z (λw : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc w) qq w))
Hypothesis H4 : y x
Hypothesis H5 : PNo_downc P y p
Theorem. (Conj_PNo_rel_imv_ex__75__0)
ordinal yPNoLt y p x (λz : set∀q : setprop, PNo_rel_strict_imv P Q (ordsucc z) qq z)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__75__0
Beginning of Section Conj_PNo_rel_imv_ex__77__2
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H3 : (∀y : set, y x(∃p : setprop, PNo_rel_strict_uniq_imv P Q y p))
Hypothesis H4 : (∀y : set, y xordsucc y x)
Theorem. (Conj_PNo_rel_imv_ex__77__2)
¬ (∀y : set, ordinal yy xPNo_rel_strict_uniq_imv P Q y (λz : set∀p : setprop, PNo_rel_strict_imv P Q (ordsucc z) pp z))
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_imv_ex__77__2
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__3__3
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : PNo_lenbdd x P
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H4 : PNoEq_ x p (λz : setp zzx)
Hypothesis H5 : y ordsucc x
Hypothesis H6 : PNo_upc P y q
Theorem. (Conj_PNo_lenbdd_strict_imv_extend0__3__3)
ordinal yPNoLt (ordsucc x) (λz : setp zzx) y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend0__3__3
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__4__2
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H3 : y x
Hypothesis H4 : z y
Theorem. (Conj_PNo_lenbdd_strict_imv_extend0__4__2)
z xPNoEq_ z (λw : setp wwx) q¬ (p zzx)q zPNoLt x p y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend0__4__2
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__5__0
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_upperbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : setp zzx)
Hypothesis H5 : ordinal y
Hypothesis H6 : y x
Hypothesis H7 : y ordsucc x
Hypothesis H8 : PNo_downc P y q
Theorem. (Conj_PNo_lenbdd_strict_imv_extend0__5__0)
PNoLt y q x pPNoLt y q (ordsucc x) (λz : setp zzx)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend0__5__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__6__7
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_upperbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : setp zzx)
Hypothesis H5 : ordinal y
Hypothesis H6 : P y q
Hypothesis H8 : y ordsucc x
Theorem. (Conj_PNo_lenbdd_strict_imv_extend0__6__7)
PNo_downc P y qPNoLt y q (ordsucc x) (λz : setp zzx)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend0__6__7
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__9__0
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_lenbdd x P
Hypothesis H3 : PNo_rel_strict_upperbd P x p
Hypothesis H4 : ordinal (ordsucc x)
Hypothesis H5 : PNoEq_ x p (λz : setp zzx)
Hypothesis H6 : y ordsucc x
Hypothesis H7 : PNo_downc P y q
Theorem. (Conj_PNo_lenbdd_strict_imv_extend0__9__0)
ordinal yPNoLt y q (ordsucc x) (λz : setp zzx)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend0__9__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__10__0
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_lenbdd x P
Hypothesis H3 : PNo_lenbdd x Q
Hypothesis H4 : PNo_rel_strict_upperbd P x p
Hypothesis H5 : PNo_rel_strict_lowerbd Q x p
Hypothesis H6 : ordinal (ordsucc x)
Theorem. (Conj_PNo_lenbdd_strict_imv_extend0__10__0)
PNoEq_ x p (λy : setp yyx)PNo_rel_strict_upperbd P (ordsucc x) (λy : setp yyx)PNo_rel_strict_lowerbd Q (ordsucc x) (λy : setp yyx)
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend0__10__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__0
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : setp zz = x)
Hypothesis H5 : ordinal y
Hypothesis H6 : y x
Hypothesis H7 : y ordsucc x
Hypothesis H8 : PNo_upc P y q
Theorem. (Conj_PNo_lenbdd_strict_imv_extend1__2__0)
PNoLt x p y qPNoLt (ordsucc x) (λz : setp zz = x) y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__1
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : setp zz = x)
Hypothesis H5 : ordinal y
Hypothesis H6 : y x
Hypothesis H7 : y ordsucc x
Hypothesis H8 : PNo_upc P y q
Theorem. (Conj_PNo_lenbdd_strict_imv_extend1__2__1)
PNoLt x p y qPNoLt (ordsucc x) (λz : setp zz = x) y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__1
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__5
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : setp zz = x)
Hypothesis H6 : y x
Hypothesis H7 : y ordsucc x
Hypothesis H8 : PNo_upc P y q
Theorem. (Conj_PNo_lenbdd_strict_imv_extend1__2__5)
PNoLt x p y qPNoLt (ordsucc x) (λz : setp zz = x) y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__5
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__4__6
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_rel_strict_lowerbd P x p
Hypothesis H3 : ordinal (ordsucc x)
Hypothesis H4 : PNoEq_ x p (λz : setp zz = x)
Hypothesis H5 : ordinal y
Hypothesis H7 : y x
Theorem. (Conj_PNo_lenbdd_strict_imv_extend1__4__6)
y ordsucc xPNoLt (ordsucc x) (λz : setp zz = x) y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend1__4__6
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__7__6
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : PNo_lenbdd x P
Hypothesis H3 : PNo_rel_strict_lowerbd P x p
Hypothesis H4 : ordinal (ordsucc x)
Hypothesis H5 : PNoEq_ x p (λz : setp zz = x)
Hypothesis H7 : PNo_upc P y q
Theorem. (Conj_PNo_lenbdd_strict_imv_extend1__7__6)
ordinal yPNoLt (ordsucc x) (λz : setp zz = x) y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_lenbdd_strict_imv_extend1__7__6
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__1__5
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : z y
Hypothesis H2 : TransSet x
Hypothesis H3 : ordinal y
Hypothesis H4 : ordinal z
Hypothesis H6 : PNoLt z q x p
Hypothesis H7 : z x
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__1__5
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__3__9
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Variable w : set
Variable p2 : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ordsucc x
Hypothesis H2 : z y
Hypothesis H3 : TransSet x
Hypothesis H4 : ordinal y
Hypothesis H5 : ordinal z
Hypothesis H6 : Subq z y
Hypothesis H7 : ordinal w
Hypothesis H8 : PNoLe z q w p2
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__3__9
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__4__0
Variable P : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Variable w : set
Variable p2 : (setprop)
Hypothesis H1 : y ordsucc x
Hypothesis H2 : PNo_strict_upperbd P x p
Hypothesis H3 : z y
Hypothesis H4 : TransSet x
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal z
Hypothesis H7 : Subq z y
Hypothesis H8 : ordinal w
Hypothesis H9 : P w p2
Hypothesis H10 : PNoLe z q w p2
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__4__0
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__7__4
Variable P : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ordsucc x
Hypothesis H2 : PNo_strict_upperbd P x p
Hypothesis H3 : z y
Hypothesis H5 : TransSet x
Hypothesis H6 : ordinal y
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__7__4
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__9__2
Variable P : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ordsucc x
Hypothesis H3 : z y
Hypothesis H4 : PNo_downc P z q
Hypothesis H5 : TransSet x
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__9__2
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__4__8
Variable P : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Variable w : set
Variable p2 : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ordsucc x
Hypothesis H2 : PNo_strict_lowerbd P x p
Hypothesis H3 : z y
Hypothesis H4 : TransSet x
Hypothesis H5 : ordinal y
Hypothesis H6 : ordinal z
Hypothesis H7 : Subq z y
Hypothesis H9 : P w p2
Hypothesis H10 : PNoLe w p2 z q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__4__8
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__5__5
Variable P : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ordsucc x
Hypothesis H2 : PNo_strict_lowerbd P x p
Hypothesis H3 : z y
Hypothesis H4 : PNo_upc P z q
Hypothesis H6 : ordinal y
Hypothesis H7 : TransSet y
Hypothesis H8 : ordinal z
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__5__5
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__7__2
Variable P : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Variable z : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : y ordsucc x
Hypothesis H3 : z y
Hypothesis H4 : PNo_upc P z q
Hypothesis H5 : TransSet x
Hypothesis H6 : ordinal y
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__7__2
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__3__0
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Variable z : set
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_lowerbd P (ordsucc x) (λw : setp ww = x)
Hypothesis H3 : ordinal y
Hypothesis H4 : P y q
Hypothesis H5 : z ordsucc x
Hypothesis H6 : PNoEq_ z q p
Hypothesis H7 : p zz = x
Hypothesis H8 : ordinal z
Hypothesis H9 : PNoLt y q z q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_split_imv_imp_strict_imv__3__0
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__11__7
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x) (λw : setp wwx)
Hypothesis H3 : ordinal y
Hypothesis H4 : P y q
Hypothesis H5 : z ordsucc x
Hypothesis H6 : PNoEq_ z p q
Hypothesis H8 : ordinal z
Hypothesis H9 : PNoLt z q y q
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_split_imv_imp_strict_imv__11__7
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__14__6
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x) (λz : setp zzx)
Hypothesis H3 : ¬ (p xxx)
Hypothesis H4 : ordinal y
Hypothesis H5 : P y q
Theorem. (Conj_PNo_rel_split_imv_imp_strict_imv__14__6)
(∀z : set, z ordsucc xz yPNoEq_ z p qq zp zzx)PNoLt y q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_split_imv_imp_strict_imv__14__6
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__2
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H3 : ¬ (p xxx)
Hypothesis H4 : PNoLt (ordsucc x) (λz : setp zzx) x p
Hypothesis H5 : ordinal y
Hypothesis H6 : P y q
Hypothesis H7 : PNo_downc P y q
Theorem. (Conj_PNo_rel_split_imv_imp_strict_imv__15__2)
(y ordsucc xPNoLt y q x p)PNoLt y q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__2
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__6
Variable P : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable y : set
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x) (λz : setp zzx)
Hypothesis H3 : ¬ (p xxx)
Hypothesis H4 : PNoLt (ordsucc x) (λz : setp zzx) x p
Hypothesis H5 : ordinal y
Hypothesis H7 : PNo_downc P y q
Theorem. (Conj_PNo_rel_split_imv_imp_strict_imv__15__6)
(y ordsucc xPNoLt y q x p)PNoLt y q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__6
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__19__4
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal (ordsucc x)
Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x) (λy : setp yyx)
Hypothesis H3 : PNo_rel_strict_lowerbd Q (ordsucc x) (λy : setp yy = x)
Theorem. (Conj_PNo_rel_split_imv_imp_strict_imv__19__4)
p xx = xPNo_strict_upperbd P x pPNo_strict_lowerbd Q x p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_rel_split_imv_imp_strict_imv__19__4
Beginning of Section Conj_PNo_strict_imv_pred_eq__3__7
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable q : (setprop)
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : (∀z : set, z x(∀p2 : setprop, ¬ PNo_strict_imv P Q z p2))
Hypothesis H2 : PNo_strict_lowerbd Q x p
Hypothesis H3 : PNo_strict_upperbd P x q
Hypothesis H4 : ordinal y
Hypothesis H5 : y x
Hypothesis H6 : ¬ q y
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_imv_pred_eq__3__7
Beginning of Section Conj_PNo_strict_imv_pred_eq__6__3
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable p : (setprop)
Variable q : (setprop)
Hypothesis H0 : ordinal x
Hypothesis H1 : TransSet x
Hypothesis H2 : (∀y : set, y x(∀p2 : setprop, ¬ PNo_strict_imv P Q y p2))
Hypothesis H4 : PNo_strict_lowerbd Q x p
Hypothesis H5 : PNo_strict_upperbd P x q
Hypothesis H6 : PNo_strict_lowerbd Q x q
Theorem. (Conj_PNo_strict_imv_pred_eq__6__3)
(∀y : set, ordinal yy x(p yq y))(∀y : set, y x(p yq y))
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_strict_imv_pred_eq__6__3
Beginning of Section Conj_PNo_bd_In__1__3
Variable P : (set((setprop)prop))
Variable Q : (set((setprop)prop))
Variable x : set
Variable y : set
Variable p : (setprop)
Hypothesis H0 : (∀z : set, z PNo_bd P Q(∀q : setprop, ¬ PNo_strict_imv P Q z q))
Hypothesis H1 : y ordsucc x
Hypothesis H2 : PNo_strict_imv P Q y p
Proof:
The rest of the proof is missing.

End of Section Conj_PNo_bd_In__1__3
Beginning of Section Conj_SNoLtE__1__3
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo wSNoLev w binintersect (SNoLev x) (SNoLev y)SNoEq_ (SNoLev w) w xSNoEq_ (SNoLev w) w yx < ww < ynIn (SNoLev w) xSNoLev w yP)
Hypothesis H1 : z binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : setw x) (λw : setw y)
Hypothesis H4 : z y
Hypothesis H5 : z SNoLev x
Hypothesis H6 : z SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : setw x))
Hypothesis H8 : SNoLev (PSNo z (λw : setw x)) = z
Hypothesis H9 : SNoEq_ z (PSNo z (λw : setw x)) x
Theorem. (Conj_SNoLtE__1__3)
SNoEq_ z (PSNo z (λw : setw x)) yP
Proof:
The rest of the proof is missing.

End of Section Conj_SNoLtE__1__3
Beginning of Section Conj_SNoLtE__1__4
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo wSNoLev w binintersect (SNoLev x) (SNoLev y)SNoEq_ (SNoLev w) w xSNoEq_ (SNoLev w) w yx < ww < ynIn (SNoLev w) xSNoLev w yP)
Hypothesis H1 : z binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : setw x) (λw : setw y)
Hypothesis H3 : ¬ z x
Hypothesis H5 : z SNoLev x
Hypothesis H6 : z SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : setw x))
Hypothesis H8 : SNoLev (PSNo z (λw : setw x)) = z
Hypothesis H9 : SNoEq_ z (PSNo z (λw : setw x)) x
Theorem. (Conj_SNoLtE__1__4)
SNoEq_ z (PSNo z (λw : setw x)) yP
Proof:
The rest of the proof is missing.

End of Section Conj_SNoLtE__1__4
Beginning of Section Conj_SNoLtE__1__5
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo wSNoLev w binintersect (SNoLev x) (SNoLev y)SNoEq_ (SNoLev w) w xSNoEq_ (SNoLev w) w yx < ww < ynIn (SNoLev w) xSNoLev w yP)
Hypothesis H1 : z binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : setw x) (λw : setw y)
Hypothesis H3 : ¬ z x
Hypothesis H4 : z y
Hypothesis H6 : z SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : setw x))
Hypothesis H8 : SNoLev (PSNo z (λw : setw x)) = z
Hypothesis H9 : SNoEq_ z (PSNo z (λw : setw x)) x
Theorem. (Conj_SNoLtE__1__5)
SNoEq_ z (PSNo z (λw : setw x)) yP
Proof:
The rest of the proof is missing.

End of Section Conj_SNoLtE__1__5
Beginning of Section Conj_SNoLtE__1__8
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo wSNoLev w binintersect (SNoLev x) (SNoLev y)SNoEq_ (SNoLev w) w xSNoEq_ (SNoLev w) w yx < ww < ynIn (SNoLev w) xSNoLev w yP)
Hypothesis H1 : z binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : setw x) (λw : setw y)
Hypothesis H3 : ¬ z x
Hypothesis H4 : z y
Hypothesis H5 : z SNoLev x
Hypothesis H6 : z SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : setw x))
Hypothesis H9 : SNoEq_ z (PSNo z (λw : setw x)) x
Theorem. (Conj_SNoLtE__1__8)
SNoEq_ z (PSNo z (λw : setw x)) yP
Proof:
The rest of the proof is missing.

End of Section Conj_SNoLtE__1__8
Beginning of Section Conj_SNoLtE__1__9
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo wSNoLev w binintersect (SNoLev x) (SNoLev y)SNoEq_ (SNoLev w) w xSNoEq_ (SNoLev w) w yx < ww < ynIn (SNoLev w) xSNoLev w yP)
Hypothesis H1 : z binintersect (SNoLev x) (SNoLev y)
Hypothesis H2 : PNoEq_ z (λw : setw x) (λw : setw y)
Hypothesis H3 : ¬ z x
Hypothesis H4 : z y
Hypothesis H5 : z SNoLev x
Hypothesis H6 : z SNoLev y
Hypothesis H7 : SNo (PSNo z (λw : setw x))
Hypothesis H8 : SNoLev (PSNo z (λw : setw x)) = z
Theorem. (Conj_SNoLtE__1__9)
SNoEq_ z (PSNo z (λw : setw x)) yP
Proof:
The rest of the proof is missing.

End of Section Conj_SNoLtE__1__9
Beginning of Section Conj_SNoLtE__6__5
Variable x : set
Variable y : set
Variable P : prop
Variable z : set
Hypothesis H0 : (∀w : set, SNo wSNoLev w binintersect (SNoLev x) (SNoLev y)SNoEq_ (SNoLev w) w xSNoEq_ (SNoLev w) w yx < ww < ynIn (SNoLev w) xSNoLev w yP)
Hypothesis H1 : ordinal (SNoLev x)
Hypothesis H2 : z binintersect (SNoLev x) (SNoLev y)
Hypothesis H3 : PNoEq_ z (λw : setw x) (λw : setw y)
Hypothesis H4 : ¬ z x
Hypothesis H6 : z SNoLev x
Hypothesis H7 : z SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_SNoLtE__6__5
Beginning of Section Conj_SNoLtE__8__3
Variable x : set
Variable y : set
Variable P : prop
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : x < y
Hypothesis H4 : SNoLev x SNoLev ySNoEq_ (SNoLev x) x ySNoLev x yP
Hypothesis H5 : SNoLev y SNoLev xSNoEq_ (SNoLev y) x ynIn (SNoLev y) xP
Theorem. (Conj_SNoLtE__8__3)
ordinal (SNoLev x)P
Proof:
The rest of the proof is missing.

End of Section Conj_SNoLtE__8__3
Beginning of Section Conj_SNoCutP_SNoCut__1__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal (PNo_bd (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y))
Hypothesis H1 : PNo_strict_upperbd (λw : setλp : setpropordinal wPSNo w p x) (PNo_bd (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y)) (PNo_pred (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y))
Hypothesis H2 : z x
Hypothesis H3 : ordinal (SNoLev z)
Theorem. (Conj_SNoCutP_SNoCut__1__4)
ordinal (SNoLev z)PSNo (SNoLev z) (λw : setw z) xz < PSNo (PNo_bd (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y)) (PNo_pred (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y))
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__1__4
Beginning of Section Conj_SNoCutP_SNoCut__9__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H1 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H2 : (∀u : set, u PNo_bd (λv : setλp : setpropordinal vPSNo v p x) (λv : setλp : setpropordinal vPSNo v p y)(∀p : setprop, ¬ PNo_strict_imv (λv : setλq : setpropordinal vPSNo v q x) (λv : setλq : setpropordinal vPSNo v q y) u p))
Hypothesis H4 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (SNoLev z) (λu : setu z)
Hypothesis H5 : Subq (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (SNoLev z)
Hypothesis H6 : w PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)
Hypothesis H7 : PNoEq_ w (λu : setu z) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H8 : nIn w z
Hypothesis H9 : PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) w
Hypothesis H10 : ordinal w
Hypothesis H11 : ordinal (ordsucc w)
Hypothesis H12 : ¬ (w zww)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__9__3
Beginning of Section Conj_SNoCutP_SNoCut__9__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H1 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H2 : (∀u : set, u PNo_bd (λv : setλp : setpropordinal vPSNo v p x) (λv : setλp : setpropordinal vPSNo v p y)(∀p : setprop, ¬ PNo_strict_imv (λv : setλq : setpropordinal vPSNo v q x) (λv : setλq : setpropordinal vPSNo v q y) u p))
Hypothesis H3 : ordinal (SNoLev z)
Hypothesis H4 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (SNoLev z) (λu : setu z)
Hypothesis H5 : Subq (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (SNoLev z)
Hypothesis H6 : w PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)
Hypothesis H7 : PNoEq_ w (λu : setu z) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H8 : nIn w z
Hypothesis H9 : PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) w
Hypothesis H10 : ordinal w
Hypothesis H12 : ¬ (w zww)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__9__11
Beginning of Section Conj_SNoCutP_SNoCut__10__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H2 : (∀u : set, u PNo_bd (λv : setλp : setpropordinal vPSNo v p x) (λv : setλp : setpropordinal vPSNo v p y)(∀p : setprop, ¬ PNo_strict_imv (λv : setλq : setpropordinal vPSNo v q x) (λv : setλq : setpropordinal vPSNo v q y) u p))
Hypothesis H3 : ordinal (SNoLev z)
Hypothesis H4 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (SNoLev z) (λu : setu z)
Hypothesis H5 : Subq (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (SNoLev z)
Hypothesis H6 : w PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)
Hypothesis H7 : PNoEq_ w (λu : setu z) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H8 : nIn w z
Hypothesis H9 : PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) w
Hypothesis H10 : ordinal w
Hypothesis H11 : ordinal (ordsucc w)
Theorem. (Conj_SNoCutP_SNoCut__10__0)
¬ ¬ (w zww)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__10__0
Beginning of Section Conj_SNoCutP_SNoCut__12__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H1 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H2 : (∀u : set, u PNo_bd (λv : setλp : setpropordinal vPSNo v p x) (λv : setλp : setpropordinal vPSNo v p y)(∀p : setprop, ¬ PNo_strict_imv (λv : setλq : setpropordinal vPSNo v q x) (λv : setλq : setpropordinal vPSNo v q y) u p))
Hypothesis H3 : ordinal (SNoLev z)
Hypothesis H4 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (SNoLev z) (λu : setu z)
Hypothesis H5 : Subq (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (SNoLev z)
Hypothesis H6 : w PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)
Hypothesis H8 : nIn w z
Hypothesis H9 : PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) w
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__12__7
Beginning of Section Conj_SNoCutP_SNoCut__14__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H1 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H2 : (∀u : set, u PNo_bd (λv : setλp : setpropordinal vPSNo v p x) (λv : setλp : setpropordinal vPSNo v p y)(∀p : setprop, ¬ PNo_strict_imv (λv : setλq : setpropordinal vPSNo v q x) (λv : setλq : setpropordinal vPSNo v q y) u p))
Hypothesis H3 : ordinal (SNoLev z)
Hypothesis H4 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (SNoLev z) (λu : setu z)
Hypothesis H5 : Subq (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (SNoLev z)
Hypothesis H6 : w PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)
Hypothesis H8 : ¬ PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) w
Hypothesis H9 : w z
Hypothesis H10 : ordinal w
Hypothesis H11 : ordinal (ordsucc w)
Theorem. (Conj_SNoCutP_SNoCut__14__7)
¬ ¬ (w zww)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__14__7
Beginning of Section Conj_SNoCutP_SNoCut__15__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H1 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y))
Hypothesis H2 : (∀u : set, u PNo_bd (λv : setλp : setpropordinal vPSNo v p x) (λv : setλp : setpropordinal vPSNo v p y)(∀p : setprop, ¬ PNo_strict_imv (λv : setλq : setpropordinal vPSNo v q x) (λv : setλq : setpropordinal vPSNo v q y) u p))
Hypothesis H4 : PNo_strict_imv (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) (SNoLev z) (λu : setu z)
Hypothesis H5 : Subq (PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (SNoLev z)
Hypothesis H6 : w PNo_bd (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)
Hypothesis H7 : PNoEq_ w (PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y)) (λu : setu z)
Hypothesis H8 : ¬ PNo_pred (λu : setλp : setpropordinal uPSNo u p x) (λu : setλp : setpropordinal uPSNo u p y) w
Hypothesis H9 : w z
Hypothesis H10 : ordinal w
Theorem. (Conj_SNoCutP_SNoCut__15__3)
¬ ordinal (ordsucc w)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__15__3
Beginning of Section Conj_SNoCutP_SNoCut__20__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal (PNo_bd (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y))
Hypothesis H1 : PNo_strict_imv (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y) (PNo_bd (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y)) (PNo_pred (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y))
Hypothesis H3 : SNoLev (SNoCut x y) = PNo_bd (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y)
Hypothesis H4 : PNoEq_ (PNo_bd (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y)) (λw : setw SNoCut x y) (PNo_pred (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y))
Hypothesis H5 : SNo z
Hypothesis H6 : (∀w : set, w xw < z)
Hypothesis H7 : (∀w : set, w yz < w)
Theorem. (Conj_SNoCutP_SNoCut__20__2)
ordinal (SNoLev z)Subq (SNoLev (SNoCut x y)) (SNoLev z)PNoEq_ (SNoLev (SNoCut x y)) (λw : setw SNoCut x y) (λw : setw z)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__20__2
Beginning of Section Conj_SNoCutP_SNoCut__21__7
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z ySNo z)
Hypothesis H1 : ordinal (PNo_bd (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y))
Hypothesis H2 : PNo_strict_imv (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y) (PNo_bd (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y)) (PNo_pred (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y))
Hypothesis H3 : (∀z : set, z PNo_bd (λw : setλp : setpropordinal wPSNo w p x) (λw : setλp : setpropordinal wPSNo w p y)(∀p : setprop, ¬ PNo_strict_imv (λw : setλq : setpropordinal wPSNo w q x) (λw : setλq : setpropordinal wPSNo w q y) z p))
Hypothesis H4 : PNo_strict_lowerbd (λz : setλp : setpropordinal zPSNo z p y) (PNo_bd (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y)) (PNo_pred (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y))
Hypothesis H5 : SNo (SNoCut x y)
Hypothesis H6 : SNoLev (SNoCut x y) = PNo_bd (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y)
Hypothesis H8 : PNoEq_ (PNo_bd (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y)) (λz : setz SNoCut x y) (PNo_pred (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y))
Hypothesis H9 : (∀z : set, z xz < SNoCut x y)
Theorem. (Conj_SNoCutP_SNoCut__21__7)
(∀z : set, z ySNoCut x y < z)SNo (SNoCut x y)SNoLev (SNoCut x y) ordsucc (binunion (famunion x (λz : setordsucc (SNoLev z))) (famunion y (λz : setordsucc (SNoLev z))))(∀z : set, z xz < SNoCut x y)(∀z : set, z ySNoCut x y < z)(∀z : set, SNo z(∀w : set, w xw < z)(∀w : set, w yz < w)Subq (SNoLev (SNoCut x y)) (SNoLev z)PNoEq_ (SNoLev (SNoCut x y)) (λw : setw SNoCut x y) (λw : setw z))
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__21__7
Beginning of Section Conj_SNoCutP_SNoCut__29__1
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z xSNo z)
Hypothesis H2 : PNoLt_pwise (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y)
Hypothesis H3 : ordinal (binunion (famunion x (λz : setordsucc (SNoLev z))) (famunion y (λz : setordsucc (SNoLev z))))
Hypothesis H4 : PNo_lenbdd (binunion (famunion x (λz : setordsucc (SNoLev z))) (famunion y (λz : setordsucc (SNoLev z)))) (λz : setλp : setpropordinal zPSNo z p x)
Theorem. (Conj_SNoCutP_SNoCut__29__1)
PNo_lenbdd (binunion (famunion x (λz : setordsucc (SNoLev z))) (famunion y (λz : setordsucc (SNoLev z)))) (λz : setλp : setpropordinal zPSNo z p y)SNo (SNoCut x y)SNoLev (SNoCut x y) ordsucc (binunion (famunion x (λz : setordsucc (SNoLev z))) (famunion y (λz : setordsucc (SNoLev z))))(∀z : set, z xz < SNoCut x y)(∀z : set, z ySNoCut x y < z)(∀z : set, SNo z(∀w : set, w xw < z)(∀w : set, w yz < w)Subq (SNoLev (SNoCut x y)) (SNoLev z)PNoEq_ (SNoLev (SNoCut x y)) (λw : setw SNoCut x y) (λw : setw z))
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__29__1
Beginning of Section Conj_SNoCutP_SNoCut__34__2
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z xSNo z)
Hypothesis H1 : (∀z : set, z ySNo z)
Theorem. (Conj_SNoCutP_SNoCut__34__2)
PNoLt_pwise (λz : setλp : setpropordinal zPSNo z p x) (λz : setλp : setpropordinal zPSNo z p y)SNo (SNoCut x y)SNoLev (SNoCut x y) ordsucc (binunion (famunion x (λz : setordsucc (SNoLev z))) (famunion y (λz : setordsucc (SNoLev z))))(∀z : set, z xz < SNoCut x y)(∀z : set, z ySNoCut x y < z)(∀z : set, SNo z(∀w : set, w xw < z)(∀w : set, w yz < w)Subq (SNoLev (SNoCut x y)) (SNoLev z)PNoEq_ (SNoLev (SNoCut x y)) (λw : setw SNoCut x y) (λw : setw z))
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoCut__34__2
Beginning of Section Conj_SNoCutP_SNoL_SNoR__5__1
Variable x : set
Hypothesis H0 : SNo x
Theorem. (Conj_SNoCutP_SNoL_SNoR__5__1)
(∀y : set, y SNoL xSNo y)(∀y : set, y SNoL xSNo y)(∀y : set, y SNoR xSNo y)(∀y : set, y SNoL x(∀z : set, z SNoR xy < z))
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCutP_SNoL_SNoR__5__1
Beginning of Section Conj_SNo_eta__5__1
Variable x : set
Hypothesis H0 : SNo x
Theorem. (Conj_SNo_eta__5__1)
SNoCutP (SNoL x) (SNoR x)x = SNoCut (SNoL x) (SNoR x)
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_eta__5__1
Beginning of Section Conj_SNoCut_Le__3__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v ySNo v)
Hypothesis H1 : SNo (SNoCut x y)
Hypothesis H2 : (∀v : set, v ySNoCut x y < v)
Hypothesis H3 : (∀v : set, SNo v(∀x2 : set, x2 xx2 < v)(∀x2 : set, x2 yv < x2)Subq (SNoLev (SNoCut x y)) (SNoLev v)SNoEq_ (SNoLev (SNoCut x y)) (SNoCut x y) v)
Hypothesis H4 : SNo u
Hypothesis H6 : u < SNoCut x y
Hypothesis H7 : (∀v : set, v xv < u)
Theorem. (Conj_SNoCut_Le__3__5)
¬ (∀v : set, v yu < v)
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCut_Le__3__5
Beginning of Section Conj_SNoCut_ext__2__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNoCutP x y
Hypothesis H1 : SNoCutP z w
Hypothesis H2 : (∀u : set, u xu < SNoCut z w)
Hypothesis H4 : (∀u : set, u zu < SNoCut x y)
Hypothesis H5 : (∀u : set, u wSNoCut x y < u)
Theorem. (Conj_SNoCut_ext__2__3)
SNo (SNoCut x y)SNoCut x y = SNoCut z w
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCut_ext__2__3
Beginning of Section Conj_SNoCut_ext__2__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNoCutP x y
Hypothesis H1 : SNoCutP z w
Hypothesis H2 : (∀u : set, u xu < SNoCut z w)
Hypothesis H3 : (∀u : set, u ySNoCut z w < u)
Hypothesis H4 : (∀u : set, u zu < SNoCut x y)
Theorem. (Conj_SNoCut_ext__2__5)
SNo (SNoCut x y)SNoCut x y = SNoCut z w
Proof:
The rest of the proof is missing.

End of Section Conj_SNoCut_ext__2__5
Beginning of Section Conj_ordinal_SNoR__1__0
Variable x : set
Hypothesis H1 : SNo x
Theorem. (Conj_ordinal_SNoR__1__0)
SNoLev x = xSNoR x = Empty
Proof:
The rest of the proof is missing.

End of Section Conj_ordinal_SNoR__1__0
Beginning of Section Conj_ordinal_In_SNoLt__1__0
Variable x : set
Variable y : set
Hypothesis H1 : y x
Hypothesis H2 : ordinal y
Hypothesis H3 : SNo y
Proof:
The rest of the proof is missing.

End of Section Conj_ordinal_In_SNoLt__1__0
Beginning of Section Conj_ordinal_SNoLev_max_2__5__0
Variable x : set
Variable y : set
Hypothesis H1 : TransSet x
Hypothesis H2 : SNo y
Hypothesis H3 : SNo x
Hypothesis H4 : SNoLev x = x
Hypothesis H5 : SNoLev y = x
Hypothesis H6 : ¬ yx
Theorem. (Conj_ordinal_SNoLev_max_2__5__0)
¬ (∀z : set, ordinal zz xz y)
Proof:
The rest of the proof is missing.

End of Section Conj_ordinal_SNoLev_max_2__5__0
Beginning of Section Conj_SNoL_1__1__0
Variable x : set
Hypothesis H1 : SNoLev x ordsucc Empty
Theorem. (Conj_SNoL_1__1__0)
Empty = xx ordsucc Empty
Proof:
The rest of the proof is missing.

End of Section Conj_SNoL_1__1__0
Beginning of Section Conj_SNo__eps___3__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : nat_p x
Hypothesis H1 : y ordsucc x
Hypothesis H2 : nat_p z
Theorem. (Conj_SNo__eps___3__3)
nat_p yexactly1of2 (SetAdjoin y (Sing (ordsucc Empty)) eps_ x) (y eps_ x)
Proof:
The rest of the proof is missing.

End of Section Conj_SNo__eps___3__3
Beginning of Section Conj_SNo_pos_eps_Lt__1__3
Variable x : set
Variable y : set
Hypothesis H0 : Empty < y
Hypothesis H1 : ordinal (SNoLev y)
Hypothesis H2 : SNo y
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_pos_eps_Lt__1__3
Beginning of Section Conj_SNo_pos_eps_Lt__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < y
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNoLev z eps_ x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_pos_eps_Lt__2__3
Beginning of Section Conj_SNo_pos_eps_Le__1__3
Variable x : set
Variable y : set
Hypothesis H0 : Empty < y
Hypothesis H1 : ordinal (SNoLev y)
Hypothesis H2 : SNo y
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_pos_eps_Le__1__3
Beginning of Section Conj_SNo_pos_eps_Le__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : Empty < y
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNoLev z eps_ x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_pos_eps_Le__2__3
Beginning of Section Conj_eps_SNoCut__5__2
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z Repl x eps_SNo z)
Hypothesis H1 : SNo (SNoCut (Sing Empty) (Repl x eps_))
Hypothesis H3 : (∀z : set, SNo z(∀w : set, w Sing Emptyw < z)(∀w : set, w Repl x eps_z < w)Subq (SNoLev (SNoCut (Sing Empty) (Repl x eps_))) (SNoLev z)SNoEq_ (SNoLev (SNoCut (Sing Empty) (Repl x eps_))) (SNoCut (Sing Empty) (Repl x eps_)) z)
Hypothesis H4 : SNo y
Hypothesis H5 : SNoLev y binintersect (SNoLev (eps_ x)) (SNoLev (SNoCut (Sing Empty) (Repl x eps_)))
Hypothesis H6 : y < SNoCut (Sing Empty) (Repl x eps_)
Hypothesis H7 : (∀z : set, z Sing Emptyz < y)
Theorem. (Conj_eps_SNoCut__5__2)
¬ (∀z : set, z Repl x eps_y < z)
Proof:
The rest of the proof is missing.

End of Section Conj_eps_SNoCut__5__2
Beginning of Section Conj_eps_SNoCut__6__5
Variable x : set
Variable y : set
Hypothesis H0 : x ω
Hypothesis H1 : (∀z : set, z Repl x eps_SNo z)
Hypothesis H2 : SNo (SNoCut (Sing Empty) (Repl x eps_))
Hypothesis H3 : (∀z : set, z Repl x eps_SNoCut (Sing Empty) (Repl x eps_) < z)
Hypothesis H4 : (∀z : set, SNo z(∀w : set, w Sing Emptyw < z)(∀w : set, w Repl x eps_z < w)Subq (SNoLev (SNoCut (Sing Empty) (Repl x eps_))) (SNoLev z)SNoEq_ (SNoLev (SNoCut (Sing Empty) (Repl x eps_))) (SNoCut (Sing Empty) (Repl x eps_)) z)
Hypothesis H6 : SNoLev y binintersect (SNoLev (eps_ x)) (SNoLev (SNoCut (Sing Empty) (Repl x eps_)))
Hypothesis H7 : eps_ x < y
Hypothesis H8 : y < SNoCut (Sing Empty) (Repl x eps_)
Theorem. (Conj_eps_SNoCut__6__5)
¬ (∀z : set, z Sing Emptyz < y)
Proof:
The rest of the proof is missing.

End of Section Conj_eps_SNoCut__6__5
Beginning of Section Conj_SNo_etaE__2__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : y < x
Hypothesis H2 : SNo_ z y
Hypothesis H3 : ordinal z
Hypothesis H4 : SNo y
Theorem. (Conj_SNo_etaE__2__1)
SNoLev y = zSNo ySNoLev y SNoLev xy < x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_etaE__2__1
Beginning of Section Conj_SNo_etaE__3__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : y < x
Hypothesis H1 : z SNoLev x
Hypothesis H3 : ordinal z
Theorem. (Conj_SNo_etaE__3__2)
SNo ySNo ySNoLev y SNoLev xy < x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_etaE__3__2
Beginning of Section Conj_SNo_etaE__5__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : z SNoLev x
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = z
Theorem. (Conj_SNo_etaE__5__0)
SNoLev y SNoLev xSNo ySNoLev y SNoLev xx < y
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_etaE__5__0
Beginning of Section Conj_SNo_etaE__5__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : x < y
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y = z
Theorem. (Conj_SNo_etaE__5__1)
SNoLev y SNoLev xSNo ySNoLev y SNoLev xx < y
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_etaE__5__1
Beginning of Section Conj_SNo_etaE__7__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : z SNoLev x
Hypothesis H2 : SNo_ z y
Hypothesis H3 : ordinal z
Theorem. (Conj_SNo_etaE__7__0)
SNo ySNo ySNoLev y SNoLev xx < y
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_etaE__7__0
Beginning of Section Conj_SNo_etaE__12__1
Variable x : set
Variable P : prop
Hypothesis H0 : SNo x
Theorem. (Conj_SNo_etaE__12__1)
ordinal (SNoLev x)P
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_etaE__12__1
Beginning of Section Conj_SNo_rec2_eq_1__1__2
Variable P : (set(set((set(setset))set)))
Variable x : set
Variable g : (set(setset))
Variable y : set
Variable f : (setset)
Variable f2 : (setset)
Hypothesis H0 : (∀z : set, SNo z(∀w : set, SNo w(∀h : setsetset, ∀g2 : setsetset, (∀u : set, u SNoS_ (SNoLev z)(∀v : set, SNo vh u v = g2 u v))(∀u : set, u SNoS_ (SNoLev w)h z u = g2 z u)P z w h = P z w g2)))
Hypothesis H1 : SNo x
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev y)f z = f2 z)
Theorem. (Conj_SNo_rec2_eq_1__1__2)
(∀z : set, z SNoS_ (SNoLev x)g z = g z)P x y (λz : setλw : setIf_i (z = x) (f w) (g z w)) = P x y (λz : setλw : setIf_i (z = x) (f2 w) (g z w))
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_rec2_eq_1__1__2
Beginning of Section Conj_SNo_rec2_eq__1__1
Variable P : (set(set((set(setset))set)))
Variable x : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable y : set
Hypothesis H0 : (∀z : set, SNo z(∀w : set, SNo w(∀g2 : setsetset, ∀h2 : setsetset, (∀u : set, u SNoS_ (SNoLev z)(∀v : set, SNo vg2 u v = h2 u v))(∀u : set, u SNoS_ (SNoLev w)g2 z u = h2 z u)P z w g2 = P z w h2)))
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev x)g z = h z)
Hypothesis H3 : SNo y
Theorem. (Conj_SNo_rec2_eq__1__1)
(∀z : set, ordinal z(∀w : set, w SNoS_ zSNo_rec_i (λu : setλf : setsetP x u (λv : setλx2 : setIf_i (v = x) (f x2) (g v x2))) w = SNo_rec_i (λu : setλf : setsetP x u (λv : setλx2 : setIf_i (v = x) (f x2) (h v x2))) w))SNo_rec_i (λz : setλf : setsetP x z (λw : setλu : setIf_i (w = x) (f u) (g w u))) y = SNo_rec_i (λz : setλf : setsetP x z (λw : setλu : setIf_i (w = x) (f u) (h w u))) y
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_rec2_eq__1__1
Beginning of Section Conj_SNo_rec2_eq__4__1
Variable P : (set(set((set(setset))set)))
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, SNo z(∀w : set, SNo w(∀g : setsetset, ∀h : setsetset, (∀u : set, u SNoS_ (SNoLev z)(∀v : set, SNo vg u v = h u v))(∀u : set, u SNoS_ (SNoLev w)g z u = h z u)P z w g = P z w h)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀z : set, SNo z(∀g : setsetset, ∀h : setsetset, (∀w : set, w SNoS_ (SNoLev z)g w = h w)(λw : setIf_i (SNo w) (SNo_rec_i (λu : setλf : setsetP z u (λv : setλx2 : setIf_i (v = z) (f x2) (g v x2))) w) Empty) = (λw : setIf_i (SNo w) (SNo_rec_i (λu : setλf : setsetP z u (λv : setλx2 : setIf_i (v = z) (f x2) (h v x2))) w) Empty)))
Hypothesis H4 : (∀z : set, z SNoS_ (SNoLev x)(∀w : set, SNo wIf_i (z = x) (SNo_rec_i (λu : setλf : setsetP x u (λv : setλx2 : setIf_i (v = x) (f x2) (SNo_rec_ii (λy2 : setλg : setsetsetλz2 : setIf_i (SNo z2) (SNo_rec_i (λw2 : setλf2 : setsetP y2 w2 (λu2 : setλv2 : setIf_i (u2 = y2) (f2 v2) (g u2 v2))) z2) Empty) v x2))) w) (SNo_rec_ii (λu : setλg : setsetsetλv : setIf_i (SNo v) (SNo_rec_i (λx2 : setλf : setsetP u x2 (λy2 : setλz2 : setIf_i (y2 = u) (f z2) (g y2 z2))) v) Empty) z w) = SNo_rec_ii (λu : setλg : setsetsetλv : setIf_i (SNo v) (SNo_rec_i (λx2 : setλf : setsetP u x2 (λy2 : setλz2 : setIf_i (y2 = u) (f z2) (g y2 z2))) v) Empty) z w))
Theorem. (Conj_SNo_rec2_eq__4__1)
(∀z : set, z SNoS_ (SNoLev y)If_i (x = x) (SNo_rec_i (λw : setλf : setsetP x w (λu : setλv : setIf_i (u = x) (f v) (SNo_rec_ii (λx2 : setλg : setsetsetλy2 : setIf_i (SNo y2) (SNo_rec_i (λz2 : setλf2 : setsetP x2 z2 (λw2 : setλu2 : setIf_i (w2 = x2) (f2 u2) (g w2 u2))) y2) Empty) u v))) z) (SNo_rec_ii (λw : setλg : setsetsetλu : setIf_i (SNo u) (SNo_rec_i (λv : setλf : setsetP w v (λx2 : setλy2 : setIf_i (x2 = w) (f y2) (g x2 y2))) u) Empty) x z) = SNo_rec_ii (λw : setλg : setsetsetλu : setIf_i (SNo u) (SNo_rec_i (λv : setλf : setsetP w v (λx2 : setλy2 : setIf_i (x2 = w) (f y2) (g x2 y2))) u) Empty) x z)P x y (λz : setλw : setIf_i (z = x) (SNo_rec_i (λu : setλf : setsetP x u (λv : setλx2 : setIf_i (v = x) (f x2) (SNo_rec_ii (λy2 : setλg : setsetsetλz2 : setIf_i (SNo z2) (SNo_rec_i (λw2 : setλf2 : setsetP y2 w2 (λu2 : setλv2 : setIf_i (u2 = y2) (f2 v2) (g u2 v2))) z2) Empty) v x2))) w) (SNo_rec_ii (λu : setλg : setsetsetλv : setIf_i (SNo v) (SNo_rec_i (λx2 : setλf : setsetP u x2 (λy2 : setλz2 : setIf_i (y2 = u) (f z2) (g y2 z2))) v) Empty) z w)) = P x y (SNo_rec_ii (λz : setλg : setsetsetλw : setIf_i (SNo w) (SNo_rec_i (λu : setλf : setsetP z u (λv : setλx2 : setIf_i (v = z) (f x2) (g v x2))) w) Empty))
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_rec2_eq__4__1
Beginning of Section Conj_SNo_ordinal_ind__2__1
Variable p : (setprop)
Variable x : set
Hypothesis H0 : (∀y : set, ordinal y(∀z : set, z SNoS_ yp z))
Hypothesis H2 : ordinal (SNoLev x)
Theorem. (Conj_SNo_ordinal_ind__2__1)
ordinal (ordsucc (SNoLev x))p x
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_ordinal_ind__2__1
Beginning of Section Conj_SNo_ordinal_ind2__5__1
Variable r : (set(setprop))
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, ordinal z(∀w : set, ordinal w(∀u : set, u SNoS_ z(∀v : set, v SNoS_ wr u v))))
Hypothesis H2 : SNo y
Hypothesis H3 : ordinal (SNoLev x)
Theorem. (Conj_SNo_ordinal_ind2__5__1)
ordinal (ordsucc (SNoLev x))r x y
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_ordinal_ind2__5__1
Beginning of Section Conj_SNo_ordinal_ind3__6__1
Variable P : (set(set(setprop)))
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : (∀w : set, ordinal w(∀u : set, ordinal u(∀v : set, ordinal v(∀x2 : set, x2 SNoS_ w(∀y2 : set, y2 SNoS_ u(∀z2 : set, z2 SNoS_ vP x2 y2 z2))))))
Hypothesis H2 : SNo z
Hypothesis H3 : ordinal (ordsucc (SNoLev x))
Hypothesis H4 : x SNoS_ (ordsucc (SNoLev x))
Theorem. (Conj_SNo_ordinal_ind3__6__1)
ordinal (SNoLev y)P x y z
Proof:
The rest of the proof is missing.

End of Section Conj_SNo_ordinal_ind3__6__1
Beginning of Section Conj_restr_SNo__1__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : y SNoLev x
Theorem. (Conj_restr_SNo__1__2)
SNo_ y (binintersect x (SNoElts_ y))SNo (binintersect x (SNoElts_ y))
Proof:
The rest of the proof is missing.

End of Section Conj_restr_SNo__1__2
Beginning of Section Conj_minus_SNo_prop1__1__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀z : set, z SNoS_ (SNoLev x)SNo (- z)(∀w : set, w SNoL z- z < - w)(∀w : set, w SNoR z- w < - z)SNoCutP (Repl (SNoR z) minus_SNo) (Repl (SNoL z) minus_SNo))
Hypothesis H3 : SNoLev y SNoLev x
Theorem. (Conj_minus_SNo_prop1__1__2)
y SNoS_ (SNoLev x)SNo (- y)(∀z : set, z SNoL y- y < - z)(∀z : set, z SNoR y- z < - y)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_prop1__1__2
Beginning of Section Conj_minus_SNo_prop1__2__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀z : set, z SNoS_ (SNoLev x)SNo (- z)(∀w : set, w SNoL z- z < - w)(∀w : set, w SNoR z- w < - z)SNoCutP (Repl (SNoR z) minus_SNo) (Repl (SNoL z) minus_SNo))
Hypothesis H3 : SNoLev y SNoLev x
Theorem. (Conj_minus_SNo_prop1__2__2)
y SNoS_ (SNoLev x)SNo (- y)(∀z : set, z SNoL y- y < - z)(∀z : set, z SNoR y- z < - y)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_prop1__2__2
Beginning of Section Conj_minus_SNo_prop1__4__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)SNo (- u)(∀v : set, v SNoL u- u < - v)(∀v : set, v SNoR u- v < - u)SNoCutP (Repl (SNoR u) minus_SNo) (Repl (SNoL u) minus_SNo))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y SNoLev x
Hypothesis H4 : SNo z
Hypothesis H6 : (∀u : set, u SNoR z- u < - z)
Hypothesis H7 : SNo (- y)
Hypothesis H8 : (∀u : set, u SNoL y- y < - u)
Hypothesis H9 : SNo w
Hypothesis H10 : z < w
Hypothesis H11 : w < y
Hypothesis H12 : SNoLev w SNoLev z
Hypothesis H13 : SNoLev w SNoLev y
Theorem. (Conj_minus_SNo_prop1__4__5)
w SNoS_ (SNoLev x)- y < - z
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_prop1__4__5
Beginning of Section Conj_minus_SNo_prop1__5__7
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)SNo (- w)(∀u : set, u SNoL w- w < - u)(∀u : set, u SNoR w- u < - w)SNoCutP (Repl (SNoR w) minus_SNo) (Repl (SNoL w) minus_SNo))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y SNoLev x
Hypothesis H4 : x < y
Hypothesis H5 : SNo z
Hypothesis H6 : z < x
Hypothesis H8 : (∀w : set, w SNoR z- w < - z)
Hypothesis H9 : SNo (- y)
Hypothesis H10 : (∀w : set, w SNoL y- y < - w)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_prop1__5__7
Beginning of Section Conj_minus_SNo_prop1__5__9
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)SNo (- w)(∀u : set, u SNoL w- w < - u)(∀u : set, u SNoR w- u < - w)SNoCutP (Repl (SNoR w) minus_SNo) (Repl (SNoL w) minus_SNo))
Hypothesis H2 : SNo y
Hypothesis H3 : SNoLev y SNoLev x
Hypothesis H4 : x < y
Hypothesis H5 : SNo z
Hypothesis H6 : z < x
Hypothesis H7 : SNo (- z)
Hypothesis H8 : (∀w : set, w SNoR z- w < - z)
Hypothesis H10 : (∀w : set, w SNoL y- y < - w)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_prop1__5__9
Beginning of Section Conj_minus_SNo_prop1__9__3
Variable x : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y : set, y SNoS_ (SNoLev x)SNo (- y)(∀z : set, z SNoL y- y < - z)(∀z : set, z SNoR y- z < - y)SNoCutP (Repl (SNoR y) minus_SNo) (Repl (SNoL y) minus_SNo))
Hypothesis H2 : (∀y : set, y SNoL xSNo (- y)(∀z : set, z SNoL y- y < - z)(∀z : set, z SNoR y- z < - y))
Theorem. (Conj_minus_SNo_prop1__9__3)
SNoCutP (Repl (SNoR x) minus_SNo) (Repl (SNoL x) minus_SNo)SNo (- x)(∀y : set, y SNoL x- x < - y)(∀y : set, y SNoR x- y < - x)SNoCutP (Repl (SNoR x) minus_SNo) (Repl (SNoL x) minus_SNo)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_prop1__9__3
Beginning of Section Conj_minus_SNo_prop1__11__0
Variable x : set
Hypothesis H1 : (∀y : set, y SNoS_ (SNoLev x)SNo (- y)(∀z : set, z SNoL y- y < - z)(∀z : set, z SNoR y- z < - y)SNoCutP (Repl (SNoR y) minus_SNo) (Repl (SNoL y) minus_SNo))
Theorem. (Conj_minus_SNo_prop1__11__0)
(∀y : set, y SNoL xSNo (- y)(∀z : set, z SNoL y- y < - z)(∀z : set, z SNoR y- z < - y))SNo (- x)(∀y : set, y SNoL x- x < - y)(∀y : set, y SNoR x- y < - x)SNoCutP (Repl (SNoR x) minus_SNo) (Repl (SNoL x) minus_SNo)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_prop1__11__0
Beginning of Section Conj_minus_SNo_Lev_lem1__1__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : y ordsucc (SNoLev z)
Hypothesis H1 : z = - w
Hypothesis H3 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H4 : Subq (SNoLev x) y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__1__2
Beginning of Section Conj_minus_SNo_Lev_lem1__3__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H5 : ordinal (SNoLev (- w))
Theorem. (Conj_minus_SNo_Lev_lem1__3__1)
ordinal (ordsucc (SNoLev z))y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__3__1
Beginning of Section Conj_minus_SNo_Lev_lem1__3__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H5 : ordinal (SNoLev (- w))
Theorem. (Conj_minus_SNo_Lev_lem1__3__3)
ordinal (ordsucc (SNoLev z))y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__3__3
Beginning of Section Conj_minus_SNo_Lev_lem1__3__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Theorem. (Conj_minus_SNo_Lev_lem1__3__5)
ordinal (ordsucc (SNoLev z))y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__3__5
Beginning of Section Conj_minus_SNo_Lev_lem1__4__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Theorem. (Conj_minus_SNo_Lev_lem1__4__5)
ordinal (SNoLev (- w))y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__4__5
Beginning of Section Conj_minus_SNo_Lev_lem1__6__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w SNoLev x
Hypothesis H5 : Subq (SNoLev (- w)) (SNoLev w)
Theorem. (Conj_minus_SNo_Lev_lem1__6__0)
ordinal (SNoLev w)y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__6__0
Beginning of Section Conj_minus_SNo_Lev_lem1__6__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNo w
Hypothesis H5 : Subq (SNoLev (- w)) (SNoLev w)
Theorem. (Conj_minus_SNo_Lev_lem1__6__4)
ordinal (SNoLev w)y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__6__4
Beginning of Section Conj_minus_SNo_Lev_lem1__7__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v x(∀x2 : set, x2 SNoS_ vSubq (SNoLev (- x2)) (SNoLev x2)))
Hypothesis H2 : z ordsucc (SNoLev w)
Hypothesis H3 : w = - u
Hypothesis H4 : SNo u
Hypothesis H5 : SNoLev u SNoLev y
Hypothesis H6 : u SNoS_ (ordsucc (SNoLev u))
Hypothesis H7 : ordsucc (SNoLev u) x
Theorem. (Conj_minus_SNo_Lev_lem1__7__1)
Subq (SNoLev (- u)) (SNoLev u)z SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__7__1
Beginning of Section Conj_minus_SNo_Lev_lem1__10__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : y ordsucc (SNoLev z)
Hypothesis H1 : z = - w
Hypothesis H3 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H4 : Subq (SNoLev x) y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__10__2
Beginning of Section Conj_minus_SNo_Lev_lem1__12__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H5 : ordinal (SNoLev (- w))
Theorem. (Conj_minus_SNo_Lev_lem1__12__1)
ordinal (ordsucc (SNoLev z))y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__12__1
Beginning of Section Conj_minus_SNo_Lev_lem1__12__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Hypothesis H5 : ordinal (SNoLev (- w))
Theorem. (Conj_minus_SNo_Lev_lem1__12__3)
ordinal (ordsucc (SNoLev z))y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__12__3
Beginning of Section Conj_minus_SNo_Lev_lem1__12__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Theorem. (Conj_minus_SNo_Lev_lem1__12__5)
ordinal (ordsucc (SNoLev z))y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__12__5
Beginning of Section Conj_minus_SNo_Lev_lem1__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNoLev w SNoLev x
Hypothesis H4 : Subq (SNoLev (- w)) (SNoLev w)
Theorem. (Conj_minus_SNo_Lev_lem1__13__5)
ordinal (SNoLev (- w))y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__13__5
Beginning of Section Conj_minus_SNo_Lev_lem1__15__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w SNoLev x
Hypothesis H5 : Subq (SNoLev (- w)) (SNoLev w)
Theorem. (Conj_minus_SNo_Lev_lem1__15__0)
ordinal (SNoLev w)y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__15__0
Beginning of Section Conj_minus_SNo_Lev_lem1__15__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : ordinal (SNoLev x)
Hypothesis H1 : y ordsucc (SNoLev z)
Hypothesis H2 : z = - w
Hypothesis H3 : SNo w
Hypothesis H5 : Subq (SNoLev (- w)) (SNoLev w)
Theorem. (Conj_minus_SNo_Lev_lem1__15__4)
ordinal (SNoLev w)y SNoLev x
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__15__4
Beginning of Section Conj_minus_SNo_Lev_lem1__16__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, v x(∀x2 : set, x2 SNoS_ vSubq (SNoLev (- x2)) (SNoLev x2)))
Hypothesis H2 : z ordsucc (SNoLev w)
Hypothesis H3 : w = - u
Hypothesis H4 : SNo u
Hypothesis H5 : SNoLev u SNoLev y
Hypothesis H6 : u SNoS_ (ordsucc (SNoLev u))
Hypothesis H7 : ordsucc (SNoLev u) x
Theorem. (Conj_minus_SNo_Lev_lem1__16__1)
Subq (SNoLev (- u)) (SNoLev u)z SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__16__1
Beginning of Section Conj_minus_SNo_Lev_lem1__22__2
Variable x : set
Variable y : set
Hypothesis H0 : TransSet x
Hypothesis H1 : (∀z : set, z x(∀w : set, w SNoS_ zSubq (SNoLev (- w)) (SNoLev w)))
Hypothesis H3 : ordinal (SNoLev y)
Hypothesis H4 : SNo y
Theorem. (Conj_minus_SNo_Lev_lem1__22__2)
SNoCutP (Repl (SNoR y) minus_SNo) (Repl (SNoL y) minus_SNo)Subq (SNoLev (- y)) (SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_Lev_lem1__22__2
Beginning of Section Conj_minus_SNo_invol__5__6
Variable x : set
Variable y : set
Hypothesis H0 : SNoCutP x y
Hypothesis H1 : (∀z : set, z x- (- z) = z)
Hypothesis H2 : (∀z : set, z y- (- z) = z)
Hypothesis H3 : (∀z : set, z xSNo z)
Hypothesis H4 : (∀z : set, z ySNo z)
Hypothesis H5 : SNo (SNoCut x y)
Hypothesis H7 : SNo (- (- (SNoCut x y)))
Theorem. (Conj_minus_SNo_invol__5__6)
Subq (SNoLev (SNoCut x y)) (SNoLev (- (- (SNoCut x y))))SNoEq_ (SNoLev (SNoCut x y)) (SNoCut x y) (- (- (SNoCut x y)))- (- (SNoCut x y)) = SNoCut x y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_invol__5__6
Beginning of Section Conj_minus_SNo_invol__8__0
Variable x : set
Variable y : set
Hypothesis H1 : (∀z : set, z x- (- z) = z)
Hypothesis H2 : (∀z : set, z y- (- z) = z)
Hypothesis H3 : (∀z : set, z xSNo z)
Hypothesis H4 : (∀z : set, z ySNo z)
Theorem. (Conj_minus_SNo_invol__8__0)
SNo (SNoCut x y)- (- (SNoCut x y)) = SNoCut x y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_invol__8__0
Beginning of Section Conj_minus_SNo_invol__8__2
Variable x : set
Variable y : set
Hypothesis H0 : SNoCutP x y
Hypothesis H1 : (∀z : set, z x- (- z) = z)
Hypothesis H3 : (∀z : set, z xSNo z)
Hypothesis H4 : (∀z : set, z ySNo z)
Theorem. (Conj_minus_SNo_invol__8__2)
SNo (SNoCut x y)- (- (SNoCut x y)) = SNoCut x y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNo_invol__8__2
Beginning of Section Conj_minus_SNoCut_eq_lem__5__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)(∀u : set, ∀v : set, SNoCutP u vw = SNoCut u v- w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H3 : (∀w : set, w zSNo w)
Hypothesis H4 : x = SNoCut y z
Hypothesis H5 : SNoCutP (Repl z minus_SNo) (Repl y minus_SNo)
Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H7 : SNoLev (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w))) SNoLev (- x)
Theorem. (Conj_minus_SNoCut_eq_lem__5__2)
¬ SNoCut (Repl z minus_SNo) (Repl y minus_SNo) SNoS_ (SNoLev x)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNoCut_eq_lem__5__2
Beginning of Section Conj_minus_SNoCut_eq_lem__6__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)(∀u : set, ∀v : set, SNoCutP u vw = SNoCut u v- w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H3 : (∀w : set, w zSNo w)
Hypothesis H4 : x = SNoCut y z
Hypothesis H5 : SNoCutP (Repl z minus_SNo) (Repl y minus_SNo)
Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w)))) (SNoLev (- x))
Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w)))) (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w))) (- x)
Hypothesis H9 : ordinal (SNoLev (SNoCut (Repl z minus_SNo) (Repl y minus_SNo)))
Theorem. (Conj_minus_SNoCut_eq_lem__6__2)
ordinal (SNoLev (- x))- x = SNoCut (Repl z minus_SNo) (Repl y minus_SNo)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNoCut_eq_lem__6__2
Beginning of Section Conj_minus_SNoCut_eq_lem__6__9
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)(∀u : set, ∀v : set, SNoCutP u vw = SNoCut u v- w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : (∀w : set, w ySNo w)
Hypothesis H3 : (∀w : set, w zSNo w)
Hypothesis H4 : x = SNoCut y z
Hypothesis H5 : SNoCutP (Repl z minus_SNo) (Repl y minus_SNo)
Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w)))) (SNoLev (- x))
Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w)))) (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w))) (- x)
Theorem. (Conj_minus_SNoCut_eq_lem__6__9)
ordinal (SNoLev (- x))- x = SNoCut (Repl z minus_SNo) (Repl y minus_SNo)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNoCut_eq_lem__6__9
Beginning of Section Conj_minus_SNoCut_eq_lem__7__5
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)(∀u : set, ∀v : set, SNoCutP u vw = SNoCut u v- w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : (∀w : set, w ySNo w)
Hypothesis H3 : (∀w : set, w zSNo w)
Hypothesis H4 : x = SNoCut y z
Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w)))) (SNoLev (- x))
Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w)))) (SNoCut (Repl z (λw : set- w)) (Repl y (λw : set- w))) (- x)
Theorem. (Conj_minus_SNoCut_eq_lem__7__5)
ordinal (SNoLev (SNoCut (Repl z minus_SNo) (Repl y minus_SNo)))- x = SNoCut (Repl z minus_SNo) (Repl y minus_SNo)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNoCut_eq_lem__7__5
Beginning of Section Conj_minus_SNoCut_eq_lem__8__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)(∀u : set, ∀v : set, SNoCutP u vw = SNoCut u v- w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : SNoCutP y z
Hypothesis H4 : (∀w : set, w zSNo w)
Hypothesis H5 : x = SNoCut y z
Hypothesis H6 : SNoCutP (Repl z minus_SNo) (Repl y minus_SNo)
Hypothesis H7 : SNo (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))
Hypothesis H8 : (∀w : set, SNo w(∀u : set, u Repl z minus_SNou < w)(∀u : set, u Repl y minus_SNow < u)Subq (SNoLev (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))) (SNoLev w)SNoEq_ (SNoLev (SNoCut (Repl z minus_SNo) (Repl y minus_SNo))) (SNoCut (Repl z minus_SNo) (Repl y minus_SNo)) w)
Hypothesis H9 : (∀w : set, w Repl z minus_SNow < - x)
Theorem. (Conj_minus_SNoCut_eq_lem__8__3)
(∀w : set, w Repl y minus_SNo- x < w)- x = SNoCut (Repl z minus_SNo) (Repl y minus_SNo)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNoCut_eq_lem__8__3
Beginning of Section Conj_minus_SNoCut_eq_lem__11__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)(∀u : set, ∀v : set, SNoCutP u vw = SNoCut u v- w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : SNoCutP y z
Hypothesis H4 : (∀w : set, w zSNo w)
Hypothesis H5 : x = SNoCut y z
Theorem. (Conj_minus_SNoCut_eq_lem__11__3)
SNo (SNoCut y z)- x = SNoCut (Repl z minus_SNo) (Repl y minus_SNo)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNoCut_eq_lem__11__3
Beginning of Section Conj_minus_SNoCut_eq_lem__11__5
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)(∀u : set, ∀v : set, SNoCutP u vw = SNoCut u v- w = SNoCut (Repl v minus_SNo) (Repl u minus_SNo)))
Hypothesis H2 : SNoCutP y z
Hypothesis H3 : (∀w : set, w ySNo w)
Hypothesis H4 : (∀w : set, w zSNo w)
Theorem. (Conj_minus_SNoCut_eq_lem__11__5)
SNo (SNoCut y z)- x = SNoCut (Repl z minus_SNo) (Repl y minus_SNo)
Proof:
The rest of the proof is missing.

End of Section Conj_minus_SNoCut_eq_lem__11__5
Beginning of Section Conj_add_SNo_prop1__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNoLev z SNoLev x
Theorem. (Conj_add_SNo_prop1__1__1)
z SNoS_ (SNoLev x)SNo (z + y)(∀w : set, w SNoL z(w + y) < z + y)(∀w : set, w SNoR z(z + y) < w + y)(∀w : set, w SNoL y(z + w) < z + y)(∀w : set, w SNoR y(z + y) < z + w)SNoCutP (binunion (Repl (SNoL z) (λw : setw + y)) (Repl (SNoL y) (add_SNo z))) (binunion (Repl (SNoR z) (λw : setw + y)) (Repl (SNoR y) (add_SNo z)))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__1__1
Beginning of Section Conj_add_SNo_prop1__2__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNoLev z SNoLev x
Theorem. (Conj_add_SNo_prop1__2__1)
z SNoS_ (SNoLev x)SNo (z + y)(∀w : set, w SNoL z(w + y) < z + y)(∀w : set, w SNoR z(z + y) < w + y)(∀w : set, w SNoL y(z + w) < z + y)(∀w : set, w SNoR y(z + y) < z + w)SNoCutP (binunion (Repl (SNoL z) (λw : setw + y)) (Repl (SNoL y) (add_SNo z))) (binunion (Repl (SNoR z) (λw : setw + y)) (Repl (SNoR y) (add_SNo z)))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__2__1
Beginning of Section Conj_add_SNo_prop1__3__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev y)SNo (x + w)(∀u : set, u SNoL x(u + w) < x + w)(∀u : set, u SNoR x(x + w) < u + w)(∀u : set, u SNoL w(x + u) < x + w)(∀u : set, u SNoR w(x + w) < x + u)SNoCutP (binunion (Repl (SNoL x) (λu : setu + w)) (Repl (SNoL w) (add_SNo x))) (binunion (Repl (SNoR x) (λu : setu + w)) (Repl (SNoR w) (add_SNo x))))
Hypothesis H3 : SNoLev z SNoLev y
Theorem. (Conj_add_SNo_prop1__3__2)
z SNoS_ (SNoLev y)SNo (x + z)(∀w : set, w SNoL x(w + z) < x + z)(∀w : set, w SNoR x(x + z) < w + z)(∀w : set, w SNoL z(x + w) < x + z)(∀w : set, w SNoR z(x + z) < x + w)SNoCutP (binunion (Repl (SNoL x) (λw : setw + z)) (Repl (SNoL z) (add_SNo x))) (binunion (Repl (SNoR x) (λw : setw + z)) (Repl (SNoR z) (add_SNo x)))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__3__2
Beginning of Section Conj_add_SNo_prop1__4__2
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev y)SNo (x + w)(∀u : set, u SNoL x(u + w) < x + w)(∀u : set, u SNoR x(x + w) < u + w)(∀u : set, u SNoL w(x + u) < x + w)(∀u : set, u SNoR w(x + w) < x + u)SNoCutP (binunion (Repl (SNoL x) (λu : setu + w)) (Repl (SNoL w) (add_SNo x))) (binunion (Repl (SNoR x) (λu : setu + w)) (Repl (SNoR w) (add_SNo x))))
Hypothesis H3 : SNoLev z SNoLev y
Theorem. (Conj_add_SNo_prop1__4__2)
z SNoS_ (SNoLev y)SNo (x + z)(∀w : set, w SNoL x(w + z) < x + z)(∀w : set, w SNoR x(x + z) < w + z)(∀w : set, w SNoL z(x + w) < x + z)(∀w : set, w SNoR z(x + z) < x + w)SNoCutP (binunion (Repl (SNoL x) (λw : setw + z)) (Repl (SNoL z) (add_SNo x))) (binunion (Repl (SNoR x) (λw : setw + z)) (Repl (SNoR z) (add_SNo x)))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__4__2
Beginning of Section Conj_add_SNo_prop1__5__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))(∀P : prop, (SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)P)P))
Hypothesis H1 : (∀v : set, v SNoS_ (SNoLev y)SNo (x + v)(∀x2 : set, x2 SNoL x(x2 + v) < x + v)(∀x2 : set, x2 SNoR x(x + v) < x2 + v)(∀x2 : set, x2 SNoL v(x + x2) < x + v)(∀x2 : set, x2 SNoR v(x + v) < x + x2)SNoCutP (binunion (Repl (SNoL x) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H2 : SNo z
Hypothesis H3 : SNo (x + z)
Hypothesis H4 : (∀v : set, v SNoR z(x + z) < x + v)
Hypothesis H6 : SNo (x + w)
Hypothesis H7 : (∀v : set, v SNoL w(x + v) < x + w)
Hypothesis H8 : SNo u
Hypothesis H9 : z < u
Hypothesis H10 : u < w
Hypothesis H11 : SNoLev u SNoLev z
Hypothesis H12 : SNoLev u SNoLev w
Hypothesis H13 : u SNoS_ (SNoLev y)
Theorem. (Conj_add_SNo_prop1__5__5)
SNo (x + u)(x + z) < x + w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__5__5
Beginning of Section Conj_add_SNo_prop1__5__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))(∀P : prop, (SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)P)P))
Hypothesis H1 : (∀v : set, v SNoS_ (SNoLev y)SNo (x + v)(∀x2 : set, x2 SNoL x(x2 + v) < x + v)(∀x2 : set, x2 SNoR x(x + v) < x2 + v)(∀x2 : set, x2 SNoL v(x + x2) < x + v)(∀x2 : set, x2 SNoR v(x + v) < x + x2)SNoCutP (binunion (Repl (SNoL x) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H2 : SNo z
Hypothesis H3 : SNo (x + z)
Hypothesis H4 : (∀v : set, v SNoR z(x + z) < x + v)
Hypothesis H5 : SNo w
Hypothesis H6 : SNo (x + w)
Hypothesis H7 : (∀v : set, v SNoL w(x + v) < x + w)
Hypothesis H8 : SNo u
Hypothesis H9 : z < u
Hypothesis H10 : u < w
Hypothesis H11 : SNoLev u SNoLev z
Hypothesis H12 : SNoLev u SNoLev w
Theorem. (Conj_add_SNo_prop1__5__13)
SNo (x + u)(x + z) < x + w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__5__13
Beginning of Section Conj_add_SNo_prop1__6__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))(∀P : prop, (SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)P)P))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev y)SNo (x + v)(∀x2 : set, x2 SNoL x(x2 + v) < x + v)(∀x2 : set, x2 SNoR x(x + v) < x2 + v)(∀x2 : set, x2 SNoL v(x + x2) < x + v)(∀x2 : set, x2 SNoR v(x + v) < x + x2)SNoCutP (binunion (Repl (SNoL x) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H3 : SNo z
Hypothesis H5 : (∀v : set, v SNoR z(x + z) < x + v)
Hypothesis H6 : SNo w
Hypothesis H7 : SNo (x + w)
Hypothesis H8 : (∀v : set, v SNoL w(x + v) < x + w)
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : u < w
Hypothesis H12 : SNoLev u SNoLev z
Hypothesis H13 : SNoLev u SNoLev w
Hypothesis H14 : SNoLev u SNoLev y
Theorem. (Conj_add_SNo_prop1__6__4)
u SNoS_ (SNoLev y)(x + z) < x + w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__6__4
Beginning of Section Conj_add_SNo_prop1__8__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, ∀v : set, SNo (u + v)(∀x2 : set, x2 SNoL u(x2 + v) < u + v)(∀x2 : set, x2 SNoR u(u + v) < x2 + v)(∀x2 : set, x2 SNoL v(u + x2) < u + v)(∀x2 : set, x2 SNoR v(u + v) < u + x2)SNoCutP (binunion (Repl (SNoL u) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo u))) (binunion (Repl (SNoR u) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo u)))(∀P : prop, (SNo (u + v)(∀x2 : set, x2 SNoL u(x2 + v) < u + v)(∀x2 : set, x2 SNoR u(u + v) < x2 + v)(∀x2 : set, x2 SNoL v(u + x2) < u + v)(∀x2 : set, x2 SNoR v(u + v) < u + x2)P)P))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)SNo (x + u)(∀v : set, v SNoL x(v + u) < x + u)(∀v : set, v SNoR x(x + u) < v + u)(∀v : set, v SNoL u(x + v) < x + u)(∀v : set, v SNoR u(x + u) < x + v)SNoCutP (binunion (Repl (SNoL x) (λv : setv + u)) (Repl (SNoL u) (add_SNo x))) (binunion (Repl (SNoR x) (λv : setv + u)) (Repl (SNoR u) (add_SNo x))))
Hypothesis H3 : TransSet (SNoLev y)
Hypothesis H4 : SNo z
Hypothesis H5 : z < y
Hypothesis H6 : SNo (x + z)
Hypothesis H7 : (∀u : set, u SNoR z(x + z) < x + u)
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w SNoLev y
Hypothesis H10 : y < w
Hypothesis H11 : SNo (x + w)
Hypothesis H12 : (∀u : set, u SNoL w(x + u) < x + w)
Theorem. (Conj_add_SNo_prop1__8__1)
z < w(x + z) < x + w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__8__1
Beginning of Section Conj_add_SNo_prop1__8__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, ∀v : set, SNo (u + v)(∀x2 : set, x2 SNoL u(x2 + v) < u + v)(∀x2 : set, x2 SNoR u(u + v) < x2 + v)(∀x2 : set, x2 SNoL v(u + x2) < u + v)(∀x2 : set, x2 SNoR v(u + v) < u + x2)SNoCutP (binunion (Repl (SNoL u) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo u))) (binunion (Repl (SNoR u) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo u)))(∀P : prop, (SNo (u + v)(∀x2 : set, x2 SNoL u(x2 + v) < u + v)(∀x2 : set, x2 SNoR u(u + v) < x2 + v)(∀x2 : set, x2 SNoL v(u + x2) < u + v)(∀x2 : set, x2 SNoR v(u + v) < u + x2)P)P))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)SNo (x + u)(∀v : set, v SNoL x(v + u) < x + u)(∀v : set, v SNoR x(x + u) < v + u)(∀v : set, v SNoL u(x + v) < x + u)(∀v : set, v SNoR u(x + u) < x + v)SNoCutP (binunion (Repl (SNoL x) (λv : setv + u)) (Repl (SNoL u) (add_SNo x))) (binunion (Repl (SNoR x) (λv : setv + u)) (Repl (SNoR u) (add_SNo x))))
Hypothesis H3 : TransSet (SNoLev y)
Hypothesis H4 : SNo z
Hypothesis H5 : z < y
Hypothesis H6 : SNo (x + z)
Hypothesis H7 : (∀u : set, u SNoR z(x + z) < x + u)
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w SNoLev y
Hypothesis H11 : SNo (x + w)
Hypothesis H12 : (∀u : set, u SNoL w(x + u) < x + w)
Theorem. (Conj_add_SNo_prop1__8__10)
z < w(x + z) < x + w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__8__10
Beginning of Section Conj_add_SNo_prop1__10__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))(∀P : prop, (SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)P)P))
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev y)SNo (x + v)(∀x2 : set, x2 SNoL x(x2 + v) < x + v)(∀x2 : set, x2 SNoR x(x + v) < x2 + v)(∀x2 : set, x2 SNoL v(x + x2) < x + v)(∀x2 : set, x2 SNoR v(x + v) < x + x2)SNoCutP (binunion (Repl (SNoL x) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))))
Hypothesis H5 : TransSet (SNoLev y)
Hypothesis H6 : (∀v : set, v SNoR xSNo (v + y)(∀x2 : set, x2 SNoL v(x2 + y) < v + y)(∀x2 : set, x2 SNoR v(v + y) < x2 + y)(∀x2 : set, x2 SNoL y(v + x2) < v + y)(∀x2 : set, x2 SNoR y(v + y) < v + x2)SNoCutP (binunion (Repl (SNoL v) (λx2 : setx2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : setx2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H7 : (∀v : set, v SNoL ySNo (x + v)(∀x2 : set, x2 SNoL x(x2 + v) < x + v)(∀x2 : set, x2 SNoR x(x + v) < x2 + v)(∀x2 : set, x2 SNoL v(x + x2) < x + v)(∀x2 : set, x2 SNoR v(x + v) < x + x2)SNoCutP (binunion (Repl (SNoL x) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H8 : (∀v : set, v SNoR ySNo (x + v)(∀x2 : set, x2 SNoL x(x2 + v) < x + v)(∀x2 : set, x2 SNoR x(x + v) < x2 + v)(∀x2 : set, x2 SNoL v(x + x2) < x + v)(∀x2 : set, x2 SNoR v(x + v) < x + x2)SNoCutP (binunion (Repl (SNoL x) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H10 : u SNoL y
Hypothesis H11 : z = x + u
Hypothesis H12 : SNo u
Hypothesis H13 : SNoLev u SNoLev y
Hypothesis H14 : u < y
Theorem. (Conj_add_SNo_prop1__10__9)
u SNoS_ (SNoLev y)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__10__9
Beginning of Section Conj_add_SNo_prop1__11__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))(∀P : prop, (SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)P)P))
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))))
Hypothesis H4 : (∀v : set, v SNoR ySNo (x + v)(∀x2 : set, x2 SNoL x(x2 + v) < x + v)(∀x2 : set, x2 SNoR x(x + v) < x2 + v)(∀x2 : set, x2 SNoL v(x + x2) < x + v)(∀x2 : set, x2 SNoR v(x + v) < x + x2)SNoCutP (binunion (Repl (SNoL x) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H7 : w < x
Hypothesis H9 : SNo (w + y)
Hypothesis H10 : (∀v : set, v SNoR y(w + y) < w + v)
Hypothesis H11 : u SNoR y
Hypothesis H12 : z = x + u
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev y
Hypothesis H15 : y < u
Theorem. (Conj_add_SNo_prop1__11__8)
u SNoS_ (SNoLev y)(w + y) < z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__11__8
Beginning of Section Conj_add_SNo_prop1__13__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))(∀P : prop, (SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)P)P))
Hypothesis H1 : SNo x
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev x)SNo (v + y)(∀x2 : set, x2 SNoL v(x2 + y) < v + y)(∀x2 : set, x2 SNoR v(v + y) < x2 + y)(∀x2 : set, x2 SNoL y(v + x2) < v + y)(∀x2 : set, x2 SNoR y(v + y) < v + x2)SNoCutP (binunion (Repl (SNoL v) (λx2 : setx2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : setx2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H3 : SNo z
Hypothesis H4 : SNo (z + y)
Hypothesis H5 : (∀v : set, v SNoR z(z + y) < v + y)
Hypothesis H6 : SNo w
Hypothesis H7 : SNo (w + y)
Hypothesis H8 : (∀v : set, v SNoL w(v + y) < w + y)
Hypothesis H9 : SNo u
Hypothesis H10 : z < u
Hypothesis H11 : u < w
Hypothesis H12 : SNoLev u SNoLev z
Hypothesis H14 : SNoLev u SNoLev x
Theorem. (Conj_add_SNo_prop1__13__13)
u SNoS_ (SNoLev x)(z + y) < w + y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__13__13
Beginning of Section Conj_add_SNo_prop1__14__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))(∀P : prop, (SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)P)P))
Hypothesis H1 : SNo x
Hypothesis H2 : (∀v : set, v SNoS_ (SNoLev x)SNo (v + y)(∀x2 : set, x2 SNoL v(x2 + y) < v + y)(∀x2 : set, x2 SNoR v(v + y) < x2 + y)(∀x2 : set, x2 SNoL y(v + x2) < v + y)(∀x2 : set, x2 SNoR y(v + y) < v + x2)SNoCutP (binunion (Repl (SNoL v) (λx2 : setx2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : setx2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z SNoLev x
Hypothesis H6 : SNo (z + y)
Hypothesis H7 : (∀v : set, v SNoR z(z + y) < v + y)
Hypothesis H8 : SNo w
Hypothesis H9 : SNo (w + y)
Hypothesis H10 : (∀v : set, v SNoL w(v + y) < w + y)
Hypothesis H11 : SNo u
Hypothesis H12 : z < u
Hypothesis H13 : u < w
Hypothesis H14 : SNoLev u SNoLev z
Hypothesis H15 : SNoLev u SNoLev w
Theorem. (Conj_add_SNo_prop1__14__3)
SNoLev u SNoLev x(z + y) < w + y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__14__3
Beginning of Section Conj_add_SNo_prop1__16__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : (∀v : set, ∀x2 : set, SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))(∀P : prop, (SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)P)P))
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)SNo (v + y)(∀x2 : set, x2 SNoL v(x2 + y) < v + y)(∀x2 : set, x2 SNoR v(v + y) < x2 + y)(∀x2 : set, x2 SNoL y(v + x2) < v + y)(∀x2 : set, x2 SNoR y(v + y) < v + x2)SNoCutP (binunion (Repl (SNoL v) (λx2 : setx2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : setx2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H4 : (∀v : set, v SNoS_ (SNoLev x)(∀x2 : set, x2 SNoS_ (SNoLev y)SNo (v + x2)(∀y2 : set, y2 SNoL v(y2 + x2) < v + x2)(∀y2 : set, y2 SNoR v(v + x2) < y2 + x2)(∀y2 : set, y2 SNoL x2(v + y2) < v + x2)(∀y2 : set, y2 SNoR x2(v + x2) < v + y2)SNoCutP (binunion (Repl (SNoL v) (λy2 : sety2 + x2)) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) (λy2 : sety2 + x2)) (Repl (SNoR x2) (add_SNo v)))))
Hypothesis H6 : (∀v : set, v SNoL xSNo (v + y)(∀x2 : set, x2 SNoL v(x2 + y) < v + y)(∀x2 : set, x2 SNoR v(v + y) < x2 + y)(∀x2 : set, x2 SNoL y(v + x2) < v + y)(∀x2 : set, x2 SNoR y(v + y) < v + x2)SNoCutP (binunion (Repl (SNoL v) (λx2 : setx2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : setx2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H7 : (∀v : set, v SNoR xSNo (v + y)(∀x2 : set, x2 SNoL v(x2 + y) < v + y)(∀x2 : set, x2 SNoR v(v + y) < x2 + y)(∀x2 : set, x2 SNoL y(v + x2) < v + y)(∀x2 : set, x2 SNoR y(v + y) < v + x2)SNoCutP (binunion (Repl (SNoL v) (λx2 : setx2 + y)) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) (λx2 : setx2 + y)) (Repl (SNoR y) (add_SNo v))))
Hypothesis H8 : (∀v : set, v SNoR ySNo (x + v)(∀x2 : set, x2 SNoL x(x2 + v) < x + v)(∀x2 : set, x2 SNoR x(x + v) < x2 + v)(∀x2 : set, x2 SNoL v(x + x2) < x + v)(∀x2 : set, x2 SNoR v(x + v) < x + x2)SNoCutP (binunion (Repl (SNoL x) (λx2 : setx2 + v)) (Repl (SNoL v) (add_SNo x))) (binunion (Repl (SNoR x) (λx2 : setx2 + v)) (Repl (SNoR v) (add_SNo x))))
Hypothesis H9 : w binunion (Repl (SNoR x) (λv : setv + y)) (Repl (SNoR y) (add_SNo x))
Hypothesis H10 : u SNoL x
Hypothesis H11 : z = u + y
Hypothesis H12 : SNo u
Hypothesis H13 : SNoLev u SNoLev x
Hypothesis H14 : u < x
Theorem. (Conj_add_SNo_prop1__16__5)
u SNoS_ (SNoLev x)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__16__5
Beginning of Section Conj_add_SNo_prop1__21__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Theorem. (Conj_add_SNo_prop1__21__2)
SNo (SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))))SNo (x + y)(∀z : set, z SNoL x(z + y) < x + y)(∀z : set, z SNoR x(x + y) < z + y)(∀z : set, z SNoL y(x + z) < x + y)(∀z : set, z SNoR y(x + y) < x + z)SNoCutP (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x)))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__21__2
Beginning of Section Conj_add_SNo_prop1__28__1
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, ∀w : set, SNo (z + w)(∀u : set, u SNoL z(u + w) < z + w)(∀u : set, u SNoR z(z + w) < u + w)(∀u : set, u SNoL w(z + u) < z + w)(∀u : set, u SNoR w(z + w) < z + u)SNoCutP (binunion (Repl (SNoL z) (λu : setu + w)) (Repl (SNoL w) (add_SNo z))) (binunion (Repl (SNoR z) (λu : setu + w)) (Repl (SNoR w) (add_SNo z)))(∀P : prop, (SNo (z + w)(∀u : set, u SNoL z(u + w) < z + w)(∀u : set, u SNoR z(z + w) < u + w)(∀u : set, u SNoL w(z + u) < z + w)(∀u : set, u SNoR w(z + w) < z + u)P)P))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev x)SNo (z + y)(∀w : set, w SNoL z(w + y) < z + y)(∀w : set, w SNoR z(z + y) < w + y)(∀w : set, w SNoL y(z + w) < z + y)(∀w : set, w SNoR y(z + y) < z + w)SNoCutP (binunion (Repl (SNoL z) (λw : setw + y)) (Repl (SNoL y) (add_SNo z))) (binunion (Repl (SNoR z) (λw : setw + y)) (Repl (SNoR y) (add_SNo z))))
Hypothesis H4 : (∀z : set, z SNoS_ (SNoLev y)SNo (x + z)(∀w : set, w SNoL x(w + z) < x + z)(∀w : set, w SNoR x(x + z) < w + z)(∀w : set, w SNoL z(x + w) < x + z)(∀w : set, w SNoR z(x + z) < x + w)SNoCutP (binunion (Repl (SNoL x) (λw : setw + z)) (Repl (SNoL z) (add_SNo x))) (binunion (Repl (SNoR x) (λw : setw + z)) (Repl (SNoR z) (add_SNo x))))
Hypothesis H5 : (∀z : set, z SNoS_ (SNoLev x)(∀w : set, w SNoS_ (SNoLev y)SNo (z + w)(∀u : set, u SNoL z(u + w) < z + w)(∀u : set, u SNoR z(z + w) < u + w)(∀u : set, u SNoL w(z + u) < z + w)(∀u : set, u SNoR w(z + w) < z + u)SNoCutP (binunion (Repl (SNoL z) (λu : setu + w)) (Repl (SNoL w) (add_SNo z))) (binunion (Repl (SNoR z) (λu : setu + w)) (Repl (SNoR w) (add_SNo z)))))
Hypothesis H6 : TransSet (SNoLev x)
Theorem. (Conj_add_SNo_prop1__28__1)
ordinal (SNoLev y)SNo (x + y)(∀z : set, z SNoL x(z + y) < x + y)(∀z : set, z SNoR x(x + y) < z + y)(∀z : set, z SNoL y(x + z) < x + y)(∀z : set, z SNoR y(x + y) < x + z)SNoCutP (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x)))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_prop1__28__1
Beginning of Section Conj_add_SNo_com__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNoLev z SNoLev x
Theorem. (Conj_add_SNo_com__1__1)
z SNoS_ (SNoLev x)z + y = y + z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_com__1__1
Beginning of Section Conj_add_SNo_com__1__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)w + y = y + w)
Hypothesis H2 : SNo z
Theorem. (Conj_add_SNo_com__1__3)
z SNoS_ (SNoLev x)z + y = y + z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_com__1__3
Beginning of Section Conj_add_SNo_com__2__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo z
Hypothesis H3 : SNoLev z SNoLev x
Theorem. (Conj_add_SNo_com__2__1)
z SNoS_ (SNoLev x)z + y = y + z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_com__2__1
Beginning of Section Conj_add_SNo_com__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)w + y = y + w)
Hypothesis H2 : SNo z
Theorem. (Conj_add_SNo_com__2__3)
z SNoS_ (SNoLev x)z + y = y + z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_com__2__3
Beginning of Section Conj_add_SNo_com__6__2
Variable x : set
Variable y : set
Hypothesis H0 : (∀z : set, z SNoR xz + y = y + z)
Hypothesis H1 : (∀z : set, z SNoR yx + z = z + x)
Hypothesis H3 : Repl (SNoL y) (add_SNo x) = Repl (SNoL y) (λz : setz + x)
Theorem. (Conj_add_SNo_com__6__2)
Repl (SNoR x) (λz : setz + y) = Repl (SNoR x) (add_SNo y)SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))) = SNoCut (binunion (Repl (SNoL y) (λz : setz + x)) (Repl (SNoL x) (add_SNo y))) (binunion (Repl (SNoR y) (λz : setz + x)) (Repl (SNoR x) (add_SNo y)))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_com__6__2
Beginning of Section Conj_add_SNo_com__9__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev y)x + z = z + x)
Hypothesis H3 : (∀z : set, z SNoL xz + y = y + z)
Hypothesis H4 : (∀z : set, z SNoR xz + y = y + z)
Hypothesis H5 : (∀z : set, z SNoL yx + z = z + x)
Theorem. (Conj_add_SNo_com__9__0)
(∀z : set, z SNoR yx + z = z + x)x + y = y + x
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_com__9__0
Beginning of Section Conj_add_SNo_com__10__1
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev y)x + z = z + x)
Hypothesis H3 : (∀z : set, z SNoL xz + y = y + z)
Hypothesis H4 : (∀z : set, z SNoR xz + y = y + z)
Theorem. (Conj_add_SNo_com__10__1)
(∀z : set, z SNoL yx + z = z + x)x + y = y + x
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_com__10__1
Beginning of Section Conj_add_SNo_minus_SNo_linv__4__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : SNo (- x)
Hypothesis H2 : y = z + x
Hypothesis H3 : SNo z
Hypothesis H4 : - x < z
Hypothesis H5 : SNo (- z)
Hypothesis H6 : - z + z = Empty
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_minus_SNo_linv__4__0
Beginning of Section Conj_add_SNo_minus_SNo_linv__8__6
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)- w + w = Empty)
Hypothesis H2 : SNo (- x)
Hypothesis H3 : y = - x + z
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z SNoLev x
Hypothesis H7 : SNo (- z)
Theorem. (Conj_add_SNo_minus_SNo_linv__8__6)
- z + z = Emptyy < Empty
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_minus_SNo_linv__8__6
Beginning of Section Conj_add_SNo_minus_SNo_linv__9__5
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀w : set, w SNoS_ (SNoLev x)- w + w = Empty)
Hypothesis H2 : SNo (- x)
Hypothesis H3 : y = - x + z
Hypothesis H4 : SNo z
Hypothesis H6 : z < x
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_minus_SNo_linv__9__5
Beginning of Section Conj_add_SNo_ordinal_ordinal__3__3
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Hypothesis H2 : SNo x
Theorem. (Conj_add_SNo_ordinal_ordinal__3__3)
SNo (x + y)ordinal (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_ordinal__3__3
Beginning of Section Conj_add_SNo_ordinal_ordinal__4__1
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H2 : SNo x
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_ordinal__4__1
Beginning of Section Conj_add_SNo_ordinal_ordinal__4__2
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_ordinal__4__2
Beginning of Section Conj_add_SNo_ordinal_SL__1__0
Variable x : set
Variable y : set
Variable z : set
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : ordinal (x + y)
Hypothesis H4 : SNo (ordsucc x)
Hypothesis H5 : ordinal (ordsucc (x + y))
Hypothesis H6 : SNo (ordsucc (x + y))
Hypothesis H7 : SNoLev z y
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Hypothesis H10 : ordsucc x + SNoLev z = ordsucc (x + SNoLev z)
Hypothesis H11 : SNo (ordsucc x + z)
Hypothesis H12 : ordinal (x + SNoLev z)
Hypothesis H13 : ordinal (ordsucc x + SNoLev z)
Theorem. (Conj_add_SNo_ordinal_SL__1__0)
SNo (ordsucc x + SNoLev z)(ordsucc x + z) < ordsucc (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SL__1__0
Beginning of Section Conj_add_SNo_ordinal_SL__1__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal y
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : ordinal (x + y)
Hypothesis H5 : ordinal (ordsucc (x + y))
Hypothesis H6 : SNo (ordsucc (x + y))
Hypothesis H7 : SNoLev z y
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Hypothesis H10 : ordsucc x + SNoLev z = ordsucc (x + SNoLev z)
Hypothesis H11 : SNo (ordsucc x + z)
Hypothesis H12 : ordinal (x + SNoLev z)
Hypothesis H13 : ordinal (ordsucc x + SNoLev z)
Theorem. (Conj_add_SNo_ordinal_SL__1__4)
SNo (ordsucc x + SNoLev z)(ordsucc x + z) < ordsucc (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SL__1__4
Beginning of Section Conj_add_SNo_ordinal_SL__6__8
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : ordinal (x + y)
Hypothesis H4 : ordinal (ordsucc (x + y))
Hypothesis H5 : SNo (ordsucc (x + y))
Hypothesis H6 : SNoLev z ordsucc x
Hypothesis H7 : ordinal (SNoLev z)
Hypothesis H9 : ordinal (SNoLev z + y)
Theorem. (Conj_add_SNo_ordinal_SL__6__8)
SNo (SNoLev z + y)(z + y) < ordsucc (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SL__6__8
Beginning of Section Conj_add_SNo_ordinal_SL__7__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H2 : SNo x
Hypothesis H3 : SNo y
Hypothesis H4 : ordinal (x + y)
Hypothesis H5 : ordinal (ordsucc (x + y))
Hypothesis H6 : SNo (ordsucc (x + y))
Hypothesis H7 : SNoLev z ordsucc x
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Theorem. (Conj_add_SNo_ordinal_SL__7__1)
ordinal (SNoLev z + y)(z + y) < ordsucc (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SL__7__1
Beginning of Section Conj_add_SNo_ordinal_SL__7__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Hypothesis H2 : SNo x
Hypothesis H4 : ordinal (x + y)
Hypothesis H5 : ordinal (ordsucc (x + y))
Hypothesis H6 : SNo (ordsucc (x + y))
Hypothesis H7 : SNoLev z ordsucc x
Hypothesis H8 : ordinal (SNoLev z)
Hypothesis H9 : SNo z
Theorem. (Conj_add_SNo_ordinal_SL__7__3)
ordinal (SNoLev z + y)(z + y) < ordsucc (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SL__7__3
Beginning of Section Conj_add_SNo_ordinal_SL__11__9
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Hypothesis H1 : ordinal y
Hypothesis H2 : (∀z : set, z yordsucc x + z = ordsucc (x + z))
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : ordinal (x + y)
Hypothesis H6 : ordinal (ordsucc x)
Hypothesis H7 : SNo (ordsucc x)
Hypothesis H8 : ordinal (ordsucc x + y)
Hypothesis H10 : ordsucc (x + y) ordsucc x + y
Theorem. (Conj_add_SNo_ordinal_SL__11__9)
¬ ordinal (ordsucc (x + y))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SL__11__9
Beginning of Section Conj_add_SNo_ordinal_SL__14__0
Variable x : set
Variable y : set
Hypothesis H1 : ordinal y
Hypothesis H2 : (∀z : set, z yordsucc x + z = ordsucc (x + z))
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : ordinal (x + y)
Hypothesis H6 : ordinal (ordsucc x)
Theorem. (Conj_add_SNo_ordinal_SL__14__0)
SNo (ordsucc x)ordsucc x + y = ordsucc (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SL__14__0
Beginning of Section Conj_add_SNo_ordinal_SR__4__0
Variable x : set
Variable y : set
Hypothesis H1 : ordinal y
Theorem. (Conj_add_SNo_ordinal_SR__4__0)
SNo yx + ordsucc y = ordsucc (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SR__4__0
Beginning of Section Conj_add_SNo_ordinal_SR__5__1
Variable x : set
Variable y : set
Hypothesis H0 : ordinal x
Theorem. (Conj_add_SNo_ordinal_SR__5__1)
SNo xx + ordsucc y = ordsucc (x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_SR__5__1
Beginning of Section Conj_add_SNo_ordinal_InR__1__1
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : ordinal x
Hypothesis H2 : z y
Hypothesis H3 : SNo x
Hypothesis H4 : SNo y
Hypothesis H5 : ordinal z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_ordinal_InR__1__1
Beginning of Section Conj_add_nat_add_SNo__1__1
Variable x : set
Hypothesis H0 : ordinal x
Theorem. (Conj_add_nat_add_SNo__1__1)
(∀y : set, nat_p yadd_nat x y = x + y)(∀y : set, y ωadd_nat x y = x + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_nat_add_SNo__1__1
Beginning of Section Conj_add_SNo_SNoL_interpolate__2__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x + y)
Hypothesis H3 : SNo z
Hypothesis H4 : (∀u : set, u SNoS_ (SNoLev z)SNoLev u SNoLev (x + y)u < x + y(∃v : set, v SNoL xuv + y)(∃v : set, v SNoL yux + v))
Hypothesis H5 : SNoLev z SNoLev (x + y)
Hypothesis H6 : ¬ ((∃u : set, u SNoL xzu + y)(∃u : set, u SNoL yzx + u))
Hypothesis H7 : w SNoR z
Hypothesis H8 : SNo w
Hypothesis H9 : SNoLev w SNoLev z
Hypothesis H10 : z < w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_SNoL_interpolate__2__11
Beginning of Section Conj_add_SNo_SNoR_interpolate__1__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H2 : ¬ ((∃u : set, u SNoR x(u + y)z)(∃u : set, u SNoR y(x + u)z))
Hypothesis H3 : w SNoR y
Hypothesis H4 : SNo w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_SNoR_interpolate__1__1
Beginning of Section Conj_add_SNo_assoc__3__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)v + y + z = (v + y) + z)
Hypothesis H4 : SNo (y + z)
Hypothesis H5 : SNo w
Hypothesis H6 : u SNoR x
Hypothesis H7 : (u + y)w
Hypothesis H8 : SNo u
Hypothesis H9 : x < u
Theorem. (Conj_add_SNo_assoc__3__0)
u + y + z = (u + y) + z(x + y + z) < w + z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_assoc__3__0
Beginning of Section Conj_add_SNo_assoc__6__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev x)v + y + z = (v + y) + z)
Hypothesis H4 : SNo (y + z)
Hypothesis H5 : SNo w
Hypothesis H6 : u SNoL x
Hypothesis H8 : SNo u
Hypothesis H9 : u < x
Theorem. (Conj_add_SNo_assoc__6__7)
u + y + z = (u + y) + z(w + z) < x + y + z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_assoc__6__7
Beginning of Section Conj_add_SNo_assoc__7__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNo (x + y)
Hypothesis H5 : SNo w
Hypothesis H6 : u SNoR z
Hypothesis H7 : (y + u)w
Hypothesis H8 : SNo u
Hypothesis H9 : z < u
Theorem. (Conj_add_SNo_assoc__7__3)
x + y + u = (x + y) + u((x + y) + z) < x + w
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_assoc__7__3
Beginning of Section Conj_add_SNo_assoc__10__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀v : set, v SNoS_ (SNoLev z)x + y + v = (x + y) + v)
Hypothesis H4 : SNo (x + y)
Hypothesis H5 : SNo w
Hypothesis H6 : u SNoL z
Hypothesis H7 : wy + u
Hypothesis H8 : SNo u
Hypothesis H9 : u < z
Theorem. (Conj_add_SNo_assoc__10__0)
x + y + u = (x + y) + u(x + w) < (x + y) + z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_assoc__10__0
Beginning of Section Conj_add_SNo_assoc__14__4
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : (∀w : set, w SNoS_ (SNoLev x)w + y + z = (w + y) + z)
Hypothesis H5 : (∀w : set, w SNoS_ (SNoLev z)x + y + w = (x + y) + w)
Hypothesis H6 : SNo (x + y)
Hypothesis H7 : SNo (y + z)
Theorem. (Conj_add_SNo_assoc__14__4)
SNoCutP (binunion (Repl (SNoL x) (λw : setw + y + z)) (Repl (SNoL (y + z)) (add_SNo x))) (binunion (Repl (SNoR x) (λw : setw + y + z)) (Repl (SNoR (y + z)) (add_SNo x)))SNoCut (binunion (Repl (SNoL x) (λw : setw + y + z)) (Repl (SNoL (y + z)) (add_SNo x))) (binunion (Repl (SNoR x) (λw : setw + y + z)) (Repl (SNoR (y + z)) (add_SNo x))) = SNoCut (binunion (Repl (SNoL (x + y)) (λw : setw + z)) (Repl (SNoL z) (add_SNo (x + y)))) (binunion (Repl (SNoR (x + y)) (λw : setw + z)) (Repl (SNoR z) (add_SNo (x + y))))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_assoc__14__4
Beginning of Section Conj_add_SNo_cancel_L__2__3
Variable x : set
Variable y : set
Variable z : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNo (- x)
Theorem. (Conj_add_SNo_cancel_L__2__3)
- x + x + y = yy = z
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_cancel_L__2__3
Beginning of Section Conj_minus_add_SNo_distr__1__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (- x)
Hypothesis H3 : SNo (- y)
Hypothesis H4 : SNo (x + y)
Theorem. (Conj_minus_add_SNo_distr__1__0)
(x + y) + - (x + y) = (x + y) + - x + - y- (x + y) = - x + - y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_add_SNo_distr__1__0
Beginning of Section Conj_minus_add_SNo_distr__3__2
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Theorem. (Conj_minus_add_SNo_distr__3__2)
SNo (- y)- (x + y) = - x + - y
Proof:
The rest of the proof is missing.

End of Section Conj_minus_add_SNo_distr__3__2
Beginning of Section Conj_add_SNo_Lev_bd__3__0
Variable x : set
Variable y : set
Variable z : set
Variable p : (setprop)
Variable w : set
Hypothesis H1 : w SNoR x
Hypothesis H2 : z = w + y
Theorem. (Conj_add_SNo_Lev_bd__3__0)
w SNoS_ (SNoLev x)SNo wSNoLev w SNoLev xx < wp (w + y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__3__0
Beginning of Section Conj_add_SNo_Lev_bd__6__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : z ordsucc (SNoLev (x + w))
Hypothesis H4 : ordinal z
Hypothesis H5 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : Subq (SNoLev (x + w)) (SNoLev x + SNoLev w)
Hypothesis H7 : SNoLev x + SNoLev w SNoLev x + SNoLev y
Theorem. (Conj_add_SNo_Lev_bd__6__2)
¬ Subq (SNoLev x + SNoLev w) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__6__2
Beginning of Section Conj_add_SNo_Lev_bd__7__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w SNoLev y
Hypothesis H5 : z ordsucc (SNoLev (x + w))
Hypothesis H6 : ordinal z
Hypothesis H8 : Subq (SNoLev (x + w)) (SNoLev x + SNoLev w)
Theorem. (Conj_add_SNo_Lev_bd__7__7)
¬ SNoLev x + SNoLev w SNoLev x + SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__7__7
Beginning of Section Conj_add_SNo_Lev_bd__10__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : SNo w
Hypothesis H2 : z ordsucc (SNoLev (w + y))
Hypothesis H3 : ordinal z
Hypothesis H4 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : SNoLev w + SNoLev y SNoLev x + SNoLev y
Theorem. (Conj_add_SNo_Lev_bd__10__5)
¬ Subq z (SNoLev (w + y))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__10__5
Beginning of Section Conj_add_SNo_Lev_bd__11__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : z ordsucc (SNoLev (w + y))
Hypothesis H4 : ordinal z
Hypothesis H5 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Hypothesis H7 : SNoLev w + SNoLev y SNoLev x + SNoLev y
Theorem. (Conj_add_SNo_Lev_bd__11__2)
¬ Subq (SNoLev w + SNoLev y) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__11__2
Beginning of Section Conj_add_SNo_Lev_bd__12__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w SNoLev x
Hypothesis H5 : z ordsucc (SNoLev (w + y))
Hypothesis H7 : Subq (SNoLev x + SNoLev y) z
Hypothesis H8 : Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Theorem. (Conj_add_SNo_Lev_bd__12__6)
¬ SNoLev w + SNoLev y SNoLev x + SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__12__6
Beginning of Section Conj_add_SNo_Lev_bd__13__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H7 : z ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Theorem. (Conj_add_SNo_Lev_bd__13__3)
¬ Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__13__3
Beginning of Section Conj_add_SNo_Lev_bd__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev x)Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H7 : z ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Theorem. (Conj_add_SNo_Lev_bd__13__5)
¬ Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__13__5
Beginning of Section Conj_add_SNo_Lev_bd__13__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev x)Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H7 : z ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Theorem. (Conj_add_SNo_Lev_bd__13__6)
¬ Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__13__6
Beginning of Section Conj_add_SNo_Lev_bd__13__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev x)Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Theorem. (Conj_add_SNo_Lev_bd__13__7)
¬ Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__13__7
Beginning of Section Conj_add_SNo_Lev_bd__14__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev x)Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H7 : z ordsucc (SNoLev (w + y))
Theorem. (Conj_add_SNo_Lev_bd__14__5)
ordinal zz SNoLev x + SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__14__5
Beginning of Section Conj_add_SNo_Lev_bd__16__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : z ordsucc (SNoLev (x + w))
Hypothesis H4 : ordinal z
Hypothesis H5 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : Subq (SNoLev (x + w)) (SNoLev x + SNoLev w)
Hypothesis H7 : SNoLev x + SNoLev w SNoLev x + SNoLev y
Theorem. (Conj_add_SNo_Lev_bd__16__2)
¬ Subq (SNoLev x + SNoLev w) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__16__2
Beginning of Section Conj_add_SNo_Lev_bd__17__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w SNoLev y
Hypothesis H5 : z ordsucc (SNoLev (x + w))
Hypothesis H6 : ordinal z
Hypothesis H8 : Subq (SNoLev (x + w)) (SNoLev x + SNoLev w)
Theorem. (Conj_add_SNo_Lev_bd__17__7)
¬ SNoLev x + SNoLev w SNoLev x + SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__17__7
Beginning of Section Conj_add_SNo_Lev_bd__20__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : SNo w
Hypothesis H2 : z ordsucc (SNoLev (w + y))
Hypothesis H3 : ordinal z
Hypothesis H4 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : SNoLev w + SNoLev y SNoLev x + SNoLev y
Theorem. (Conj_add_SNo_Lev_bd__20__5)
¬ Subq z (SNoLev (w + y))
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__20__5
Beginning of Section Conj_add_SNo_Lev_bd__21__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : z ordsucc (SNoLev (w + y))
Hypothesis H4 : ordinal z
Hypothesis H5 : Subq (SNoLev x + SNoLev y) z
Hypothesis H6 : Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Hypothesis H7 : SNoLev w + SNoLev y SNoLev x + SNoLev y
Theorem. (Conj_add_SNo_Lev_bd__21__2)
¬ Subq (SNoLev w + SNoLev y) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__21__2
Beginning of Section Conj_add_SNo_Lev_bd__22__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : SNo w
Hypothesis H4 : SNoLev w SNoLev x
Hypothesis H5 : z ordsucc (SNoLev (w + y))
Hypothesis H7 : Subq (SNoLev x + SNoLev y) z
Hypothesis H8 : Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Theorem. (Conj_add_SNo_Lev_bd__22__6)
¬ SNoLev w + SNoLev y SNoLev x + SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__22__6
Beginning of Section Conj_add_SNo_Lev_bd__23__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H7 : z ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Theorem. (Conj_add_SNo_Lev_bd__23__3)
¬ Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__23__3
Beginning of Section Conj_add_SNo_Lev_bd__23__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev x)Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H7 : z ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Theorem. (Conj_add_SNo_Lev_bd__23__5)
¬ Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__23__5
Beginning of Section Conj_add_SNo_Lev_bd__23__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev x)Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H7 : z ordsucc (SNoLev (w + y))
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Theorem. (Conj_add_SNo_Lev_bd__23__6)
¬ Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__23__6
Beginning of Section Conj_add_SNo_Lev_bd__23__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev x)Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H8 : ordinal z
Hypothesis H9 : Subq (SNoLev x + SNoLev y) z
Theorem. (Conj_add_SNo_Lev_bd__23__7)
¬ Subq (SNoLev (w + y)) (SNoLev w + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__23__7
Beginning of Section Conj_add_SNo_Lev_bd__24__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev x)Subq (SNoLev (u + y)) (SNoLev u + SNoLev y))
Hypothesis H4 : w SNoS_ (SNoLev x)
Hypothesis H6 : SNoLev w SNoLev x
Hypothesis H7 : z ordsucc (SNoLev (w + y))
Theorem. (Conj_add_SNo_Lev_bd__24__5)
ordinal zz SNoLev x + SNoLev y
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__24__5
Beginning of Section Conj_add_SNo_Lev_bd__29__1
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev x)Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))
Hypothesis H4 : (∀z : set, z SNoS_ (SNoLev y)Subq (SNoLev (x + z)) (SNoLev x + SNoLev z))
Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x)))) ordsucc (binunion (famunion (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (λz : setordsucc (SNoLev z))) (famunion (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))) (λz : setordsucc (SNoLev z))))
Hypothesis H6 : (∀z : set, z Repl (SNoL x) (λw : setw + y)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev x)z = w + ySNo wSNoLev w SNoLev xw < xp (w + y))p z))
Hypothesis H7 : (∀z : set, z Repl (SNoL y) (add_SNo x)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev y)z = x + wSNo wSNoLev w SNoLev yw < yp (x + w))p z))
Hypothesis H8 : (∀z : set, z Repl (SNoR x) (λw : setw + y)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev x)z = w + ySNo wSNoLev w SNoLev xx < wp (w + y))p z))
Hypothesis H9 : (∀z : set, z Repl (SNoR y) (add_SNo x)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev y)z = x + wSNo wSNoLev w SNoLev yy < wp (x + w))p z))
Hypothesis H10 : (∀z : set, z Repl (SNoL x) (λw : setw + y)SNo z)
Hypothesis H11 : (∀z : set, z Repl (SNoL y) (add_SNo x)SNo z)
Theorem. (Conj_add_SNo_Lev_bd__29__1)
(∀z : set, z Repl (SNoR x) (λw : setw + y)SNo z)Subq (SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))))) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__29__1
Beginning of Section Conj_add_SNo_Lev_bd__29__4
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev x)Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))
Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x)))) ordsucc (binunion (famunion (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (λz : setordsucc (SNoLev z))) (famunion (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))) (λz : setordsucc (SNoLev z))))
Hypothesis H6 : (∀z : set, z Repl (SNoL x) (λw : setw + y)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev x)z = w + ySNo wSNoLev w SNoLev xw < xp (w + y))p z))
Hypothesis H7 : (∀z : set, z Repl (SNoL y) (add_SNo x)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev y)z = x + wSNo wSNoLev w SNoLev yw < yp (x + w))p z))
Hypothesis H8 : (∀z : set, z Repl (SNoR x) (λw : setw + y)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev x)z = w + ySNo wSNoLev w SNoLev xx < wp (w + y))p z))
Hypothesis H9 : (∀z : set, z Repl (SNoR y) (add_SNo x)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev y)z = x + wSNo wSNoLev w SNoLev yy < wp (x + w))p z))
Hypothesis H10 : (∀z : set, z Repl (SNoL x) (λw : setw + y)SNo z)
Hypothesis H11 : (∀z : set, z Repl (SNoL y) (add_SNo x)SNo z)
Theorem. (Conj_add_SNo_Lev_bd__29__4)
(∀z : set, z Repl (SNoR x) (λw : setw + y)SNo z)Subq (SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))))) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__29__4
Beginning of Section Conj_add_SNo_Lev_bd__29__5
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev x)Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))
Hypothesis H4 : (∀z : set, z SNoS_ (SNoLev y)Subq (SNoLev (x + z)) (SNoLev x + SNoLev z))
Hypothesis H6 : (∀z : set, z Repl (SNoL x) (λw : setw + y)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev x)z = w + ySNo wSNoLev w SNoLev xw < xp (w + y))p z))
Hypothesis H7 : (∀z : set, z Repl (SNoL y) (add_SNo x)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev y)z = x + wSNo wSNoLev w SNoLev yw < yp (x + w))p z))
Hypothesis H8 : (∀z : set, z Repl (SNoR x) (λw : setw + y)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev x)z = w + ySNo wSNoLev w SNoLev xx < wp (w + y))p z))
Hypothesis H9 : (∀z : set, z Repl (SNoR y) (add_SNo x)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev y)z = x + wSNo wSNoLev w SNoLev yy < wp (x + w))p z))
Hypothesis H10 : (∀z : set, z Repl (SNoL x) (λw : setw + y)SNo z)
Hypothesis H11 : (∀z : set, z Repl (SNoL y) (add_SNo x)SNo z)
Theorem. (Conj_add_SNo_Lev_bd__29__5)
(∀z : set, z Repl (SNoR x) (λw : setw + y)SNo z)Subq (SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))))) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__29__5
Beginning of Section Conj_add_SNo_Lev_bd__34__6
Variable x : set
Variable y : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : ordinal (SNoLev x + SNoLev y)
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev x)Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))
Hypothesis H4 : (∀z : set, z SNoS_ (SNoLev y)Subq (SNoLev (x + z)) (SNoLev x + SNoLev z))
Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x)))) ordsucc (binunion (famunion (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (λz : setordsucc (SNoLev z))) (famunion (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))) (λz : setordsucc (SNoLev z))))
Theorem. (Conj_add_SNo_Lev_bd__34__6)
(∀z : set, z Repl (SNoL y) (add_SNo x)(∀p : setprop, (∀w : set, w SNoS_ (SNoLev y)z = x + wSNo wSNoLev w SNoLev yw < yp (x + w))p z))Subq (SNoLev (SNoCut (binunion (Repl (SNoL x) (λz : setz + y)) (Repl (SNoL y) (add_SNo x))) (binunion (Repl (SNoR x) (λz : setz + y)) (Repl (SNoR y) (add_SNo x))))) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__34__6
Beginning of Section Conj_add_SNo_Lev_bd__38__0
Variable x : set
Variable y : set
Hypothesis H1 : SNo y
Theorem. (Conj_add_SNo_Lev_bd__38__0)
SNo (x + y)(∀z : set, z SNoS_ (SNoLev x)Subq (SNoLev (z + y)) (SNoLev z + SNoLev y))(∀z : set, z SNoS_ (SNoLev y)Subq (SNoLev (x + z)) (SNoLev x + SNoLev z))(∀z : set, z SNoS_ (SNoLev x)(∀w : set, w SNoS_ (SNoLev y)Subq (SNoLev (z + w)) (SNoLev z + SNoLev w)))Subq (SNoLev (x + y)) (SNoLev x + SNoLev y)
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lev_bd__38__0
Beginning of Section Conj_add_SNo_SNoS_omega__1__2
Variable x : set
Variable y : set
Hypothesis H0 : SNoLev x ω
Hypothesis H1 : SNo x
Hypothesis H3 : SNo y
Theorem. (Conj_add_SNo_SNoS_omega__1__2)
ordinal (SNoLev (x + y))SNoLev (x + y) ω
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_SNoS_omega__1__2
Beginning of Section Conj_add_SNo_minus_Lt_lem__2__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H7 : SNo (- z)
Hypothesis H8 : SNo (- v)
Theorem. (Conj_add_SNo_minus_Lt_lem__2__6)
SNo (x + y)(x + y + - z) < w + u + - v
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_minus_Lt_lem__2__6
Beginning of Section Conj_add_SNo_Lt_subprop3c__2__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H6 : (y + v) < u
Hypothesis H7 : (x + z) < v + w
Theorem. (Conj_add_SNo_Lt_subprop3c__2__3)
SNo (x + z)(x + y + z) < w + u
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lt_subprop3c__2__3
Beginning of Section Conj_add_SNo_Lt_subprop3c__2__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H6 : (y + v) < u
Theorem. (Conj_add_SNo_Lt_subprop3c__2__7)
SNo (x + z)(x + y + z) < w + u
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lt_subprop3c__2__7
Beginning of Section Conj_add_SNo_Lt_subprop3c__3__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H6 : SNo x2
Hypothesis H7 : SNo y2
Hypothesis H8 : (x + v) < x2 + y2
Hypothesis H9 : (y + y2) < u
Hypothesis H10 : (x2 + z) < w + v
Theorem. (Conj_add_SNo_Lt_subprop3c__3__0)
(x + z) < y2 + w(x + y + z) < w + u
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lt_subprop3c__3__0
Beginning of Section Conj_add_SNo_Lt_subprop3c__3__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H4 : SNo u
Hypothesis H5 : SNo v
Hypothesis H7 : SNo y2
Hypothesis H8 : (x + v) < x2 + y2
Hypothesis H9 : (y + y2) < u
Hypothesis H10 : (x2 + z) < w + v
Theorem. (Conj_add_SNo_Lt_subprop3c__3__6)
(x + z) < y2 + w(x + y + z) < w + u
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lt_subprop3c__3__6
Beginning of Section Conj_add_SNo_Lt_subprop3d__2__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo z
Hypothesis H3 : SNo w
Hypothesis H5 : SNo v
Hypothesis H6 : (x + u) < v + w
Theorem. (Conj_add_SNo_Lt_subprop3d__2__4)
x + y + z + u = (y + z) + x + u(x + y + z + u) < (y + z + w) + v
Proof:
The rest of the proof is missing.

End of Section Conj_add_SNo_Lt_subprop3d__2__4
Beginning of Section Conj_mul_SNo_eq__1__0
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H1 : z SNoS_ (SNoLev x)
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__1__0)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__1__0
Beginning of Section Conj_mul_SNo_eq__1__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__1__1)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__1__1
Beginning of Section Conj_mul_SNo_eq__1__2
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H1 : z SNoS_ (SNoLev x)
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__1__2)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__1__2
Beginning of Section Conj_mul_SNo_eq__2__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H2 : z SNoS_ (SNoLev x)
Hypothesis H4 : SNo w
Hypothesis H5 : g z y = h z y
Theorem. (Conj_mul_SNo_eq__2__3)
g x w = h x wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__2__3
Beginning of Section Conj_mul_SNo_eq__3__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : w SNoS_ (SNoLev y)
Hypothesis H5 : SNo w
Theorem. (Conj_mul_SNo_eq__3__3)
g z y = h z yg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__3__3
Beginning of Section Conj_mul_SNo_eq__3__4
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : z SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Theorem. (Conj_mul_SNo_eq__3__4)
g z y = h z yg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__3__4
Beginning of Section Conj_mul_SNo_eq__4__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : w SNoL y
Hypothesis H4 : z SNoS_ (SNoLev x)
Hypothesis H5 : w SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_eq__4__1)
SNo wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__4__1
Beginning of Section Conj_mul_SNo_eq__4__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : z SNoS_ (SNoLev x)
Hypothesis H5 : w SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_eq__4__3)
SNo wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__4__3
Beginning of Section Conj_mul_SNo_eq__5__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : w SNoL y
Hypothesis H4 : z SNoS_ (SNoLev x)
Theorem. (Conj_mul_SNo_eq__5__1)
w SNoS_ (SNoLev y)g z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__5__1
Beginning of Section Conj_mul_SNo_eq__6__0
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : z SNoL x
Hypothesis H5 : w SNoL y
Theorem. (Conj_mul_SNo_eq__6__0)
z SNoS_ (SNoLev x)g z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__6__0
Beginning of Section Conj_mul_SNo_eq__7__0
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H1 : z SNoS_ (SNoLev x)
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__7__0)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__7__0
Beginning of Section Conj_mul_SNo_eq__7__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__7__1)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__7__1
Beginning of Section Conj_mul_SNo_eq__7__2
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H1 : z SNoS_ (SNoLev x)
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__7__2)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__7__2
Beginning of Section Conj_mul_SNo_eq__8__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H2 : z SNoS_ (SNoLev x)
Hypothesis H4 : SNo w
Hypothesis H5 : g z y = h z y
Theorem. (Conj_mul_SNo_eq__8__3)
g x w = h x wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__8__3
Beginning of Section Conj_mul_SNo_eq__9__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : w SNoS_ (SNoLev y)
Hypothesis H5 : SNo w
Theorem. (Conj_mul_SNo_eq__9__3)
g z y = h z yg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__9__3
Beginning of Section Conj_mul_SNo_eq__9__4
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : z SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Theorem. (Conj_mul_SNo_eq__9__4)
g z y = h z yg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__9__4
Beginning of Section Conj_mul_SNo_eq__10__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : w SNoR y
Hypothesis H4 : z SNoS_ (SNoLev x)
Hypothesis H5 : w SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_eq__10__1)
SNo wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__10__1
Beginning of Section Conj_mul_SNo_eq__10__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : z SNoS_ (SNoLev x)
Hypothesis H5 : w SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_eq__10__3)
SNo wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__10__3
Beginning of Section Conj_mul_SNo_eq__12__4
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H5 : w SNoR y
Theorem. (Conj_mul_SNo_eq__12__4)
z SNoS_ (SNoLev x)g z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__12__4
Beginning of Section Conj_mul_SNo_eq__13__0
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H1 : z SNoS_ (SNoLev x)
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__13__0)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__13__0
Beginning of Section Conj_mul_SNo_eq__13__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__13__1)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__13__1
Beginning of Section Conj_mul_SNo_eq__13__2
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H1 : z SNoS_ (SNoLev x)
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__13__2)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__13__2
Beginning of Section Conj_mul_SNo_eq__14__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H2 : z SNoS_ (SNoLev x)
Hypothesis H4 : SNo w
Hypothesis H5 : g z y = h z y
Theorem. (Conj_mul_SNo_eq__14__3)
g x w = h x wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__14__3
Beginning of Section Conj_mul_SNo_eq__15__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : w SNoS_ (SNoLev y)
Hypothesis H5 : SNo w
Theorem. (Conj_mul_SNo_eq__15__3)
g z y = h z yg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__15__3
Beginning of Section Conj_mul_SNo_eq__15__4
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : z SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Theorem. (Conj_mul_SNo_eq__15__4)
g z y = h z yg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__15__4
Beginning of Section Conj_mul_SNo_eq__16__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : w SNoR y
Hypothesis H4 : z SNoS_ (SNoLev x)
Hypothesis H5 : w SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_eq__16__1)
SNo wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__16__1
Beginning of Section Conj_mul_SNo_eq__16__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : z SNoS_ (SNoLev x)
Hypothesis H5 : w SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_eq__16__3)
SNo wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__16__3
Beginning of Section Conj_mul_SNo_eq__18__4
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H5 : w SNoR y
Theorem. (Conj_mul_SNo_eq__18__4)
z SNoS_ (SNoLev x)g z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__18__4
Beginning of Section Conj_mul_SNo_eq__19__0
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H1 : z SNoS_ (SNoLev x)
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__19__0)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__19__0
Beginning of Section Conj_mul_SNo_eq__19__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : SNo w
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__19__1)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__19__1
Beginning of Section Conj_mul_SNo_eq__19__2
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H1 : z SNoS_ (SNoLev x)
Hypothesis H3 : g z y = h z y
Hypothesis H4 : g x w = h x w
Theorem. (Conj_mul_SNo_eq__19__2)
g z w = h z wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__19__2
Beginning of Section Conj_mul_SNo_eq__20__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H2 : z SNoS_ (SNoLev x)
Hypothesis H4 : SNo w
Hypothesis H5 : g z y = h z y
Theorem. (Conj_mul_SNo_eq__20__3)
g x w = h x wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__20__3
Beginning of Section Conj_mul_SNo_eq__21__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : w SNoS_ (SNoLev y)
Hypothesis H5 : SNo w
Theorem. (Conj_mul_SNo_eq__21__3)
g z y = h z yg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__21__3
Beginning of Section Conj_mul_SNo_eq__21__4
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : z SNoS_ (SNoLev x)
Hypothesis H5 : SNo w
Theorem. (Conj_mul_SNo_eq__21__4)
g z y = h z yg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__21__4
Beginning of Section Conj_mul_SNo_eq__22__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : w SNoL y
Hypothesis H4 : z SNoS_ (SNoLev x)
Hypothesis H5 : w SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_eq__22__1)
SNo wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__22__1
Beginning of Section Conj_mul_SNo_eq__22__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H4 : z SNoS_ (SNoLev x)
Hypothesis H5 : w SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_eq__22__3)
SNo wg z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__22__3
Beginning of Section Conj_mul_SNo_eq__23__1
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev y)g x u = h x u)
Hypothesis H3 : w SNoL y
Hypothesis H4 : z SNoS_ (SNoLev x)
Theorem. (Conj_mul_SNo_eq__23__1)
w SNoS_ (SNoLev y)g z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__23__1
Beginning of Section Conj_mul_SNo_eq__24__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo vg u v = h u v))
Hypothesis H4 : z SNoR x
Hypothesis H5 : w SNoL y
Theorem. (Conj_mul_SNo_eq__24__3)
z SNoS_ (SNoLev x)g z y + g x w + - (g z w) = h z y + h x w + - (h z w)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__24__3
Beginning of Section Conj_mul_SNo_eq__25__0
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev x)(∀w : set, SNo wg z w = h z w))
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev y)g x z = h x z)
Hypothesis H4 : Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H5 : Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H6 : Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (Conj_mul_SNo_eq__25__0)
Repl (setprod (SNoR x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__25__0
Beginning of Section Conj_mul_SNo_eq__25__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev x)(∀w : set, SNo wg z w = h z w))
Hypothesis H4 : Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H5 : Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H6 : Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (Conj_mul_SNo_eq__25__3)
Repl (setprod (SNoR x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__25__3
Beginning of Section Conj_mul_SNo_eq__25__4
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev x)(∀w : set, SNo wg z w = h z w))
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev y)g x z = h x z)
Hypothesis H5 : Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H6 : Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (Conj_mul_SNo_eq__25__4)
Repl (setprod (SNoR x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__25__4
Beginning of Section Conj_mul_SNo_eq__26__3
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z : set, z SNoS_ (SNoLev x)(∀w : set, SNo wg z w = h z w))
Hypothesis H4 : Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Hypothesis H5 : Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (Conj_mul_SNo_eq__26__3)
Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__26__3
Beginning of Section Conj_mul_SNo_eq__27__2
Variable x : set
Variable y : set
Variable g : (set(setset))
Variable h : (set(setset))
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : (∀z : set, z SNoS_ (SNoLev y)g x z = h x z)
Hypothesis H4 : Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))
Theorem. (Conj_mul_SNo_eq__27__2)
Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))) = Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : setg (ap z Empty) y + g x (ap z (ordsucc Empty)) + - (g (ap z Empty) (ap z (ordsucc Empty)))))) = SNoCut (binunion (Repl (setprod (SNoL x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty)))))) (binunion (Repl (setprod (SNoL x) (SNoR y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))) (Repl (setprod (SNoR x) (SNoL y)) (λz : seth (ap z Empty) y + h x (ap z (ordsucc Empty)) + - (h (ap z Empty) (ap z (ordsucc Empty))))))
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq__27__2
Beginning of Section Conj_mul_SNo_prop_1__2__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : SNo (w * v)
Hypothesis H2 : SNo (z * y)
Hypothesis H3 : SNo (x * u)
Hypothesis H4 : SNo (w * y)
Hypothesis H5 : SNo (x * v)
Hypothesis H6 : (z * y + x * u + w * v) < w * y + x * v + z * u
Theorem. (Conj_mul_SNo_prop_1__2__0)
(z * y + x * u + - (z * u)) + z * u + w * v = z * y + x * u + w * v((z * y + x * u + - (z * u)) + z * u + w * v) < (w * y + x * v + - (w * v)) + z * u + w * v
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__2__0
Beginning of Section Conj_mul_SNo_prop_1__3__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, SNo w2(∀P : prop, (SNo (z2 * w2)(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoL w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoR w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoR w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoL w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))P)P)))
Hypothesis H1 : v SNoS_ (SNoLev x)
Hypothesis H2 : SNo x2
Hypothesis H3 : SNo (u * x2)
Hypothesis H4 : SNo (v * y2)
Hypothesis H5 : SNo (u * y)
Hypothesis H7 : SNo (v * y)
Hypothesis H8 : SNo (x * y2)
Hypothesis H9 : SNo (u * y2)
Theorem. (Conj_mul_SNo_prop_1__3__6)
SNo (v * x2)(∀P : prop, (SNo (u * y)SNo (x * x2)SNo (u * x2)SNo (v * y)SNo (x * y2)SNo (v * y2)SNo (u * y2)SNo (v * x2)(z = u * y + x * x2 + - (u * x2)w = v * y + x * y2 + - (v * y2)(u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2z < w)P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__3__6
Beginning of Section Conj_mul_SNo_prop_1__6__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, SNo w2(∀P : prop, (SNo (z2 * w2)(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoL w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoR w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoR w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoL w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))P)P)))
Hypothesis H2 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * z2)(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoL z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoR z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoR z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoL z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))P)P))
Hypothesis H3 : u SNoS_ (SNoLev x)
Hypothesis H4 : v SNoS_ (SNoLev x)
Hypothesis H5 : y2 SNoS_ (SNoLev y)
Hypothesis H6 : SNo x2
Hypothesis H7 : SNo y2
Hypothesis H8 : SNo (u * x2)
Hypothesis H9 : SNo (v * y2)
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (x * x2)
Theorem. (Conj_mul_SNo_prop_1__6__1)
SNo (v * y)(∀P : prop, (SNo (u * y)SNo (x * x2)SNo (u * x2)SNo (v * y)SNo (x * y2)SNo (v * y2)SNo (u * y2)SNo (v * x2)(z = u * y + x * x2 + - (u * x2)w = v * y + x * y2 + - (v * y2)(u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2z < w)P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__6__1
Beginning of Section Conj_mul_SNo_prop_1__7__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, SNo w2(∀P : prop, (SNo (z2 * w2)(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoL w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoR w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoR w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoL w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))P)P)))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * z2)(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoL z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoR z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoR z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoL z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))P)P))
Hypothesis H3 : u SNoS_ (SNoLev x)
Hypothesis H4 : v SNoS_ (SNoLev x)
Hypothesis H5 : x2 SNoS_ (SNoLev y)
Hypothesis H6 : y2 SNoS_ (SNoLev y)
Hypothesis H7 : SNo x2
Hypothesis H8 : SNo y2
Hypothesis H9 : SNo (u * x2)
Hypothesis H10 : SNo (v * y2)
Theorem. (Conj_mul_SNo_prop_1__7__11)
SNo (x * x2)(∀P : prop, (SNo (u * y)SNo (x * x2)SNo (u * x2)SNo (v * y)SNo (x * y2)SNo (v * y2)SNo (u * y2)SNo (v * x2)(z = u * y + x * x2 + - (u * x2)w = v * y + x * y2 + - (v * y2)(u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2z < w)P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__7__11
Beginning of Section Conj_mul_SNo_prop_1__8__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, SNo w2(∀P : prop, (SNo (z2 * w2)(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoL w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoR w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoR w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoL w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))P)P)))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * z2)(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoL z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoR z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoR z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoL z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))P)P))
Hypothesis H3 : u SNoS_ (SNoLev x)
Hypothesis H4 : v SNoS_ (SNoLev x)
Hypothesis H6 : y2 SNoS_ (SNoLev y)
Hypothesis H7 : SNo x2
Hypothesis H8 : SNo y2
Hypothesis H9 : SNo (u * x2)
Hypothesis H10 : SNo (v * y2)
Theorem. (Conj_mul_SNo_prop_1__8__5)
SNo (u * y)(∀P : prop, (SNo (u * y)SNo (x * x2)SNo (u * x2)SNo (v * y)SNo (x * y2)SNo (v * y2)SNo (u * y2)SNo (v * x2)(z = u * y + x * x2 + - (u * x2)w = v * y + x * y2 + - (v * y2)(u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2z < w)P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__8__5
Beginning of Section Conj_mul_SNo_prop_1__9__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, SNo w2(∀P : prop, (SNo (z2 * w2)(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoL w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoR w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoR w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoL w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))P)P)))
Hypothesis H2 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * z2)(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoL z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoR z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoR z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoL z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))P)P))
Hypothesis H3 : u SNoS_ (SNoLev x)
Hypothesis H4 : v SNoS_ (SNoLev x)
Hypothesis H5 : x2 SNoS_ (SNoLev y)
Hypothesis H6 : y2 SNoS_ (SNoLev y)
Hypothesis H7 : SNo x2
Hypothesis H8 : SNo y2
Hypothesis H9 : SNo (u * x2)
Theorem. (Conj_mul_SNo_prop_1__9__1)
SNo (v * y2)(∀P : prop, (SNo (u * y)SNo (x * x2)SNo (u * x2)SNo (v * y)SNo (x * y2)SNo (v * y2)SNo (u * y2)SNo (v * x2)(z = u * y + x * x2 + - (u * x2)w = v * y + x * y2 + - (v * y2)(u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2z < w)P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__9__1
Beginning of Section Conj_mul_SNo_prop_1__9__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : (∀z2 : set, z2 SNoS_ (SNoLev x)(∀w2 : set, SNo w2(∀P : prop, (SNo (z2 * w2)(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoL w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoR w2(u2 * w2 + z2 * v2) < z2 * w2 + u2 * v2))(∀u2 : set, u2 SNoL z2(∀v2 : set, v2 SNoR w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))(∀u2 : set, u2 SNoR z2(∀v2 : set, v2 SNoL w2(z2 * w2 + u2 * v2) < u2 * w2 + z2 * v2))P)P)))
Hypothesis H1 : SNo y
Hypothesis H2 : (∀z2 : set, z2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * z2)(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoL z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoR z2(w2 * z2 + x * u2) < x * z2 + w2 * u2))(∀w2 : set, w2 SNoL x(∀u2 : set, u2 SNoR z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))(∀w2 : set, w2 SNoR x(∀u2 : set, u2 SNoL z2(x * z2 + w2 * u2) < w2 * z2 + x * u2))P)P))
Hypothesis H3 : u SNoS_ (SNoLev x)
Hypothesis H4 : v SNoS_ (SNoLev x)
Hypothesis H5 : x2 SNoS_ (SNoLev y)
Hypothesis H7 : SNo x2
Hypothesis H8 : SNo y2
Hypothesis H9 : SNo (u * x2)
Theorem. (Conj_mul_SNo_prop_1__9__6)
SNo (v * y2)(∀P : prop, (SNo (u * y)SNo (x * x2)SNo (u * x2)SNo (v * y)SNo (x * y2)SNo (v * y2)SNo (u * y2)SNo (v * x2)(z = u * y + x * x2 + - (u * x2)w = v * y + x * y2 + - (v * y2)(u * y + x * x2 + v * y2) < v * y + x * y2 + u * x2z < w)P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__9__6
Beginning of Section Conj_mul_SNo_prop_1__13__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : z SNoR y
Hypothesis H3 : w SNoL y
Hypothesis H5 : SNo (x * w)
Hypothesis H6 : u SNoR x
Hypothesis H7 : SNo (u * z)
Hypothesis H8 : SNo (u * w)
Hypothesis H9 : v SNoL z
Hypothesis H10 : v SNoR w
Hypothesis H11 : v SNoS_ (SNoLev y)
Hypothesis H12 : SNo (u * v)
Theorem. (Conj_mul_SNo_prop_1__13__4)
SNo (x * v)(x * z + u * w) < u * z + x * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__13__4
Beginning of Section Conj_mul_SNo_prop_1__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : z SNoR y
Hypothesis H3 : w SNoL y
Hypothesis H4 : SNo (x * z)
Hypothesis H6 : u SNoR x
Hypothesis H7 : SNo (u * z)
Hypothesis H8 : SNo (u * w)
Hypothesis H9 : v SNoL z
Hypothesis H10 : v SNoR w
Hypothesis H11 : v SNoS_ (SNoLev y)
Hypothesis H12 : SNo (u * v)
Theorem. (Conj_mul_SNo_prop_1__13__5)
SNo (x * v)(x * z + u * w) < u * z + x * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__13__5
Beginning of Section Conj_mul_SNo_prop_1__17__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀v : set, v SNoS_ (SNoLev y)(∀P : prop, (SNo (x * v)(∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL v(x2 * v + x * y2) < x * v + x2 * y2))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR v(x2 * v + x * y2) < x * v + x2 * y2))(∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR v(x * v + x2 * y2) < x2 * v + x * y2))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL v(x * v + x2 * y2) < x2 * v + x * y2))P)P))
Hypothesis H2 : (∀v : set, v SNoR x(∀x2 : set, SNo x2SNo (v * x2)))
Hypothesis H3 : z SNoR y
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z SNoLev y
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : w < z
Theorem. (Conj_mul_SNo_prop_1__17__11)
SNo (u * z)(x * z + u * w) < u * z + x * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__17__11
Beginning of Section Conj_mul_SNo_prop_1__18__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 SNoR xSNo (y2 * y))
Hypothesis H6 : v SNoL y
Hypothesis H7 : SNo v
Hypothesis H8 : SNo (z * y)
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : SNo (z * w)
Hypothesis H11 : SNo (u * y)
Hypothesis H12 : SNo (x * v)
Hypothesis H13 : SNo (u * v)
Hypothesis H14 : SNo (z * v)
Hypothesis H15 : (x * w + z * v) < z * w + x * v
Hypothesis H16 : x2 SNoL u
Hypothesis H17 : x2 SNoR x
Hypothesis H18 : (z * y + x2 * v) < x2 * y + z * v
Theorem. (Conj_mul_SNo_prop_1__18__5)
(x2 * y + u * v) < u * y + x2 * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__18__5
Beginning of Section Conj_mul_SNo_prop_1__19__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 SNoR xSNo (y2 * y))
Hypothesis H6 : u SNoR x
Hypothesis H7 : v SNoL y
Hypothesis H8 : SNo v
Hypothesis H9 : SNo (z * y)
Hypothesis H10 : SNo (x * w)
Hypothesis H11 : SNo (z * w)
Hypothesis H12 : SNo (u * y)
Hypothesis H13 : SNo (x * v)
Hypothesis H14 : SNo (u * v)
Hypothesis H15 : SNo (z * v)
Hypothesis H16 : (x * w + z * v) < z * w + x * v
Hypothesis H17 : x2 SNoR z
Hypothesis H18 : x2 SNoL u
Hypothesis H19 : x2 SNoR x
Theorem. (Conj_mul_SNo_prop_1__19__5)
(z * y + x2 * v) < x2 * y + z * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__19__5
Beginning of Section Conj_mul_SNo_prop_1__20__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 SNoR xSNo (y2 * y))
Hypothesis H5 : z SNoR x
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z SNoLev x
Hypothesis H8 : x < z
Hypothesis H9 : u SNoR x
Hypothesis H10 : v SNoL y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo (z * y)
Hypothesis H13 : SNo (x * w)
Hypothesis H14 : SNo (z * w)
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (x * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (z * v)
Hypothesis H19 : (x * w + z * v) < z * w + x * v
Hypothesis H20 : x2 SNoR z
Hypothesis H21 : x2 SNoL u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNoLev x2 SNoLev z
Hypothesis H24 : z < x2
Theorem. (Conj_mul_SNo_prop_1__20__0)
x2 SNoR x(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__20__0
Beginning of Section Conj_mul_SNo_prop_1__20__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 SNoR xSNo (y2 * y))
Hypothesis H5 : z SNoR x
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z SNoLev x
Hypothesis H8 : x < z
Hypothesis H9 : u SNoR x
Hypothesis H10 : v SNoL y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo (z * y)
Hypothesis H13 : SNo (x * w)
Hypothesis H14 : SNo (z * w)
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (x * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (z * v)
Hypothesis H20 : x2 SNoR z
Hypothesis H21 : x2 SNoL u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNoLev x2 SNoLev z
Hypothesis H24 : z < x2
Theorem. (Conj_mul_SNo_prop_1__20__19)
x2 SNoR x(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__20__19
Beginning of Section Conj_mul_SNo_prop_1__20__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 SNoR xSNo (y2 * y))
Hypothesis H5 : z SNoR x
Hypothesis H6 : SNo z
Hypothesis H7 : SNoLev z SNoLev x
Hypothesis H8 : x < z
Hypothesis H9 : u SNoR x
Hypothesis H10 : v SNoL y
Hypothesis H11 : SNo v
Hypothesis H12 : SNo (z * y)
Hypothesis H13 : SNo (x * w)
Hypothesis H14 : SNo (z * w)
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (x * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (z * v)
Hypothesis H19 : (x * w + z * v) < z * w + x * v
Hypothesis H20 : x2 SNoR z
Hypothesis H21 : x2 SNoL u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNoLev x2 SNoLev z
Theorem. (Conj_mul_SNo_prop_1__20__24)
x2 SNoR x(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__20__24
Beginning of Section Conj_mul_SNo_prop_1__23__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : u SNoR x
Hypothesis H9 : SNo u
Hypothesis H10 : SNoLev u SNoLev x
Hypothesis H11 : x < u
Hypothesis H12 : SNo (z * y)
Hypothesis H13 : SNo (x * w)
Hypothesis H14 : SNo (z * w)
Hypothesis H15 : SNo (u * y)
Hypothesis H16 : SNo (x * v)
Hypothesis H17 : SNo (u * v)
Hypothesis H18 : SNo (u * w)
Hypothesis H19 : (x * w + u * v) < u * w + x * v
Hypothesis H20 : x2 SNoL z
Hypothesis H21 : x2 SNoR u
Hypothesis H22 : SNo x2
Hypothesis H23 : SNoLev x2 SNoLev u
Hypothesis H24 : u < x2
Theorem. (Conj_mul_SNo_prop_1__23__4)
x2 SNoR x(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__23__4
Beginning of Section Conj_mul_SNo_prop_1__25__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : x < z
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoR x
Hypothesis H12 : v SNoL y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : x < u
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H25 : (x * w + z * v) < z * w + x * v
Hypothesis H26 : (x * w + u * v) < u * w + x * v
Theorem. (Conj_mul_SNo_prop_1__25__24)
((z * y + u * v) < u * y + z * v(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__25__24
Beginning of Section Conj_mul_SNo_prop_1__26__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : x < z
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoR x
Hypothesis H12 : v SNoL y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (∀x2 : set, x2 SNoR x(x * w + x2 * v) < x2 * w + x * v)
Hypothesis H26 : (x * w + z * v) < z * w + x * v
Theorem. (Conj_mul_SNo_prop_1__26__15)
(x * w + u * v) < u * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__26__15
Beginning of Section Conj_mul_SNo_prop_1__27__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo z
Hypothesis H9 : x < z
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoR x
Hypothesis H12 : v SNoL y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : x < u
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (∀x2 : set, x2 SNoR x(x * w + x2 * v) < x2 * w + x * v)
Theorem. (Conj_mul_SNo_prop_1__27__8)
(x * w + z * v) < z * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__27__8
Beginning of Section Conj_mul_SNo_prop_1__28__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H6 : z SNoR x
Hypothesis H7 : w SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : u SNoR x
Hypothesis H14 : v SNoL y
Hypothesis H15 : SNo u
Hypothesis H16 : SNoLev u SNoLev x
Hypothesis H17 : x < u
Hypothesis H18 : SNo v
Hypothesis H19 : SNo (z * y)
Hypothesis H20 : SNo (x * w)
Hypothesis H21 : SNo (z * w)
Hypothesis H22 : SNo (u * y)
Hypothesis H23 : SNo (x * v)
Hypothesis H24 : SNo (u * v)
Hypothesis H25 : SNo (z * v)
Hypothesis H26 : SNo (u * w)
Hypothesis H27 : v < w
Theorem. (Conj_mul_SNo_prop_1__28__0)
(∀x2 : set, x2 SNoR x(x * w + x2 * v) < x2 * w + x * v)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__28__0
Beginning of Section Conj_mul_SNo_prop_1__28__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H6 : z SNoR x
Hypothesis H7 : w SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H14 : v SNoL y
Hypothesis H15 : SNo u
Hypothesis H16 : SNoLev u SNoLev x
Hypothesis H17 : x < u
Hypothesis H18 : SNo v
Hypothesis H19 : SNo (z * y)
Hypothesis H20 : SNo (x * w)
Hypothesis H21 : SNo (z * w)
Hypothesis H22 : SNo (u * y)
Hypothesis H23 : SNo (x * v)
Hypothesis H24 : SNo (u * v)
Hypothesis H25 : SNo (z * v)
Hypothesis H26 : SNo (u * w)
Hypothesis H27 : v < w
Theorem. (Conj_mul_SNo_prop_1__28__13)
(∀x2 : set, x2 SNoR x(x * w + x2 * v) < x2 * w + x * v)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__28__13
Beginning of Section Conj_mul_SNo_prop_1__28__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H6 : z SNoR x
Hypothesis H7 : w SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : u SNoR x
Hypothesis H14 : v SNoL y
Hypothesis H15 : SNo u
Hypothesis H16 : SNoLev u SNoLev x
Hypothesis H17 : x < u
Hypothesis H19 : SNo (z * y)
Hypothesis H20 : SNo (x * w)
Hypothesis H21 : SNo (z * w)
Hypothesis H22 : SNo (u * y)
Hypothesis H23 : SNo (x * v)
Hypothesis H24 : SNo (u * v)
Hypothesis H25 : SNo (z * v)
Hypothesis H26 : SNo (u * w)
Hypothesis H27 : v < w
Theorem. (Conj_mul_SNo_prop_1__28__18)
(∀x2 : set, x2 SNoR x(x * w + x2 * v) < x2 * w + x * v)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__28__18
Beginning of Section Conj_mul_SNo_prop_1__29__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H6 : z SNoR x
Hypothesis H7 : w SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u SNoR x
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u SNoLev x
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H26 : SNo (u * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__29__15)
v < w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__29__15
Beginning of Section Conj_mul_SNo_prop_1__29__22
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H6 : z SNoR x
Hypothesis H7 : w SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u SNoR x
Hypothesis H15 : v SNoL y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u SNoLev x
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (z * y)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H26 : SNo (u * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__29__22)
v < w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__29__22
Beginning of Section Conj_mul_SNo_prop_1__29__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H6 : z SNoR x
Hypothesis H7 : w SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u SNoR x
Hypothesis H15 : v SNoL y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u SNoLev x
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H26 : SNo (u * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__29__23)
v < w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__29__23
Beginning of Section Conj_mul_SNo_prop_1__29__26
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR xSNo (x2 * y))
Hypothesis H6 : z SNoR x
Hypothesis H7 : w SNoR y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : x < z
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u SNoR x
Hypothesis H15 : v SNoL y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u SNoLev x
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : v < y
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__29__26)
v < w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__29__26
Beginning of Section Conj_mul_SNo_prop_1__30__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H4 : SNo (z * y)
Hypothesis H5 : SNo (w * y)
Hypothesis H6 : u SNoR y
Hypothesis H7 : SNo (z * u)
Hypothesis H8 : SNo (w * u)
Hypothesis H9 : v SNoR w
Hypothesis H10 : SNo (v * u)
Hypothesis H11 : SNo (v * y)
Hypothesis H12 : (z * y + v * u) < z * u + v * y
Theorem. (Conj_mul_SNo_prop_1__30__3)
(w * u + v * y) < w * y + v * u(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__30__3
Beginning of Section Conj_mul_SNo_prop_1__31__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u SNoR y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v SNoL z
Hypothesis H11 : v SNoR w
Hypothesis H12 : SNo (v * u)
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_prop_1__31__4)
(z * y + v * u) < z * u + v * y(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__31__4
Beginning of Section Conj_mul_SNo_prop_1__32__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoR x
Hypothesis H4 : w SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H7 : u SNoR y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v SNoL z
Hypothesis H11 : v SNoR w
Hypothesis H12 : v SNoS_ (SNoLev x)
Hypothesis H13 : SNo (v * u)
Theorem. (Conj_mul_SNo_prop_1__32__6)
SNo (v * y)(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__32__6
Beginning of Section Conj_mul_SNo_prop_1__32__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoR x
Hypothesis H4 : w SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v SNoL z
Hypothesis H11 : v SNoR w
Hypothesis H12 : v SNoS_ (SNoLev x)
Hypothesis H13 : SNo (v * u)
Theorem. (Conj_mul_SNo_prop_1__32__7)
SNo (v * y)(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__32__7
Beginning of Section Conj_mul_SNo_prop_1__33__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H3 : z SNoR x
Hypothesis H4 : w SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u SNoR y
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (z * u)
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : v SNoL z
Hypothesis H12 : v SNoR w
Hypothesis H13 : v SNoS_ (SNoLev x)
Theorem. (Conj_mul_SNo_prop_1__33__2)
SNo (v * u)(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__33__2
Beginning of Section Conj_mul_SNo_prop_1__33__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoR x
Hypothesis H4 : w SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H7 : u SNoR y
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (z * u)
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : v SNoL z
Hypothesis H12 : v SNoR w
Hypothesis H13 : v SNoS_ (SNoLev x)
Theorem. (Conj_mul_SNo_prop_1__33__6)
SNo (v * u)(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__33__6
Beginning of Section Conj_mul_SNo_prop_1__35__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H3 : z SNoR x
Hypothesis H4 : SNoLev z SNoLev x
Hypothesis H5 : w SNoL x
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (w * y)
Hypothesis H8 : u SNoR y
Hypothesis H9 : SNo u
Hypothesis H10 : SNo (z * u)
Hypothesis H11 : SNo (w * u)
Hypothesis H12 : v SNoL z
Hypothesis H13 : v SNoR w
Hypothesis H14 : SNo v
Hypothesis H15 : SNoLev v SNoLev z
Theorem. (Conj_mul_SNo_prop_1__35__2)
SNoLev v SNoLev x(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__35__2
Beginning of Section Conj_mul_SNo_prop_1__39__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * y2)(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))P)P))
Hypothesis H2 : (∀y2 : set, y2 SNoL x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 SNoR ySNo (x * y2))
Hypothesis H4 : w SNoR y
Hypothesis H5 : u SNoL x
Hypothesis H6 : v SNoR y
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (x * v)
Hypothesis H12 : SNo (u * v)
Hypothesis H13 : SNo (u * w)
Hypothesis H14 : (z * y + u * w) < u * y + z * w
Hypothesis H16 : x2 SNoL v
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 SNoR y
Theorem. (Conj_mul_SNo_prop_1__39__15)
(x * w + u * x2) < x * x2 + u * w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__39__15
Beginning of Section Conj_mul_SNo_prop_1__42__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * y2)(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))P)P))
Hypothesis H2 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 SNoR ySNo (x * y2))
Hypothesis H4 : z SNoR x
Hypothesis H5 : w SNoR y
Hypothesis H6 : v SNoR y
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (x * v)
Hypothesis H12 : SNo (u * v)
Hypothesis H13 : SNo (z * v)
Hypothesis H14 : (z * y + u * v) < u * y + z * v
Hypothesis H15 : x2 SNoL w
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 SNoR y
Theorem. (Conj_mul_SNo_prop_1__42__16)
(x * w + z * x2) < x * x2 + z * w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__42__16
Beginning of Section Conj_mul_SNo_prop_1__43__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * y2)(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))P)P))
Hypothesis H2 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 SNoR ySNo (x * y2))
Hypothesis H4 : z SNoR x
Hypothesis H5 : w SNoR y
Hypothesis H6 : v SNoR y
Hypothesis H7 : SNo v
Hypothesis H8 : SNoLev v SNoLev y
Hypothesis H10 : SNo (z * y)
Hypothesis H11 : SNo (x * w)
Hypothesis H12 : SNo (z * w)
Hypothesis H13 : SNo (u * y)
Hypothesis H14 : SNo (x * v)
Hypothesis H15 : SNo (u * v)
Hypothesis H16 : SNo (z * v)
Hypothesis H17 : (z * y + u * v) < u * y + z * v
Hypothesis H18 : x2 SNoL w
Hypothesis H19 : x2 SNoR v
Hypothesis H20 : SNo x2
Hypothesis H21 : SNoLev x2 SNoLev v
Hypothesis H22 : v < x2
Theorem. (Conj_mul_SNo_prop_1__43__9)
x2 SNoR y(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__43__9
Beginning of Section Conj_mul_SNo_prop_1__43__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * y2)(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))P)P))
Hypothesis H2 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 SNoR ySNo (x * y2))
Hypothesis H4 : z SNoR x
Hypothesis H5 : w SNoR y
Hypothesis H6 : v SNoR y
Hypothesis H7 : SNo v
Hypothesis H8 : SNoLev v SNoLev y
Hypothesis H9 : y < v
Hypothesis H10 : SNo (z * y)
Hypothesis H11 : SNo (x * w)
Hypothesis H12 : SNo (z * w)
Hypothesis H13 : SNo (u * y)
Hypothesis H14 : SNo (x * v)
Hypothesis H15 : SNo (u * v)
Hypothesis H16 : SNo (z * v)
Hypothesis H18 : x2 SNoL w
Hypothesis H19 : x2 SNoR v
Hypothesis H20 : SNo x2
Hypothesis H21 : SNoLev x2 SNoLev v
Hypothesis H22 : v < x2
Theorem. (Conj_mul_SNo_prop_1__43__17)
x2 SNoR y(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__43__17
Beginning of Section Conj_mul_SNo_prop_1__44__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoR ySNo (x * x2))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : y < w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR y
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : y < v
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Hypothesis H25 : (x * w + u * v) < u * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w
Theorem. (Conj_mul_SNo_prop_1__44__12)
((x * w + z * v) < x * v + z * w(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__44__12
Beginning of Section Conj_mul_SNo_prop_1__44__19
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoR ySNo (x * x2))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : y < w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : y < v
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Hypothesis H25 : (x * w + u * v) < u * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w
Theorem. (Conj_mul_SNo_prop_1__44__19)
((x * w + z * v) < x * v + z * w(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__44__19
Beginning of Section Conj_mul_SNo_prop_1__44__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoR ySNo (x * x2))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : y < w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : y < v
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Theorem. (Conj_mul_SNo_prop_1__44__25)
((x * w + z * v) < x * v + z * w(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__44__25
Beginning of Section Conj_mul_SNo_prop_1__45__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoR ySNo (x * x2))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : y < w
Hypothesis H11 : v SNoR y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : y < v
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Theorem. (Conj_mul_SNo_prop_1__45__10)
((x * w + u * v) < u * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__45__10
Beginning of Section Conj_mul_SNo_prop_1__46__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoR ySNo (x * x2))
Hypothesis H5 : z SNoR x
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : y < w
Hypothesis H10 : u SNoL x
Hypothesis H11 : v SNoR y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : y < v
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (∀x2 : set, x2 SNoR y(z * y + u * x2) < u * y + z * x2)
Hypothesis H24 : (z * y + u * w) < u * y + z * w
Theorem. (Conj_mul_SNo_prop_1__46__15)
(z * y + u * v) < u * y + z * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__46__15
Beginning of Section Conj_mul_SNo_prop_1__48__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 SNoR ySNo (x * x2))
Hypothesis H7 : z SNoR x
Hypothesis H8 : w SNoR y
Hypothesis H9 : SNo z
Hypothesis H10 : SNoLev z SNoLev x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : y < w
Hypothesis H14 : u SNoL x
Hypothesis H15 : v SNoR y
Hypothesis H16 : SNo u
Hypothesis H17 : SNo v
Hypothesis H18 : SNoLev v SNoLev y
Hypothesis H19 : y < v
Hypothesis H20 : SNo (z * y)
Hypothesis H21 : SNo (x * w)
Hypothesis H22 : SNo (z * w)
Hypothesis H23 : SNo (u * y)
Hypothesis H24 : SNo (x * v)
Hypothesis H25 : SNo (u * v)
Hypothesis H26 : SNo (z * v)
Hypothesis H27 : SNo (u * w)
Hypothesis H28 : u < z
Theorem. (Conj_mul_SNo_prop_1__48__5)
(∀x2 : set, x2 SNoR y(z * y + u * x2) < u * y + z * x2)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__48__5
Beginning of Section Conj_mul_SNo_prop_1__49__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 SNoR ySNo (x * x2))
Hypothesis H7 : z SNoR x
Hypothesis H8 : w SNoR y
Hypothesis H10 : SNoLev z SNoLev x
Hypothesis H11 : x < z
Hypothesis H12 : SNo w
Hypothesis H13 : SNoLev w SNoLev y
Hypothesis H14 : y < w
Hypothesis H15 : u SNoL x
Hypothesis H16 : v SNoR y
Hypothesis H17 : SNo u
Hypothesis H18 : u < x
Hypothesis H19 : SNo v
Hypothesis H20 : SNoLev v SNoLev y
Hypothesis H21 : y < v
Hypothesis H22 : SNo (z * y)
Hypothesis H23 : SNo (x * w)
Hypothesis H24 : SNo (z * w)
Hypothesis H25 : SNo (u * y)
Hypothesis H26 : SNo (x * v)
Hypothesis H27 : SNo (u * v)
Hypothesis H28 : SNo (z * v)
Hypothesis H29 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__49__9)
u < z(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__49__9
Beginning of Section Conj_mul_SNo_prop_1__49__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 SNoR ySNo (x * x2))
Hypothesis H7 : z SNoR x
Hypothesis H8 : w SNoR y
Hypothesis H9 : SNo z
Hypothesis H10 : SNoLev z SNoLev x
Hypothesis H11 : x < z
Hypothesis H12 : SNo w
Hypothesis H13 : SNoLev w SNoLev y
Hypothesis H14 : y < w
Hypothesis H16 : v SNoR y
Hypothesis H17 : SNo u
Hypothesis H18 : u < x
Hypothesis H19 : SNo v
Hypothesis H20 : SNoLev v SNoLev y
Hypothesis H21 : y < v
Hypothesis H22 : SNo (z * y)
Hypothesis H23 : SNo (x * w)
Hypothesis H24 : SNo (z * w)
Hypothesis H25 : SNo (u * y)
Hypothesis H26 : SNo (x * v)
Hypothesis H27 : SNo (u * v)
Hypothesis H28 : SNo (z * v)
Hypothesis H29 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__49__15)
u < z(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__49__15
Beginning of Section Conj_mul_SNo_prop_1__51__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoL x
Hypothesis H4 : w SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u SNoL y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v SNoL w
Hypothesis H11 : v SNoR z
Hypothesis H12 : SNo (v * u)
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_prop_1__51__0)
(z * y + v * u) < z * u + v * y(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__51__0
Beginning of Section Conj_mul_SNo_prop_1__51__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H3 : z SNoL x
Hypothesis H4 : w SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u SNoL y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v SNoL w
Hypothesis H11 : v SNoR z
Hypothesis H12 : SNo (v * u)
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_prop_1__51__2)
(z * y + v * u) < z * u + v * y(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__51__2
Beginning of Section Conj_mul_SNo_prop_1__51__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoL x
Hypothesis H4 : w SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u SNoL y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v SNoL w
Hypothesis H11 : v SNoR z
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_prop_1__51__12)
(z * y + v * u) < z * u + v * y(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__51__12
Beginning of Section Conj_mul_SNo_prop_1__52__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoL x
Hypothesis H4 : w SNoR x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u SNoL y
Hypothesis H8 : SNo (z * u)
Hypothesis H9 : SNo (w * u)
Hypothesis H10 : v SNoL w
Hypothesis H11 : v SNoR z
Hypothesis H13 : SNo (v * u)
Theorem. (Conj_mul_SNo_prop_1__52__12)
SNo (v * y)(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__52__12
Beginning of Section Conj_mul_SNo_prop_1__54__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoL x
Hypothesis H5 : SNo (z * y)
Hypothesis H6 : SNo (w * y)
Hypothesis H7 : u SNoL y
Hypothesis H8 : SNo u
Hypothesis H9 : SNo (z * u)
Hypothesis H10 : SNo (w * u)
Hypothesis H11 : v SNoL w
Hypothesis H12 : v SNoR z
Hypothesis H13 : SNo v
Hypothesis H14 : SNoLev v SNoLev x
Theorem. (Conj_mul_SNo_prop_1__54__4)
v SNoS_ (SNoLev x)(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__54__4
Beginning of Section Conj_mul_SNo_prop_1__55__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo y
Hypothesis H3 : z SNoL x
Hypothesis H4 : SNoLev z SNoLev x
Hypothesis H5 : w SNoR x
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (w * y)
Hypothesis H8 : u SNoL y
Hypothesis H9 : SNo u
Hypothesis H10 : SNo (z * u)
Hypothesis H11 : SNo (w * u)
Hypothesis H12 : v SNoL w
Hypothesis H13 : v SNoR z
Hypothesis H14 : SNo v
Hypothesis H15 : SNoLev v SNoLev z
Theorem. (Conj_mul_SNo_prop_1__55__1)
SNoLev v SNoLev x(z * y + w * u) < w * y + z * u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__55__1
Beginning of Section Conj_mul_SNo_prop_1__58__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * y2)(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))P)P))
Hypothesis H2 : (∀y2 : set, y2 SNoL x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 SNoL ySNo (x * y2))
Hypothesis H4 : z SNoL x
Hypothesis H5 : v SNoL y
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : SNo (z * w)
Hypothesis H9 : SNo (u * y)
Hypothesis H10 : SNo (x * v)
Hypothesis H12 : SNo (z * v)
Hypothesis H13 : (z * y + u * v) < u * y + z * v
Hypothesis H14 : x2 SNoL v
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 SNoL y
Hypothesis H17 : (x * w + z * x2) < x * x2 + z * w
Theorem. (Conj_mul_SNo_prop_1__58__11)
(x * x2 + z * v) < x * v + z * x2(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__58__11
Beginning of Section Conj_mul_SNo_prop_1__58__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * y2)(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))P)P))
Hypothesis H2 : (∀y2 : set, y2 SNoL x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 SNoL ySNo (x * y2))
Hypothesis H4 : z SNoL x
Hypothesis H5 : v SNoL y
Hypothesis H6 : SNo (z * y)
Hypothesis H7 : SNo (x * w)
Hypothesis H8 : SNo (z * w)
Hypothesis H9 : SNo (u * y)
Hypothesis H10 : SNo (x * v)
Hypothesis H11 : SNo (u * v)
Hypothesis H12 : SNo (z * v)
Hypothesis H13 : (z * y + u * v) < u * y + z * v
Hypothesis H14 : x2 SNoL v
Hypothesis H15 : SNo x2
Hypothesis H16 : x2 SNoL y
Theorem. (Conj_mul_SNo_prop_1__58__17)
(x * x2 + z * v) < x * v + z * x2(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__58__17
Beginning of Section Conj_mul_SNo_prop_1__62__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * y2)(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))P)P))
Hypothesis H2 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 SNoL ySNo (x * y2))
Hypothesis H4 : w SNoL y
Hypothesis H5 : u SNoR x
Hypothesis H6 : v SNoL y
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : SNo (z * w)
Hypothesis H11 : SNo (x * v)
Hypothesis H12 : SNo (u * v)
Hypothesis H13 : SNo (u * w)
Hypothesis H14 : (z * y + u * w) < u * y + z * w
Hypothesis H15 : x2 SNoL w
Hypothesis H16 : x2 SNoR v
Hypothesis H17 : SNo x2
Hypothesis H18 : x2 SNoL y
Theorem. (Conj_mul_SNo_prop_1__62__10)
(x * w + u * x2) < x * x2 + u * w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__62__10
Beginning of Section Conj_mul_SNo_prop_1__62__17
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * y2)(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y2(z2 * y2 + x * w2) < x * y2 + z2 * w2))(∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y2(x * y2 + z2 * w2) < z2 * y2 + x * w2))P)P))
Hypothesis H2 : (∀y2 : set, y2 SNoR x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H3 : (∀y2 : set, y2 SNoL ySNo (x * y2))
Hypothesis H4 : w SNoL y
Hypothesis H5 : u SNoR x
Hypothesis H6 : v SNoL y
Hypothesis H7 : SNo (z * y)
Hypothesis H8 : SNo (x * w)
Hypothesis H9 : SNo (z * w)
Hypothesis H10 : SNo (u * y)
Hypothesis H11 : SNo (x * v)
Hypothesis H12 : SNo (u * v)
Hypothesis H13 : SNo (u * w)
Hypothesis H14 : (z * y + u * w) < u * y + z * w
Hypothesis H15 : x2 SNoL w
Hypothesis H16 : x2 SNoR v
Hypothesis H18 : x2 SNoL y
Theorem. (Conj_mul_SNo_prop_1__62__17)
(x * w + u * x2) < x * x2 + u * w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__62__17
Beginning of Section Conj_mul_SNo_prop_1__65__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL ySNo (x * x2))
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : w < y
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : v < y
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Theorem. (Conj_mul_SNo_prop_1__65__5)
((x * w + u * v) < u * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__65__5
Beginning of Section Conj_mul_SNo_prop_1__65__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL ySNo (x * x2))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : w < y
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : v < y
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (z * y + u * w) < u * y + z * w
Hypothesis H24 : (z * y + u * v) < u * y + z * v
Theorem. (Conj_mul_SNo_prop_1__65__15)
((x * w + u * v) < u * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__65__15
Beginning of Section Conj_mul_SNo_prop_1__66__7
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL ySNo (x * x2))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : w < y
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : v < y
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (∀x2 : set, x2 SNoL y(z * y + u * x2) < u * y + z * x2)
Hypothesis H24 : (z * y + u * w) < u * y + z * w
Theorem. (Conj_mul_SNo_prop_1__66__7)
(z * y + u * v) < u * y + z * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__66__7
Beginning of Section Conj_mul_SNo_prop_1__67__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL ySNo (x * x2))
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNoLev w SNoLev y
Hypothesis H9 : w < y
Hypothesis H10 : u SNoR x
Hypothesis H11 : v SNoL y
Hypothesis H12 : SNo v
Hypothesis H13 : SNoLev v SNoLev y
Hypothesis H14 : v < y
Hypothesis H15 : SNo (z * y)
Hypothesis H16 : SNo (x * w)
Hypothesis H17 : SNo (z * w)
Hypothesis H18 : SNo (u * y)
Hypothesis H19 : SNo (x * v)
Hypothesis H20 : SNo (u * v)
Hypothesis H21 : SNo (z * v)
Hypothesis H22 : SNo (u * w)
Hypothesis H23 : (∀x2 : set, x2 SNoL y(z * y + u * x2) < u * y + z * x2)
Theorem. (Conj_mul_SNo_prop_1__67__5)
(z * y + u * w) < u * y + z * w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__67__5
Beginning of Section Conj_mul_SNo_prop_1__68__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 SNoL ySNo (x * x2))
Hypothesis H7 : z SNoL x
Hypothesis H8 : w SNoL y
Hypothesis H9 : SNo z
Hypothesis H10 : SNoLev z SNoLev x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H14 : u SNoR x
Hypothesis H15 : v SNoL y
Hypothesis H16 : SNo u
Hypothesis H17 : SNo v
Hypothesis H18 : SNoLev v SNoLev y
Hypothesis H19 : v < y
Hypothesis H20 : SNo (z * y)
Hypothesis H21 : SNo (x * w)
Hypothesis H22 : SNo (z * w)
Hypothesis H23 : SNo (u * y)
Hypothesis H24 : SNo (x * v)
Hypothesis H25 : SNo (u * v)
Hypothesis H26 : SNo (z * v)
Hypothesis H27 : SNo (u * w)
Hypothesis H28 : z < u
Theorem. (Conj_mul_SNo_prop_1__68__13)
(∀x2 : set, x2 SNoL y(z * y + u * x2) < u * y + z * x2)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__68__13
Beginning of Section Conj_mul_SNo_prop_1__69__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoR x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H6 : (∀x2 : set, x2 SNoL ySNo (x * x2))
Hypothesis H7 : z SNoL x
Hypothesis H8 : w SNoL y
Hypothesis H9 : SNo z
Hypothesis H10 : SNoLev z SNoLev x
Hypothesis H11 : z < x
Hypothesis H12 : SNo w
Hypothesis H13 : SNoLev w SNoLev y
Hypothesis H14 : w < y
Hypothesis H15 : u SNoR x
Hypothesis H16 : v SNoL y
Hypothesis H17 : SNo u
Hypothesis H18 : x < u
Hypothesis H19 : SNo v
Hypothesis H20 : SNoLev v SNoLev y
Hypothesis H21 : v < y
Hypothesis H22 : SNo (z * y)
Hypothesis H23 : SNo (x * w)
Hypothesis H24 : SNo (z * w)
Hypothesis H25 : SNo (u * y)
Hypothesis H26 : SNo (x * v)
Hypothesis H27 : SNo (u * v)
Hypothesis H28 : SNo (z * v)
Hypothesis H29 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__69__0)
z < u(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__69__0
Beginning of Section Conj_mul_SNo_prop_1__71__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : z SNoL y
Hypothesis H3 : w SNoR y
Hypothesis H4 : SNo (x * z)
Hypothesis H5 : SNo (x * w)
Hypothesis H6 : u SNoL x
Hypothesis H7 : SNo (u * z)
Hypothesis H8 : SNo (u * w)
Hypothesis H9 : v SNoL w
Hypothesis H11 : SNo (u * v)
Hypothesis H12 : SNo (x * v)
Theorem. (Conj_mul_SNo_prop_1__71__10)
(u * w + x * v) < x * w + u * v(x * z + u * w) < u * z + x * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__71__10
Beginning of Section Conj_mul_SNo_prop_1__73__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H2 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H3 : z SNoL y
Hypothesis H5 : SNo (x * z)
Hypothesis H6 : SNo (x * w)
Hypothesis H7 : u SNoL x
Hypothesis H8 : SNo (u * z)
Hypothesis H9 : SNo (u * w)
Hypothesis H10 : v SNoL w
Hypothesis H11 : v SNoR z
Hypothesis H12 : SNo v
Hypothesis H13 : v SNoS_ (SNoLev y)
Theorem. (Conj_mul_SNo_prop_1__73__4)
SNo (u * v)(x * z + u * w) < u * z + x * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__73__4
Beginning of Section Conj_mul_SNo_prop_1__76__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H1 : (∀v : set, v SNoS_ (SNoLev y)(∀P : prop, (SNo (x * v)(∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoL v(x2 * v + x * y2) < x * v + x2 * y2))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoR v(x2 * v + x * y2) < x * v + x2 * y2))(∀x2 : set, x2 SNoL x(∀y2 : set, y2 SNoR v(x * v + x2 * y2) < x2 * v + x * y2))(∀x2 : set, x2 SNoR x(∀y2 : set, y2 SNoL v(x * v + x2 * y2) < x2 * v + x * y2))P)P))
Hypothesis H2 : (∀v : set, v SNoL x(∀x2 : set, SNo x2SNo (v * x2)))
Hypothesis H3 : z SNoL y
Hypothesis H4 : SNo z
Hypothesis H5 : SNoLev z SNoLev y
Hypothesis H6 : w SNoR y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo (x * z)
Hypothesis H9 : SNo (x * w)
Hypothesis H10 : z < w
Hypothesis H11 : u SNoL x
Theorem. (Conj_mul_SNo_prop_1__76__0)
SNo (u * z)(x * z + u * w) < u * z + x * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__76__0
Beginning of Section Conj_mul_SNo_prop_1__78__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀y2 : set, y2 SNoL x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 SNoL xSNo (y2 * y))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo w
Hypothesis H8 : SNo u
Hypothesis H9 : SNoLev u SNoLev x
Hypothesis H10 : u < x
Hypothesis H11 : SNo (z * y)
Hypothesis H12 : SNo (x * w)
Hypothesis H13 : SNo (z * w)
Hypothesis H14 : SNo (u * y)
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (u * v)
Hypothesis H17 : SNo (u * w)
Hypothesis H18 : (x * w + u * v) < u * w + x * v
Hypothesis H19 : x2 SNoR z
Hypothesis H20 : x2 SNoL u
Hypothesis H21 : (x2 * y + u * w) < u * y + x2 * w
Theorem. (Conj_mul_SNo_prop_1__78__0)
(z * y + x2 * w) < x2 * y + z * w(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__78__0
Beginning of Section Conj_mul_SNo_prop_1__81__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H3 : (∀y2 : set, y2 SNoL x(∀z2 : set, SNo z2SNo (y2 * z2)))
Hypothesis H4 : (∀y2 : set, y2 SNoL xSNo (y2 * y))
Hypothesis H5 : SNo z
Hypothesis H6 : SNoLev z SNoLev x
Hypothesis H7 : z < x
Hypothesis H8 : u SNoL x
Hypothesis H9 : v SNoR y
Hypothesis H10 : SNo v
Hypothesis H11 : SNo (z * y)
Hypothesis H12 : SNo (x * w)
Hypothesis H13 : SNo (z * w)
Hypothesis H14 : SNo (u * y)
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (u * v)
Hypothesis H17 : SNo (z * v)
Hypothesis H18 : (x * w + z * v) < z * w + x * v
Hypothesis H19 : x2 SNoL z
Hypothesis H20 : x2 SNoR u
Hypothesis H21 : (z * y + x2 * v) < x2 * y + z * v
Theorem. (Conj_mul_SNo_prop_1__81__2)
(x2 * y + u * v) < u * y + x2 * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__81__2
Beginning of Section Conj_mul_SNo_prop_1__81__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀y2 : set, y2 SNoS_ (SNoLev x)(∀z2 : set, SNo z2(∀P : prop, (SNo (y2 * z2)(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoL z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoR z2(w2 * z2 + y2 * u2) < y2 * z2 + w2 * u2))(∀w2 : set, w2 SNoL y2(∀u2 : set, u2 SNoR z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))(∀w2 : set, w2 SNoR y2(∀u2 : set, u2 SNoL z2(y2 * z2 + w2 * u2) < w2 * z2 + y2 * u2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H4 : (∀y2 : set, y2 SNoL xSNo (y2 * y))
Hypothesis H5 : SNo z
Hypothesis H6 : SNoLev z SNoLev x
Hypothesis H7 : z < x
Hypothesis H8 : u SNoL x
Hypothesis H9 : v SNoR y
Hypothesis H10 : SNo v
Hypothesis H11 : SNo (z * y)
Hypothesis H12 : SNo (x * w)
Hypothesis H13 : SNo (z * w)
Hypothesis H14 : SNo (u * y)
Hypothesis H15 : SNo (x * v)
Hypothesis H16 : SNo (u * v)
Hypothesis H17 : SNo (z * v)
Hypothesis H18 : (x * w + z * v) < z * w + x * v
Hypothesis H19 : x2 SNoL z
Hypothesis H20 : x2 SNoR u
Hypothesis H21 : (z * y + x2 * v) < x2 * y + z * v
Theorem. (Conj_mul_SNo_prop_1__81__3)
(x2 * y + u * v) < u * y + x2 * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__81__3
Beginning of Section Conj_mul_SNo_prop_1__83__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H5 : z SNoL x
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoL x
Hypothesis H12 : v SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (x * w + z * v) < z * w + x * v
Hypothesis H26 : (x * w + u * v) < u * w + x * v
Hypothesis H27 : (z * y + u * v) < u * y + z * v(z * y + x * w + u * v) < u * y + x * v + z * w
Theorem. (Conj_mul_SNo_prop_1__83__6)
((z * y + u * w) < u * y + z * w(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__83__6
Beginning of Section Conj_mul_SNo_prop_1__83__21
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoL x
Hypothesis H12 : v SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (x * w + z * v) < z * w + x * v
Hypothesis H26 : (x * w + u * v) < u * w + x * v
Hypothesis H27 : (z * y + u * v) < u * y + z * v(z * y + x * w + u * v) < u * y + x * v + z * w
Theorem. (Conj_mul_SNo_prop_1__83__21)
((z * y + u * w) < u * y + z * w(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__83__21
Beginning of Section Conj_mul_SNo_prop_1__84__18
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoL x
Hypothesis H12 : v SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (x * w + z * v) < z * w + x * v
Hypothesis H26 : (x * w + u * v) < u * w + x * v
Theorem. (Conj_mul_SNo_prop_1__84__18)
((z * y + u * v) < u * y + z * v(z * y + x * w + u * v) < u * y + x * v + z * w)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__84__18
Beginning of Section Conj_mul_SNo_prop_1__85__16
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoL x
Hypothesis H12 : v SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : u < x
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (∀x2 : set, x2 SNoL x(x * w + x2 * v) < x2 * w + x * v)
Hypothesis H26 : (x * w + z * v) < z * w + x * v
Theorem. (Conj_mul_SNo_prop_1__85__16)
(x * w + u * v) < u * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__85__16
Beginning of Section Conj_mul_SNo_prop_1__85__24
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoL x
Hypothesis H12 : v SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H25 : (∀x2 : set, x2 SNoL x(x * w + x2 * v) < x2 * w + x * v)
Hypothesis H26 : (x * w + z * v) < z * w + x * v
Theorem. (Conj_mul_SNo_prop_1__85__24)
(x * w + u * v) < u * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__85__24
Beginning of Section Conj_mul_SNo_prop_1__86__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H12 : v SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Hypothesis H25 : (∀x2 : set, x2 SNoL x(x * w + x2 * v) < x2 * w + x * v)
Theorem. (Conj_mul_SNo_prop_1__86__11)
(x * w + z * v) < z * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__86__11
Beginning of Section Conj_mul_SNo_prop_1__86__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H4 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H5 : z SNoL x
Hypothesis H6 : w SNoL y
Hypothesis H7 : SNo z
Hypothesis H8 : SNoLev z SNoLev x
Hypothesis H9 : z < x
Hypothesis H10 : SNo w
Hypothesis H11 : u SNoL x
Hypothesis H12 : v SNoR y
Hypothesis H13 : SNo u
Hypothesis H14 : SNoLev u SNoLev x
Hypothesis H15 : u < x
Hypothesis H16 : SNo v
Hypothesis H17 : SNo (z * y)
Hypothesis H18 : SNo (x * w)
Hypothesis H19 : SNo (z * w)
Hypothesis H20 : SNo (u * y)
Hypothesis H21 : SNo (x * v)
Hypothesis H22 : SNo (u * v)
Hypothesis H23 : SNo (z * v)
Hypothesis H24 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__86__25)
(x * w + z * v) < z * w + x * v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__86__25
Beginning of Section Conj_mul_SNo_prop_1__87__23
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H6 : z SNoL x
Hypothesis H7 : w SNoL y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : z < x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : u SNoL x
Hypothesis H14 : v SNoR y
Hypothesis H15 : SNo u
Hypothesis H16 : SNoLev u SNoLev x
Hypothesis H17 : u < x
Hypothesis H18 : SNo v
Hypothesis H19 : SNo (z * y)
Hypothesis H20 : SNo (x * w)
Hypothesis H21 : SNo (z * w)
Hypothesis H22 : SNo (u * y)
Hypothesis H24 : SNo (u * v)
Hypothesis H25 : SNo (z * v)
Hypothesis H26 : SNo (u * w)
Hypothesis H27 : w < v
Theorem. (Conj_mul_SNo_prop_1__87__23)
(∀x2 : set, x2 SNoL x(x * w + x2 * v) < x2 * w + x * v)(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__87__23
Beginning of Section Conj_mul_SNo_prop_1__88__25
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H6 : z SNoL x
Hypothesis H7 : w SNoL y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : z < x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : w < y
Hypothesis H14 : u SNoL x
Hypothesis H15 : v SNoR y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u SNoLev x
Hypothesis H18 : u < x
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H26 : SNo (u * v)
Hypothesis H27 : SNo (z * v)
Hypothesis H28 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__88__25)
w < v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__88__25
Beginning of Section Conj_mul_SNo_prop_1__88__27
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀x2 : set, x2 SNoS_ (SNoLev x)(∀y2 : set, SNo y2(∀P : prop, (SNo (x2 * y2)(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoL y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoR y2(z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2))(∀z2 : set, z2 SNoL x2(∀w2 : set, w2 SNoR y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))(∀z2 : set, z2 SNoR x2(∀w2 : set, w2 SNoL y2(x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀x2 : set, x2 SNoS_ (SNoLev y)(∀P : prop, (SNo (x * x2)(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoL x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR x2(y2 * x2 + x * z2) < x * x2 + y2 * z2))(∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))(∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL x2(x * x2 + y2 * z2) < y2 * x2 + x * z2))P)P))
Hypothesis H4 : (∀x2 : set, x2 SNoL x(∀y2 : set, SNo y2SNo (x2 * y2)))
Hypothesis H5 : (∀x2 : set, x2 SNoL xSNo (x2 * y))
Hypothesis H6 : z SNoL x
Hypothesis H7 : w SNoL y
Hypothesis H8 : SNo z
Hypothesis H9 : SNoLev z SNoLev x
Hypothesis H10 : z < x
Hypothesis H11 : SNo w
Hypothesis H12 : SNoLev w SNoLev y
Hypothesis H13 : w < y
Hypothesis H14 : u SNoL x
Hypothesis H15 : v SNoR y
Hypothesis H16 : SNo u
Hypothesis H17 : SNoLev u SNoLev x
Hypothesis H18 : u < x
Hypothesis H19 : SNo v
Hypothesis H20 : y < v
Hypothesis H21 : SNo (z * y)
Hypothesis H22 : SNo (x * w)
Hypothesis H23 : SNo (z * w)
Hypothesis H24 : SNo (u * y)
Hypothesis H25 : SNo (x * v)
Hypothesis H26 : SNo (u * v)
Hypothesis H28 : SNo (u * w)
Theorem. (Conj_mul_SNo_prop_1__88__27)
w < v(z * y + x * w + u * v) < u * y + x * v + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__88__27
Beginning of Section Conj_mul_SNo_prop_1__94__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : (∀u : set, u SNoL x(∀v : set, v SNoL yu * y + x * v + - (u * v) z))
Hypothesis H2 : (∀u : set, u SNoR x(∀v : set, v SNoR yu * y + x * v + - (u * v) z))
Hypothesis H3 : (∀u : set, u SNoL x(∀v : set, v SNoR yu * y + x * v + - (u * v) w))
Hypothesis H5 : x * y = SNoCut z w
Hypothesis H6 : (∀u : set, u SNoL x(∀v : set, SNo vSNo (u * v)))
Hypothesis H7 : (∀u : set, u SNoR x(∀v : set, SNo vSNo (u * v)))
Hypothesis H8 : (∀u : set, u SNoL ySNo (x * u))
Hypothesis H9 : (∀u : set, u SNoR ySNo (x * u))
Hypothesis H10 : SNoCutP z w
Theorem. (Conj_mul_SNo_prop_1__94__4)
SNo (x * y)(∀P : prop, (SNo (x * y)(∀u : set, u SNoL x(∀v : set, v SNoL y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoR x(∀v : set, v SNoR y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoL x(∀v : set, v SNoR y(x * y + u * v) < u * y + x * v))(∀u : set, u SNoR x(∀v : set, v SNoL y(x * y + u * v) < u * y + x * v))P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__94__4
Beginning of Section Conj_mul_SNo_prop_1__96__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo v(∀P : prop, (SNo (u * v)(∀x2 : set, x2 SNoL u(∀y2 : set, y2 SNoL v(x2 * v + u * y2) < u * v + x2 * y2))(∀x2 : set, x2 SNoR u(∀y2 : set, y2 SNoR v(x2 * v + u * y2) < u * v + x2 * y2))(∀x2 : set, x2 SNoL u(∀y2 : set, y2 SNoR v(u * v + x2 * y2) < x2 * v + u * y2))(∀x2 : set, x2 SNoR u(∀y2 : set, y2 SNoL v(u * v + x2 * y2) < x2 * v + u * y2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H4 : (∀u : set, u z(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))P))
Hypothesis H5 : (∀u : set, u SNoL x(∀v : set, v SNoL yu * y + x * v + - (u * v) z))
Hypothesis H6 : (∀u : set, u SNoR x(∀v : set, v SNoR yu * y + x * v + - (u * v) z))
Hypothesis H7 : (∀u : set, u w(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))P))
Hypothesis H8 : (∀u : set, u SNoL x(∀v : set, v SNoR yu * y + x * v + - (u * v) w))
Hypothesis H9 : (∀u : set, u SNoR x(∀v : set, v SNoL yu * y + x * v + - (u * v) w))
Hypothesis H10 : x * y = SNoCut z w
Hypothesis H11 : (∀u : set, u SNoL x(∀v : set, SNo vSNo (u * v)))
Hypothesis H12 : (∀u : set, u SNoR x(∀v : set, SNo vSNo (u * v)))
Hypothesis H13 : (∀u : set, u SNoL xSNo (u * y))
Hypothesis H14 : (∀u : set, u SNoR xSNo (u * y))
Hypothesis H15 : (∀u : set, u SNoL ySNo (x * u))
Theorem. (Conj_mul_SNo_prop_1__96__3)
(∀u : set, u SNoR ySNo (x * u))(∀P : prop, (SNo (x * y)(∀u : set, u SNoL x(∀v : set, v SNoL y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoR x(∀v : set, v SNoR y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoL x(∀v : set, v SNoR y(x * y + u * v) < u * y + x * v))(∀u : set, u SNoR x(∀v : set, v SNoL y(x * y + u * v) < u * y + x * v))P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__96__3
Beginning of Section Conj_mul_SNo_prop_1__97__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo v(∀P : prop, (SNo (u * v)(∀x2 : set, x2 SNoL u(∀y2 : set, y2 SNoL v(x2 * v + u * y2) < u * v + x2 * y2))(∀x2 : set, x2 SNoR u(∀y2 : set, y2 SNoR v(x2 * v + u * y2) < u * v + x2 * y2))(∀x2 : set, x2 SNoL u(∀y2 : set, y2 SNoR v(u * v + x2 * y2) < x2 * v + u * y2))(∀x2 : set, x2 SNoR u(∀y2 : set, y2 SNoL v(u * v + x2 * y2) < x2 * v + u * y2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev y)(∀P : prop, (SNo (x * u)(∀v : set, v SNoL x(∀x2 : set, x2 SNoL u(v * u + x * x2) < x * u + v * x2))(∀v : set, v SNoR x(∀x2 : set, x2 SNoR u(v * u + x * x2) < x * u + v * x2))(∀v : set, v SNoL x(∀x2 : set, x2 SNoR u(x * u + v * x2) < v * u + x * x2))(∀v : set, v SNoR x(∀x2 : set, x2 SNoL u(x * u + v * x2) < v * u + x * x2))P)P))
Hypothesis H4 : (∀u : set, u z(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))P))
Hypothesis H5 : (∀u : set, u SNoL x(∀v : set, v SNoL yu * y + x * v + - (u * v) z))
Hypothesis H7 : (∀u : set, u w(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))P))
Hypothesis H8 : (∀u : set, u SNoL x(∀v : set, v SNoR yu * y + x * v + - (u * v) w))
Hypothesis H9 : (∀u : set, u SNoR x(∀v : set, v SNoL yu * y + x * v + - (u * v) w))
Hypothesis H10 : x * y = SNoCut z w
Hypothesis H11 : (∀u : set, u SNoL x(∀v : set, SNo vSNo (u * v)))
Hypothesis H12 : (∀u : set, u SNoR x(∀v : set, SNo vSNo (u * v)))
Hypothesis H13 : (∀u : set, u SNoL xSNo (u * y))
Hypothesis H14 : (∀u : set, u SNoR xSNo (u * y))
Theorem. (Conj_mul_SNo_prop_1__97__6)
(∀u : set, u SNoL ySNo (x * u))(∀P : prop, (SNo (x * y)(∀u : set, u SNoL x(∀v : set, v SNoL y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoR x(∀v : set, v SNoR y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoL x(∀v : set, v SNoR y(x * y + u * v) < u * y + x * v))(∀u : set, u SNoR x(∀v : set, v SNoL y(x * y + u * v) < u * y + x * v))P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__97__6
Beginning of Section Conj_mul_SNo_prop_1__98__11
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo v(∀P : prop, (SNo (u * v)(∀x2 : set, x2 SNoL u(∀y2 : set, y2 SNoL v(x2 * v + u * y2) < u * v + x2 * y2))(∀x2 : set, x2 SNoR u(∀y2 : set, y2 SNoR v(x2 * v + u * y2) < u * v + x2 * y2))(∀x2 : set, x2 SNoL u(∀y2 : set, y2 SNoR v(u * v + x2 * y2) < x2 * v + u * y2))(∀x2 : set, x2 SNoR u(∀y2 : set, y2 SNoL v(u * v + x2 * y2) < x2 * v + u * y2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev y)(∀P : prop, (SNo (x * u)(∀v : set, v SNoL x(∀x2 : set, x2 SNoL u(v * u + x * x2) < x * u + v * x2))(∀v : set, v SNoR x(∀x2 : set, x2 SNoR u(v * u + x * x2) < x * u + v * x2))(∀v : set, v SNoL x(∀x2 : set, x2 SNoR u(x * u + v * x2) < v * u + x * x2))(∀v : set, v SNoR x(∀x2 : set, x2 SNoL u(x * u + v * x2) < v * u + x * x2))P)P))
Hypothesis H4 : (∀u : set, u z(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))P))
Hypothesis H5 : (∀u : set, u SNoL x(∀v : set, v SNoL yu * y + x * v + - (u * v) z))
Hypothesis H6 : (∀u : set, u SNoR x(∀v : set, v SNoR yu * y + x * v + - (u * v) z))
Hypothesis H7 : (∀u : set, u w(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))P))
Hypothesis H8 : (∀u : set, u SNoL x(∀v : set, v SNoR yu * y + x * v + - (u * v) w))
Hypothesis H9 : (∀u : set, u SNoR x(∀v : set, v SNoL yu * y + x * v + - (u * v) w))
Hypothesis H10 : x * y = SNoCut z w
Hypothesis H12 : (∀u : set, u SNoR x(∀v : set, SNo vSNo (u * v)))
Hypothesis H13 : (∀u : set, u SNoL xSNo (u * y))
Theorem. (Conj_mul_SNo_prop_1__98__11)
(∀u : set, u SNoR xSNo (u * y))(∀P : prop, (SNo (x * y)(∀u : set, u SNoL x(∀v : set, v SNoL y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoR x(∀v : set, v SNoR y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoL x(∀v : set, v SNoR y(x * y + u * v) < u * y + x * v))(∀u : set, u SNoR x(∀v : set, v SNoL y(x * y + u * v) < u * y + x * v))P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__98__11
Beginning of Section Conj_mul_SNo_prop_1__101__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo x
Hypothesis H1 : (∀u : set, u SNoS_ (SNoLev x)(∀v : set, SNo v(∀P : prop, (SNo (u * v)(∀x2 : set, x2 SNoL u(∀y2 : set, y2 SNoL v(x2 * v + u * y2) < u * v + x2 * y2))(∀x2 : set, x2 SNoR u(∀y2 : set, y2 SNoR v(x2 * v + u * y2) < u * v + x2 * y2))(∀x2 : set, x2 SNoL u(∀y2 : set, y2 SNoR v(u * v + x2 * y2) < x2 * v + u * y2))(∀x2 : set, x2 SNoR u(∀y2 : set, y2 SNoL v(u * v + x2 * y2) < x2 * v + u * y2))P)P)))
Hypothesis H2 : SNo y
Hypothesis H3 : (∀u : set, u SNoS_ (SNoLev y)(∀P : prop, (SNo (x * u)(∀v : set, v SNoL x(∀x2 : set, x2 SNoL u(v * u + x * x2) < x * u + v * x2))(∀v : set, v SNoR x(∀x2 : set, x2 SNoR u(v * u + x * x2) < x * u + v * x2))(∀v : set, v SNoL x(∀x2 : set, x2 SNoR u(x * u + v * x2) < v * u + x * x2))(∀v : set, v SNoR x(∀x2 : set, x2 SNoL u(x * u + v * x2) < v * u + x * x2))P)P))
Hypothesis H5 : (∀u : set, u SNoL x(∀v : set, v SNoL yu * y + x * v + - (u * v) z))
Hypothesis H6 : (∀u : set, u SNoR x(∀v : set, v SNoR yu * y + x * v + - (u * v) z))
Hypothesis H7 : (∀u : set, u w(∀P : prop, (∀v : set, v SNoL x(∀x2 : set, x2 SNoR yu = v * y + x * x2 + - (v * x2)P))(∀v : set, v SNoR x(∀x2 : set, x2 SNoL yu = v * y + x * x2 + - (v * x2)P))P))
Hypothesis H8 : (∀u : set, u SNoL x(∀v : set, v SNoR yu * y + x * v + - (u * v) w))
Hypothesis H9 : (∀u : set, u SNoR x(∀v : set, v SNoL yu * y + x * v + - (u * v) w))
Hypothesis H10 : x * y = SNoCut z w
Theorem. (Conj_mul_SNo_prop_1__101__4)
(∀u : set, u SNoL x(∀v : set, SNo vSNo (u * v)))(∀P : prop, (SNo (x * y)(∀u : set, u SNoL x(∀v : set, v SNoL y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoR x(∀v : set, v SNoR y(u * y + x * v) < x * y + u * v))(∀u : set, u SNoL x(∀v : set, v SNoR y(x * y + u * v) < u * y + x * v))(∀u : set, u SNoR x(∀v : set, v SNoL y(x * y + u * v) < u * y + x * v))P)P)
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_prop_1__101__4
Beginning of Section Conj_mul_SNo_eq_3__2__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H3 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : u SNoR x
Hypothesis H5 : v SNoR y
Hypothesis H6 : z = u * y + x * v + - (u * v)
Hypothesis H7 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (u * v)
Hypothesis H10 : x2 SNoR x
Hypothesis H11 : y2 SNoL y
Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo y2
Hypothesis H15 : SNo (x2 * y)
Theorem. (Conj_mul_SNo_eq_3__2__1)
SNo (x * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__2__1
Beginning of Section Conj_mul_SNo_eq_3__2__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (x * y)
Hypothesis H2 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H3 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : u SNoR x
Hypothesis H5 : v SNoR y
Hypothesis H6 : z = u * y + x * v + - (u * v)
Hypothesis H7 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H10 : x2 SNoR x
Hypothesis H11 : y2 SNoL y
Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo y2
Hypothesis H15 : SNo (x2 * y)
Theorem. (Conj_mul_SNo_eq_3__2__9)
SNo (x * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__2__9
Beginning of Section Conj_mul_SNo_eq_3__3__10
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u SNoR x
Hypothesis H6 : v SNoR y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H11 : x2 SNoR x
Hypothesis H12 : y2 SNoL y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo y2
Theorem. (Conj_mul_SNo_eq_3__3__10)
SNo (x2 * y)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__3__10
Beginning of Section Conj_mul_SNo_eq_3__3__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoR y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u SNoR x
Hypothesis H6 : v SNoR y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 SNoR x
Hypothesis H12 : y2 SNoL y
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo y2
Theorem. (Conj_mul_SNo_eq_3__3__13)
SNo (x2 * y)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__3__13
Beginning of Section Conj_mul_SNo_eq_3__7__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 z(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR yy2 = z2 * y + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL yy2 = z2 * y + x * w2 + - (z2 * w2)P))P))
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR y(y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H7 : u z
Hypothesis H8 : v SNoR x
Hypothesis H9 : x2 SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_eq_3__7__14)
SNo (v * x2)w < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__7__14
Beginning of Section Conj_mul_SNo_eq_3__8__0
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 z(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR yy2 = z2 * y + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL yy2 = z2 * y + x * w2 + - (z2 * w2)P))P))
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR y(y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H7 : u z
Hypothesis H8 : v SNoR x
Hypothesis H9 : x2 SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_eq_3__8__0)
SNo (x * x2)w < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__8__0
Beginning of Section Conj_mul_SNo_eq_3__8__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR y(y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H7 : u z
Hypothesis H8 : v SNoR x
Hypothesis H9 : x2 SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_eq_3__8__2)
SNo (x * x2)w < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__8__2
Beginning of Section Conj_mul_SNo_eq_3__8__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 z(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR yy2 = z2 * y + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL yy2 = z2 * y + x * w2 + - (z2 * w2)P))P))
Hypothesis H3 : SNo (x * y)
Hypothesis H5 : (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H7 : u z
Hypothesis H8 : v SNoR x
Hypothesis H9 : x2 SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_eq_3__8__4)
SNo (x * x2)w < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__8__4
Beginning of Section Conj_mul_SNo_eq_3__8__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 z(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR yy2 = z2 * y + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL yy2 = z2 * y + x * w2 + - (z2 * w2)P))P))
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR y(y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H7 : u z
Hypothesis H9 : x2 SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_eq_3__8__8)
SNo (x * x2)w < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__8__8
Beginning of Section Conj_mul_SNo_eq_3__8__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : (∀y2 : set, y2 z(∀P : prop, (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR yy2 = z2 * y + x * w2 + - (z2 * w2)P))(∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL yy2 = z2 * y + x * w2 + - (z2 * w2)P))P))
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoR y(y2 * y + x * z2) < x * y + y2 * z2))
Hypothesis H5 : (∀y2 : set, y2 SNoL x(∀z2 : set, z2 SNoR y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H6 : (∀y2 : set, y2 SNoR x(∀z2 : set, z2 SNoL y(x * y + y2 * z2) < y2 * y + x * z2))
Hypothesis H7 : u z
Hypothesis H8 : v SNoR x
Hypothesis H9 : x2 SNoR y
Hypothesis H10 : w = v * y + x * x2 + - (v * x2)
Hypothesis H11 : SNo v
Hypothesis H13 : SNo (v * y)
Theorem. (Conj_mul_SNo_eq_3__8__12)
SNo (x * x2)w < u
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__8__12
Beginning of Section Conj_mul_SNo_eq_3__10__3
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : v SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 SNoR x
Hypothesis H10 : y2 SNoL y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H14 : SNo (x2 * y)
Hypothesis H15 : SNo (x * y2)
Theorem. (Conj_mul_SNo_eq_3__10__3)
SNo (x2 * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__10__3
Beginning of Section Conj_mul_SNo_eq_3__10__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u SNoL x
Hypothesis H4 : v SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 SNoR x
Hypothesis H10 : y2 SNoL y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H15 : SNo (x * y2)
Theorem. (Conj_mul_SNo_eq_3__10__14)
SNo (x2 * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__10__14
Beginning of Section Conj_mul_SNo_eq_3__10__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u SNoL x
Hypothesis H4 : v SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 SNoR x
Hypothesis H10 : y2 SNoL y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H14 : SNo (x2 * y)
Theorem. (Conj_mul_SNo_eq_3__10__15)
SNo (x2 * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__10__15
Beginning of Section Conj_mul_SNo_eq_3__12__1
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u SNoL x
Hypothesis H6 : v SNoL y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 SNoR x
Hypothesis H12 : y2 SNoL y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo y2
Theorem. (Conj_mul_SNo_eq_3__12__1)
SNo (x2 * y)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__12__1
Beginning of Section Conj_mul_SNo_eq_3__12__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 SNoR x(∀w2 : set, w2 SNoL y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u SNoL x
Hypothesis H6 : v SNoL y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 SNoR x
Hypothesis H12 : y2 SNoL y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Theorem. (Conj_mul_SNo_eq_3__12__15)
SNo (x2 * y)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__12__15
Beginning of Section Conj_mul_SNo_eq_3__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u SNoL x
Hypothesis H4 : v SNoL y
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 SNoL x
Hypothesis H10 : y2 SNoR y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H14 : SNo (x2 * y)
Hypothesis H15 : SNo (x * y2)
Theorem. (Conj_mul_SNo_eq_3__13__5)
SNo (x2 * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__13__5
Beginning of Section Conj_mul_SNo_eq_3__13__8
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u SNoL x
Hypothesis H4 : v SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H9 : x2 SNoL x
Hypothesis H10 : y2 SNoR y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H14 : SNo (x2 * y)
Hypothesis H15 : SNo (x * y2)
Theorem. (Conj_mul_SNo_eq_3__13__8)
SNo (x2 * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__13__8
Beginning of Section Conj_mul_SNo_eq_3__13__13
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u SNoL x
Hypothesis H4 : v SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 SNoL x
Hypothesis H10 : y2 SNoR y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H14 : SNo (x2 * y)
Hypothesis H15 : SNo (x * y2)
Theorem. (Conj_mul_SNo_eq_3__13__13)
SNo (x2 * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__13__13
Beginning of Section Conj_mul_SNo_eq_3__13__14
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H2 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H3 : u SNoL x
Hypothesis H4 : v SNoL y
Hypothesis H5 : z = u * y + x * v + - (u * v)
Hypothesis H6 : SNo (u * y)
Hypothesis H7 : SNo (x * v)
Hypothesis H8 : SNo (u * v)
Hypothesis H9 : x2 SNoL x
Hypothesis H10 : y2 SNoR y
Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H12 : SNo x2
Hypothesis H13 : SNo y2
Hypothesis H15 : SNo (x * y2)
Theorem. (Conj_mul_SNo_eq_3__13__14)
SNo (x2 * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__13__14
Beginning of Section Conj_mul_SNo_eq_3__14__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : u SNoL x
Hypothesis H5 : v SNoL y
Hypothesis H6 : z = u * y + x * v + - (u * v)
Hypothesis H7 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (u * v)
Hypothesis H10 : x2 SNoL x
Hypothesis H11 : y2 SNoR y
Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo y2
Hypothesis H15 : SNo (x2 * y)
Theorem. (Conj_mul_SNo_eq_3__14__2)
SNo (x * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__14__2
Beginning of Section Conj_mul_SNo_eq_3__14__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo (x * y)
Hypothesis H2 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H3 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H4 : u SNoL x
Hypothesis H5 : v SNoL y
Hypothesis H6 : z = u * y + x * v + - (u * v)
Hypothesis H7 : SNo (u * y)
Hypothesis H8 : SNo (x * v)
Hypothesis H9 : SNo (u * v)
Hypothesis H10 : x2 SNoL x
Hypothesis H11 : y2 SNoR y
Hypothesis H13 : SNo x2
Hypothesis H14 : SNo y2
Hypothesis H15 : SNo (x2 * y)
Theorem. (Conj_mul_SNo_eq_3__14__12)
SNo (x * y2)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__14__12
Beginning of Section Conj_mul_SNo_eq_3__15__4
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H5 : u SNoL x
Hypothesis H6 : v SNoL y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 SNoL x
Hypothesis H12 : y2 SNoR y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Hypothesis H15 : SNo y2
Theorem. (Conj_mul_SNo_eq_3__15__4)
SNo (x2 * y)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__15__4
Beginning of Section Conj_mul_SNo_eq_3__15__15
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Variable v : set
Variable x2 : set
Variable y2 : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo y
Hypothesis H2 : SNo (x * y)
Hypothesis H3 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoL y(z2 * y + x * w2) < x * y + z2 * w2))
Hypothesis H4 : (∀z2 : set, z2 SNoL x(∀w2 : set, w2 SNoR y(x * y + z2 * w2) < z2 * y + x * w2))
Hypothesis H5 : u SNoL x
Hypothesis H6 : v SNoL y
Hypothesis H7 : z = u * y + x * v + - (u * v)
Hypothesis H8 : SNo (u * y)
Hypothesis H9 : SNo (x * v)
Hypothesis H10 : SNo (u * v)
Hypothesis H11 : x2 SNoL x
Hypothesis H12 : y2 SNoR y
Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2)
Hypothesis H14 : SNo x2
Theorem. (Conj_mul_SNo_eq_3__15__15)
SNo (x2 * y)z < w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_eq_3__15__15
Beginning of Section Conj_mul_SNo_Lt__8__12
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo z
Hypothesis H1 : SNo (x * y)
Hypothesis H2 : SNo (z * y)
Hypothesis H3 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoL y(z * y + v * x2) < v * y + z * x2))
Hypothesis H4 : SNo (x * w)
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H7 : SNo (z * y + x * w)
Hypothesis H8 : SNo (x * y + z * w)
Hypothesis H9 : x SNoR z
Hypothesis H10 : SNo u
Hypothesis H11 : u SNoL y
Hypothesis H13 : SNo (x * u)
Theorem. (Conj_mul_SNo_Lt__8__12)
SNo (z * u)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__8__12
Beginning of Section Conj_mul_SNo_Lt__10__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo x
Hypothesis H1 : SNo z
Hypothesis H2 : SNo w
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (z * y)
Hypothesis H6 : SNo (x * w)
Hypothesis H7 : SNo (z * w)
Hypothesis H8 : (∀v : set, v SNoR z(∀x2 : set, x2 SNoR w(v * w + z * x2) < z * w + v * x2))
Hypothesis H9 : SNo (z * y + x * w)
Hypothesis H10 : SNo (x * y + z * w)
Hypothesis H11 : x SNoR z
Hypothesis H12 : SNo u
Hypothesis H13 : w < u
Hypothesis H14 : SNoLev u SNoLev w
Hypothesis H15 : u SNoL y
Theorem. (Conj_mul_SNo_Lt__10__5)
u SNoR w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__10__5
Beginning of Section Conj_mul_SNo_Lt__13__5
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Hypothesis H0 : SNo y
Hypothesis H1 : SNo w
Hypothesis H2 : w < y
Hypothesis H3 : SNo (x * y)
Hypothesis H4 : SNo (z * y)
Hypothesis H6 : (∀u : set, u SNoL x(∀v : set, v SNoR w(x * w + u * v) < u * w + x * v))
Hypothesis H7 : SNo (z * w)
Hypothesis H8 : z SNoL x
Hypothesis H9 : SNoLev y SNoLev w
Theorem. (Conj_mul_SNo_Lt__13__5)
y SNoR w(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__13__5
Beginning of Section Conj_mul_SNo_Lt__15__6
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : SNo (z * y)
Hypothesis H2 : SNo (x * w)
Hypothesis H3 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H4 : SNo (z * w)
Hypothesis H5 : SNo (z * y + x * w)
Hypothesis H7 : z SNoL x
Hypothesis H8 : u SNoR w
Hypothesis H9 : SNo (x * u)
Hypothesis H10 : SNo (z * u)
Hypothesis H11 : SNo (z * y + x * u)
Hypothesis H12 : SNo (z * w + x * u)
Hypothesis H13 : SNo (x * y + z * u)
Hypothesis H14 : SNo (x * w + z * u)
Hypothesis H15 : (z * y + x * u) < x * y + z * u
Theorem. (Conj_mul_SNo_Lt__15__6)
(x * w + z * u) < z * w + x * u(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__15__6
Beginning of Section Conj_mul_SNo_Lt__18__9
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H2 : SNo (z * y)
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : SNo (z * y + x * w)
Hypothesis H7 : SNo (x * y + z * w)
Hypothesis H8 : z SNoL x
Hypothesis H10 : u SNoR w
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (z * u)
Hypothesis H13 : SNo (z * y + x * u)
Hypothesis H14 : SNo (z * w + x * u)
Theorem. (Conj_mul_SNo_Lt__18__9)
SNo (x * y + z * u)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__18__9
Beginning of Section Conj_mul_SNo_Lt__19__2
Variable x : set
Variable y : set
Variable z : set
Variable w : set
Variable u : set
Hypothesis H0 : SNo (x * y)
Hypothesis H1 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoL y(v * y + x * x2) < x * y + v * x2))
Hypothesis H3 : SNo (x * w)
Hypothesis H4 : (∀v : set, v SNoL x(∀x2 : set, x2 SNoR w(x * w + v * x2) < v * w + x * x2))
Hypothesis H5 : SNo (z * w)
Hypothesis H6 : SNo (z * y + x * w)
Hypothesis H7 : SNo (x * y + z * w)
Hypothesis H8 : z SNoL x
Hypothesis H9 : u SNoL y
Hypothesis H10 : u SNoR w
Hypothesis H11 : SNo (x * u)
Hypothesis H12 : SNo (z * u)
Hypothesis H13 : SNo (z * y + x * u)
Theorem. (Conj_mul_SNo_Lt__19__2)
SNo (z * w + x * u)(z * y + x * w) < x * y + z * w
Proof:
The rest of the proof is missing.

End of Section Conj_mul_SNo_Lt__19__2