Beginning of Section Conj_ZF_UPair_closed__1__1
L7 Hypothesis H0 : z β UPair x y
L8
Proof: Load proof Proof not loaded.
End of Section Conj_ZF_UPair_closed__1__1
Beginning of Section Conj_ZF_UPair_closed__5__1
L17 Hypothesis H0 : ZF_closed x
L19
Proof: Load proof Proof not loaded.
End of Section Conj_ZF_UPair_closed__5__1
Beginning of Section Conj_ordinal_ordsucc_In_eq__1__1
L27 Hypothesis H0 : ordinal x
L28
Proof: Load proof Proof not loaded.
End of Section Conj_ordinal_ordsucc_In_eq__1__1
Beginning of Section Conj_ordinal_famunion__2__0
L35 Variable f : (set β set )
L39 Hypothesis H2 : y β f z
L40
Proof: Load proof Proof not loaded.
End of Section Conj_ordinal_famunion__2__0
Beginning of Section Conj_KnasterTarski_set__3__0
L47 Variable f : (set β set )
L48 Hypothesis H1 : Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) β π« x
L49 Hypothesis H2 : f (Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) ) β π« x
L50 Hypothesis H3 : (βy : set , y β π« x β Subq (f y ) y β Subq (Sep x (Ξ»z : set β βw : set , w β π« x β Subq (f w ) w β z β w ) ) y )
L51 Hypothesis H4 : Subq (f (Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) ) ) (Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) )
L52 Theorem. (
Conj_KnasterTarski_set__3__0 )
Subq (f (f (Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) ) ) ) (f (Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) ) ) β (βy : set , y β π« x β§ f y = y )
Proof: Load proof Proof not loaded.
End of Section Conj_KnasterTarski_set__3__0
Beginning of Section Conj_KnasterTarski_set__4__0
L59 Variable f : (set β set )
L60 Hypothesis H1 : Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) β π« x
L61 Hypothesis H2 : f (Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) ) β π« x
L62 Hypothesis H3 : (βy : set , y β π« x β Subq (f y ) y β Subq (Sep x (Ξ»z : set β βw : set , w β π« x β Subq (f w ) w β z β w ) ) y )
L63 Theorem. (
Conj_KnasterTarski_set__4__0 )
Subq (f (Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) ) ) (Sep x (Ξ»y : set β βz : set , z β π« x β Subq (f z ) z β y β z ) ) β (βy : set , y β π« x β§ f y = y )
Proof: Load proof Proof not loaded.
End of Section Conj_KnasterTarski_set__4__0
Beginning of Section Conj_SchroederBernstein__3__3
L71 Variable f : (set β set )
L72 Variable f2 : (set β set )
L77 Hypothesis H0 : (βx2 : set , x2 β y β (βy2 : set , y2 β y β f2 x2 = f2 y2 β x2 = y2 ) )
L78 Hypothesis H1 : (Ξ»x2 : set β Repl (setminus y (Repl (setminus x x2 ) (Ξ»y2 : set β f y2 ) ) ) (Ξ»y2 : set β f2 y2 ) ) z = z
L79 Hypothesis H2 : w = f2 v
L81
Proof: Load proof Proof not loaded.
End of Section Conj_SchroederBernstein__3__3
Beginning of Section Conj_PigeonHole_nat__1__0
L88 Variable f : (set β set )
L92 Hypothesis H1 : z β ordsucc (ordsucc x )
L93 Hypothesis H2 : ordsucc w β ordsucc (ordsucc x )
L94 Hypothesis H3 : Β¬ Subq y z
L95 Hypothesis H4 : Subq y w
L96 Hypothesis H5 : f z = f (ordsucc w )
L97
Proof: Load proof Proof not loaded.
End of Section Conj_PigeonHole_nat__1__0
Beginning of Section Conj_PigeonHole_nat__5__1
L104 Variable f : (set β set )
L108 Hypothesis H0 : nat_p x
L109 Hypothesis H2 : z β ordsucc x
L110 Hypothesis H3 : w β ordsucc x
L111 Hypothesis H4 : z β ordsucc (ordsucc x )
L112 Theorem. (
Conj_PigeonHole_nat__5__1 )
ordsucc z β ordsucc (ordsucc x ) β If_i (Subq y z ) (f (ordsucc z ) ) (f z ) = If_i (Subq y w ) (f (ordsucc w ) ) (f w ) β z = w
Proof: Load proof Proof not loaded.
End of Section Conj_PigeonHole_nat__5__1
Beginning of Section Conj_PigeonHole_nat_bij__2__2
L119 Variable f : (set β set )
L123 Hypothesis H0 : (βu : set , u β x β (βv : set , v β x β f u = f v β u = v ) )
L124 Hypothesis H1 : Β¬ (βu : set , u β x β§ f u = y )
L125 Hypothesis H3 : w β ordsucc x
L126
Proof: Load proof Proof not loaded.
End of Section Conj_PigeonHole_nat_bij__2__2
Beginning of Section Conj_finite_ind__2__4
L132 Variable p : (set β prop )
L135 Variable f : (set β set )
L136 Hypothesis H0 : (βz : set , βw : set , finite z β nIn w z β p z β p (binunion z (Sing w ) ) )
L137 Hypothesis H1 : nat_p x
L138 Hypothesis H2 : (βz : set , equip z x β p z )
L139 Hypothesis H3 : (βz : set , z β ordsucc x β f z β y )
L140 Hypothesis H5 : (βz : set , z β y β (βw : set , w β ordsucc x β§ f w = z ) )
L141
Proof: Load proof Proof not loaded.
End of Section Conj_finite_ind__2__4
Beginning of Section Conj_Descr_Vo1_prop__1__1
L147 Variable P : ((set β prop ) β prop )
L148 Variable p : (set β prop )
L149 Hypothesis H0 : (βq : set β prop , βp2 : set β prop , P q β P p2 β q = p2 )
L150
Proof: Load proof Proof not loaded.
End of Section Conj_Descr_Vo1_prop__1__1
Beginning of Section Conj_nat_setsum1_ordsucc__1__0
L158 Hypothesis H1 : x = ordsucc y
L159
Proof: Load proof Proof not loaded.
End of Section Conj_nat_setsum1_ordsucc__1__0
Beginning of Section Conj_PNoLt_trichotomy_or__6__2
L167 Variable p : (set β prop )
L168 Variable q : (set β prop )
L169 Hypothesis H0 : TransSet y
L170 Hypothesis H1 : PNoEq_ (binintersect x y ) p q
L171
Proof: Load proof Proof not loaded.
End of Section Conj_PNoLt_trichotomy_or__6__2
Beginning of Section Conj_PNoLt_trichotomy_or__7__2
L179 Variable p : (set β prop )
L180 Variable q : (set β prop )
L181 Hypothesis H0 : ordinal x
L182 Hypothesis H1 : ordinal y
L183 Hypothesis H3 : TransSet y
L184
Proof: Load proof Proof not loaded.
End of Section Conj_PNoLt_trichotomy_or__7__2
Beginning of Section Conj_PNoLt_tra__1__0
L193 Variable p : (set β prop )
L194 Variable q : (set β prop )
L195 Variable p2 : (set β prop )
L197 Hypothesis H1 : ordinal y
L198 Hypothesis H2 : TransSet z
L199 Hypothesis H3 : PNoEq_ x p q
L203 Hypothesis H7 : PNoEq_ w q p2
L204 Hypothesis H8 : Β¬ q w
L206
Proof: Load proof Proof not loaded.
End of Section Conj_PNoLt_tra__1__0
Beginning of Section Conj_PNoLt_tra__2__12
L215 Variable p : (set β prop )
L216 Variable q : (set β prop )
L217 Variable p2 : (set β prop )
L220 Hypothesis H0 : ordinal y
L221 Hypothesis H1 : TransSet x
L222 Hypothesis H2 : TransSet z
L224 Hypothesis H4 : PNoEq_ w p q
L225 Hypothesis H5 : Β¬ p w
L227 Hypothesis H7 : ordinal w
L230 Hypothesis H10 : PNoEq_ u q p2
L231 Hypothesis H11 : Β¬ q u
L232
Proof: Load proof Proof not loaded.
End of Section Conj_PNoLt_tra__2__12
Beginning of Section Conj_PNoLe_tra__1__0
L241 Variable p : (set β prop )
L242 Variable q : (set β prop )
L243 Variable p2 : (set β prop )
L244 Hypothesis H1 : ordinal z
L245 Hypothesis H2 : PNoLe y q z p2
L246 Hypothesis H3 : x = y
L247 Hypothesis H4 : PNoEq_ x p q
L248
Proof: Load proof Proof not loaded.
End of Section Conj_PNoLe_tra__1__0
Beginning of Section Conj_PNo_rel_strict_upperbd_antimon__6__1
L254 Variable P : (set β ((set β prop ) β prop ) )
L256 Variable p : (set β prop )
L258 Hypothesis H0 : ordinal x
L259 Hypothesis H2 : TransSet x
L260 Theorem. (
Conj_PNo_rel_strict_upperbd_antimon__6__1 )
ordinal y β (βz : set , z β x β (βq : set β prop , PNo_downc P z q β PNoLt z q x p ) ) β (βz : set , z β y β (βq : set β prop , PNo_downc P z q β PNoLt z q y p ) )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_strict_upperbd_antimon__6__1
Beginning of Section Conj_PNo_rel_strict_upperbd_antimon__6__2
L266 Variable P : (set β ((set β prop ) β prop ) )
L268 Variable p : (set β prop )
L270 Hypothesis H0 : ordinal x
L272 Theorem. (
Conj_PNo_rel_strict_upperbd_antimon__6__2 )
ordinal y β (βz : set , z β x β (βq : set β prop , PNo_downc P z q β PNoLt z q x p ) ) β (βz : set , z β y β (βq : set β prop , PNo_downc P z q β PNoLt z q y p ) )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_strict_upperbd_antimon__6__2
Beginning of Section Conj_PNo_rel_strict_lowerbd_antimon__4__0
L278 Variable P : (set β ((set β prop ) β prop ) )
L280 Variable p : (set β prop )
L283 Variable q : (set β prop )
L284 Hypothesis H1 : TransSet x
L285 Hypothesis H2 : TransSet y
L286 Hypothesis H3 : (βw : set , w β x β (βp2 : set β prop , PNo_upc P w p2 β PNoLt x p w p2 ) )
L288 Hypothesis H5 : PNo_upc P z q
L289
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_strict_lowerbd_antimon__4__0
Beginning of Section Conj_PNo_rel_imv_ex__4__9
L295 Variable P : (set β ((set β prop ) β prop ) )
L297 Variable p : (set β prop )
L299 Variable q : (set β prop )
L301 Hypothesis H0 : ordinal x
L302 Hypothesis H1 : (βw : set , w β x β (βp2 : set β prop , PNo_upc P w p2 β PNoLt x p w p2 ) )
L303 Hypothesis H2 : PNoEq_ x p (Ξ»w : set β p w β¨ w = x )
L304 Hypothesis H3 : PNo_upc P y q
L305 Hypothesis H4 : ordinal y
L306 Hypothesis H5 : y = x
L308 Hypothesis H7 : PNoEq_ z q (Ξ»w : set β p w β¨ w = x )
L309 Hypothesis H8 : Β¬ q z
L310
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__4__9
Beginning of Section Conj_PNo_rel_imv_ex__7__0
L317 Variable p : (set β prop )
L318 Variable q : (set β prop )
L320 Hypothesis H1 : PNoEq_ x p (Ξ»z : set β p z β¨ z = x )
L322 Hypothesis H3 : PNoEq_ y (Ξ»z : set β p z β¨ z = x ) q
L323 Hypothesis H4 : Β¬ (p y β¨ y = x )
L324 Hypothesis H5 : ordinal y
L325 Hypothesis H6 : PNoLt y q x p
L326
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__7__0
Beginning of Section Conj_PNo_rel_imv_ex__7__3
L333 Variable p : (set β prop )
L334 Variable q : (set β prop )
L336 Hypothesis H0 : ordinal x
L337 Hypothesis H1 : PNoEq_ x p (Ξ»z : set β p z β¨ z = x )
L339 Hypothesis H4 : Β¬ (p y β¨ y = x )
L340 Hypothesis H5 : ordinal y
L341 Hypothesis H6 : PNoLt y q x p
L342
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__7__3
Beginning of Section Conj_PNo_rel_imv_ex__7__4
L349 Variable p : (set β prop )
L350 Variable q : (set β prop )
L352 Hypothesis H0 : ordinal x
L353 Hypothesis H1 : PNoEq_ x p (Ξ»z : set β p z β¨ z = x )
L355 Hypothesis H3 : PNoEq_ y (Ξ»z : set β p z β¨ z = x ) q
L356 Hypothesis H5 : ordinal y
L357 Hypothesis H6 : PNoLt y q x p
L358
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__7__4
Beginning of Section Conj_PNo_rel_imv_ex__15__3
L364 Variable P : (set β ((set β prop ) β prop ) )
L365 Variable Q : (set β ((set β prop ) β prop ) )
L368 Variable p : (set β prop )
L369 Hypothesis H0 : Β¬ (βq : set β prop , PNo_rel_strict_uniq_imv P Q x q )
L370 Hypothesis H1 : x = ordsucc y
L371 Hypothesis H2 : ordinal y
L372 Hypothesis H4 : binintersect y (ordsucc y ) = y
L373 Hypothesis H5 : binintersect (ordsucc y ) y = y
L374 Hypothesis H6 : (βz : set , z β y β (βq : set β prop , PNo_downc P z q β PNoLt z q y p ) )
L375 Hypothesis H7 : (βz : set , z β y β (βq : set β prop , PNo_upc Q z q β PNoLt y p z q ) )
L376 Hypothesis H8 : (βq : set β prop , PNo_rel_strict_imv P Q y q β PNoEq_ y p q )
L377 Hypothesis H9 : PNoEq_ y p (Ξ»z : set β p z β¨ z = y )
L378 Hypothesis H10 : PNoLt y p (ordsucc y ) (Ξ»z : set β p z β¨ z = y )
L379 Hypothesis H11 : Β¬ (PNo_rel_strict_imv P Q x (Ξ»z : set β p z β§ z β y ) β§ PNo_rel_strict_imv P Q x (Ξ»z : set β p z β¨ z = y ) )
L380 Hypothesis H12 : (βq : set β prop , PNo_upc Q y q β Β¬ PNoEq_ y p q )
L381
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__15__3
Beginning of Section Conj_PNo_rel_imv_ex__15__11
L387 Variable P : (set β ((set β prop ) β prop ) )
L388 Variable Q : (set β ((set β prop ) β prop ) )
L391 Variable p : (set β prop )
L392 Hypothesis H0 : Β¬ (βq : set β prop , PNo_rel_strict_uniq_imv P Q x q )
L393 Hypothesis H1 : x = ordsucc y
L394 Hypothesis H2 : ordinal y
L395 Hypothesis H3 : ordinal (ordsucc y )
L396 Hypothesis H4 : binintersect y (ordsucc y ) = y
L397 Hypothesis H5 : binintersect (ordsucc y ) y = y
L398 Hypothesis H6 : (βz : set , z β y β (βq : set β prop , PNo_downc P z q β PNoLt z q y p ) )
L399 Hypothesis H7 : (βz : set , z β y β (βq : set β prop , PNo_upc Q z q β PNoLt y p z q ) )
L400 Hypothesis H8 : (βq : set β prop , PNo_rel_strict_imv P Q y q β PNoEq_ y p q )
L401 Hypothesis H9 : PNoEq_ y p (Ξ»z : set β p z β¨ z = y )
L402 Hypothesis H10 : PNoLt y p (ordsucc y ) (Ξ»z : set β p z β¨ z = y )
L403 Hypothesis H12 : (βq : set β prop , PNo_upc Q y q β Β¬ PNoEq_ y p q )
L404
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__15__11
Beginning of Section Conj_PNo_rel_imv_ex__16__2
L411 Variable p : (set β prop )
L412 Variable q : (set β prop )
L414 Hypothesis H0 : ordinal x
L415 Hypothesis H1 : PNoEq_ x (Ξ»z : set β p z β§ z β x ) p
L416 Hypothesis H3 : PNoEq_ y q (Ξ»z : set β p z β§ z β x )
L417 Hypothesis H4 : p y β§ y β x
L418 Hypothesis H5 : ordinal y
L419 Hypothesis H6 : PNoLt x p y q
L420
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__16__2
Beginning of Section Conj_PNo_rel_imv_ex__17__0
L426 Variable P : (set β ((set β prop ) β prop ) )
L428 Variable p : (set β prop )
L430 Variable q : (set β prop )
L432 Hypothesis H1 : (βw : set , w β x β (βp2 : set β prop , PNo_upc P w p2 β PNoLt x p w p2 ) )
L433 Hypothesis H2 : PNoEq_ x (Ξ»w : set β p w β§ w β x ) p
L434 Hypothesis H3 : PNo_upc P y q
L435 Hypothesis H4 : ordinal y
L436 Hypothesis H5 : y = x
L438 Hypothesis H7 : PNoEq_ z q (Ξ»w : set β p w β§ w β x )
L439 Hypothesis H8 : Β¬ q z
L440 Hypothesis H9 : p z β§ z β x
L441 Hypothesis H10 : ordinal z
L442
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__17__0
Beginning of Section Conj_PNo_rel_imv_ex__19__3
L448 Variable P : (set β ((set β prop ) β prop ) )
L450 Variable p : (set β prop )
L452 Variable q : (set β prop )
L453 Hypothesis H0 : ordinal x
L454 Hypothesis H1 : ordinal (ordsucc x )
L455 Hypothesis H2 : binintersect x (ordsucc x ) = x
L456 Hypothesis H4 : PNoEq_ x (Ξ»z : set β p z β§ z β x ) p
L457 Hypothesis H5 : PNoLt (ordsucc x ) (Ξ»z : set β p z β§ z β x ) x p
L458 Hypothesis H6 : y β ordsucc x
L459 Hypothesis H7 : PNo_upc P y q
L460
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__19__3
Beginning of Section Conj_PNo_rel_imv_ex__20__5
L466 Variable P : (set β ((set β prop ) β prop ) )
L468 Variable p : (set β prop )
L470 Variable q : (set β prop )
L472 Hypothesis H0 : ordinal x
L473 Hypothesis H1 : (βw : set , w β x β (βp2 : set β prop , PNo_downc P w p2 β PNoLt w p2 x p ) )
L474 Hypothesis H2 : PNo_downc P y q
L475 Hypothesis H3 : ordinal y
L476 Hypothesis H4 : y = x
L478 Hypothesis H7 : ordinal z
L479 Hypothesis H8 : PNoLt x p z q
L480
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__20__5
Beginning of Section Conj_PNo_rel_imv_ex__22__6
L486 Variable P : (set β ((set β prop ) β prop ) )
L488 Variable p : (set β prop )
L490 Variable q : (set β prop )
L492 Hypothesis H0 : ordinal x
L493 Hypothesis H1 : (βw : set , w β x β (βp2 : set β prop , PNo_downc P w p2 β PNoLt w p2 x p ) )
L494 Hypothesis H2 : PNoEq_ x (Ξ»w : set β p w β§ w β x ) p
L495 Hypothesis H3 : PNo_downc P y q
L496 Hypothesis H4 : ordinal y
L497 Hypothesis H5 : y = x
L498 Hypothesis H7 : PNoEq_ z (Ξ»w : set β p w β§ w β x ) q
L499 Hypothesis H8 : Β¬ (p z β§ z β x )
L501
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__22__6
Beginning of Section Conj_PNo_rel_imv_ex__29__1
L507 Variable P : (set β ((set β prop ) β prop ) )
L508 Variable Q : (set β ((set β prop ) β prop ) )
L511 Variable p : (set β prop )
L512 Hypothesis H0 : Β¬ (βq : set β prop , PNo_rel_strict_uniq_imv P Q x q )
L513 Hypothesis H2 : ordinal y
L514 Hypothesis H3 : ordinal (ordsucc y )
L515 Hypothesis H4 : binintersect y (ordsucc y ) = y
L516 Hypothesis H5 : binintersect (ordsucc y ) y = y
L517 Hypothesis H6 : (βz : set , z β y β (βq : set β prop , PNo_downc P z q β PNoLt z q y p ) )
L518 Hypothesis H7 : (βz : set , z β y β (βq : set β prop , PNo_upc Q z q β PNoLt y p z q ) )
L519 Hypothesis H8 : (βq : set β prop , PNo_rel_strict_imv P Q y q β PNoEq_ y p q )
L520 Hypothesis H9 : PNoEq_ y (Ξ»z : set β p z β§ z β y ) p
L521 Hypothesis H10 : PNoLt (ordsucc y ) (Ξ»z : set β p z β§ z β y ) y p
L522 Hypothesis H11 : Β¬ (PNo_rel_strict_imv P Q x (Ξ»z : set β p z β§ z β y ) β§ PNo_rel_strict_imv P Q x (Ξ»z : set β p z β¨ z = y ) )
L523 Hypothesis H12 : (βq : set β prop , PNo_downc P y q β Β¬ PNoEq_ y p q )
L524
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__29__1
Beginning of Section Conj_PNo_rel_imv_ex__32__9
L530 Variable P : (set β ((set β prop ) β prop ) )
L531 Variable Q : (set β ((set β prop ) β prop ) )
L534 Variable p : (set β prop )
L535 Hypothesis H0 : PNoLt_pwise (PNo_downc P ) (PNo_upc Q )
L536 Hypothesis H1 : Β¬ (βq : set β prop , PNo_rel_strict_uniq_imv P Q x q )
L537 Hypothesis H2 : Β¬ (βz : set , z β x β§ (βq : set β prop , PNo_rel_strict_split_imv P Q z q ) )
L539 Hypothesis H4 : x = ordsucc y
L540 Hypothesis H5 : ordinal y
L541 Hypothesis H6 : ordinal (ordsucc y )
L542 Hypothesis H7 : binintersect y (ordsucc y ) = y
L543 Hypothesis H8 : binintersect (ordsucc y ) y = y
L544 Hypothesis H10 : (βz : set , z β y β (βq : set β prop , PNo_upc Q z q β PNoLt y p z q ) )
L545 Hypothesis H11 : (βq : set β prop , PNo_rel_strict_imv P Q y q β PNoEq_ y p q )
L546 Hypothesis H12 : PNoEq_ y (Ξ»z : set β p z β§ z β y ) p
L547 Hypothesis H13 : PNoLt (ordsucc y ) (Ξ»z : set β p z β§ z β y ) y p
L548 Hypothesis H14 : PNoEq_ y p (Ξ»z : set β p z β¨ z = y )
L549 Hypothesis H15 : p y β¨ y = y
L550
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__32__9
Beginning of Section Conj_PNo_rel_imv_ex__32__11
L556 Variable P : (set β ((set β prop ) β prop ) )
L557 Variable Q : (set β ((set β prop ) β prop ) )
L560 Variable p : (set β prop )
L561 Hypothesis H0 : PNoLt_pwise (PNo_downc P ) (PNo_upc Q )
L562 Hypothesis H1 : Β¬ (βq : set β prop , PNo_rel_strict_uniq_imv P Q x q )
L563 Hypothesis H2 : Β¬ (βz : set , z β x β§ (βq : set β prop , PNo_rel_strict_split_imv P Q z q ) )
L565 Hypothesis H4 : x = ordsucc y
L566 Hypothesis H5 : ordinal y
L567 Hypothesis H6 : ordinal (ordsucc y )
L568 Hypothesis H7 : binintersect y (ordsucc y ) = y
L569 Hypothesis H8 : binintersect (ordsucc y ) y = y
L570 Hypothesis H9 : (βz : set , z β y β (βq : set β prop , PNo_downc P z q β PNoLt z q y p ) )
L571 Hypothesis H10 : (βz : set , z β y β (βq : set β prop , PNo_upc Q z q β PNoLt y p z q ) )
L572 Hypothesis H12 : PNoEq_ y (Ξ»z : set β p z β§ z β y ) p
L573 Hypothesis H13 : PNoLt (ordsucc y ) (Ξ»z : set β p z β§ z β y ) y p
L574 Hypothesis H14 : PNoEq_ y p (Ξ»z : set β p z β¨ z = y )
L575 Hypothesis H15 : p y β¨ y = y
L576
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__32__11
Beginning of Section Conj_PNo_rel_imv_ex__37__7
L582 Variable P : (set β ((set β prop ) β prop ) )
L583 Variable Q : (set β ((set β prop ) β prop ) )
L586 Variable p : (set β prop )
L587 Hypothesis H0 : PNoLt_pwise (PNo_downc P ) (PNo_upc Q )
L588 Hypothesis H1 : Β¬ (βq : set β prop , PNo_rel_strict_uniq_imv P Q x q )
L589 Hypothesis H2 : Β¬ (βz : set , z β x β§ (βq : set β prop , PNo_rel_strict_split_imv P Q z q ) )
L591 Hypothesis H4 : x = ordsucc y
L592 Hypothesis H5 : ordinal y
L593 Hypothesis H6 : ordinal (ordsucc y )
L594 Hypothesis H8 : binintersect (ordsucc y ) y = y
L595 Hypothesis H9 : (βz : set , z β y β (βq : set β prop , PNo_downc P z q β PNoLt z q y p ) )
L596 Hypothesis H10 : (βz : set , z β y β (βq : set β prop , PNo_upc Q z q β PNoLt y p z q ) )
L597 Hypothesis H11 : (βq : set β prop , PNo_rel_strict_imv P Q y q β PNoEq_ y p q )
L598
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__37__7
Beginning of Section Conj_PNo_rel_imv_ex__38__8
L604 Variable P : (set β ((set β prop ) β prop ) )
L605 Variable Q : (set β ((set β prop ) β prop ) )
L608 Hypothesis H0 : PNoLt_pwise (PNo_downc P ) (PNo_upc Q )
L609 Hypothesis H1 : Β¬ (βp : set β prop , PNo_rel_strict_uniq_imv P Q x p )
L610 Hypothesis H2 : Β¬ (βz : set , z β x β§ (βp : set β prop , PNo_rel_strict_split_imv P Q z p ) )
L611 Hypothesis H3 : (βz : set , z β x β (βp : set β prop , PNo_rel_strict_uniq_imv P Q z p ) )
L613 Hypothesis H5 : x = ordsucc y
L614 Hypothesis H6 : ordinal y
L615 Hypothesis H7 : ordinal (ordsucc y )
L616
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__38__8
Beginning of Section Conj_PNo_rel_imv_ex__39__1
L622 Variable P : (set β ((set β prop ) β prop ) )
L623 Variable Q : (set β ((set β prop ) β prop ) )
L626 Hypothesis H0 : PNoLt_pwise (PNo_downc P ) (PNo_upc Q )
L627 Hypothesis H2 : Β¬ (βz : set , z β x β§ (βp : set β prop , PNo_rel_strict_split_imv P Q z p ) )
L628 Hypothesis H3 : (βz : set , z β x β (βp : set β prop , PNo_rel_strict_uniq_imv P Q z p ) )
L630 Hypothesis H5 : x = ordsucc y
L631 Hypothesis H6 : ordinal y
L632 Hypothesis H7 : ordinal (ordsucc y )
L633
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__39__1
Beginning of Section Conj_PNo_rel_imv_ex__40__5
L639 Variable P : (set β ((set β prop ) β prop ) )
L640 Variable Q : (set β ((set β prop ) β prop ) )
L643 Hypothesis H0 : PNoLt_pwise (PNo_downc P ) (PNo_upc Q )
L644 Hypothesis H1 : ordinal x
L645 Hypothesis H2 : Β¬ (βp : set β prop , PNo_rel_strict_uniq_imv P Q x p )
L646 Hypothesis H3 : Β¬ (βz : set , z β x β§ (βp : set β prop , PNo_rel_strict_split_imv P Q z p ) )
L647 Hypothesis H4 : (βz : set , z β x β (βp : set β prop , PNo_rel_strict_uniq_imv P Q z p ) )
L648 Hypothesis H6 : x = ordsucc y
L649 Hypothesis H7 : ordinal y
L650
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__40__5
Beginning of Section Conj_PNo_rel_imv_ex__45__7
L656 Variable P : (set β ((set β prop ) β prop ) )
L657 Variable Q : (set β ((set β prop ) β prop ) )
L660 Variable p : (set β prop )
L661 Hypothesis H0 : TransSet x
L662 Hypothesis H1 : ordinal y
L663 Hypothesis H2 : (βz : set , z β y β z β x β PNo_rel_strict_uniq_imv P Q z (Ξ»w : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) q β q w ) )
L665 Hypothesis H4 : PNo_rel_strict_imv P Q y p
L666 Hypothesis H5 : PNo_rel_strict_upperbd P y p
L667 Hypothesis H6 : PNo_rel_strict_lowerbd Q y p
L668 Theorem. (
Conj_PNo_rel_imv_ex__45__7 )
PNoEq_ y (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z ) p β PNo_rel_strict_imv P Q y (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z ) β§ (βq : set β prop , PNo_rel_strict_imv P Q y q β PNoEq_ y (Ξ»z : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) p2 β p2 z ) q )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__45__7
Beginning of Section Conj_PNo_rel_imv_ex__49__2
L674 Variable P : (set β ((set β prop ) β prop ) )
L675 Variable Q : (set β ((set β prop ) β prop ) )
L678 Variable p : (set β prop )
L679 Hypothesis H0 : PNo_upc Q y p
L680 Hypothesis H1 : ordinal y
L681 Hypothesis H3 : PNoEq_ y p (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z )
L682 Hypothesis H4 : (βq : set β prop , PNo_rel_strict_imv P Q (ordsucc y ) q β q y )
L683 Hypothesis H5 : PNo_rel_strict_lowerbd Q (ordsucc y ) (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z )
L684 Theorem. (
Conj_PNo_rel_imv_ex__49__2 )
PNoLt (ordsucc y ) (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z ) y p β PNoLt x (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z ) y p
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__49__2
Beginning of Section Conj_PNo_rel_imv_ex__54__4
L690 Variable P : (set β ((set β prop ) β prop ) )
L691 Variable Q : (set β ((set β prop ) β prop ) )
L694 Variable p : (set β prop )
L696 Hypothesis H0 : (βw : set , w β x β ordsucc w β x )
L697 Hypothesis H1 : (βw : set , w β x β PNo_rel_strict_uniq_imv P Q w (Ξ»u : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc u ) q β q u ) )
L698 Hypothesis H2 : PNo_upc Q y p
L699 Hypothesis H3 : ordinal y
L701 Hypothesis H6 : PNoEq_ z p (Ξ»w : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) q β q w )
L702 Hypothesis H7 : Β¬ p z
L703 Hypothesis H8 : (βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z )
L704 Theorem. (
Conj_PNo_rel_imv_ex__54__4 )
ordinal z β PNoLt x (Ξ»w : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) q β q w ) y p
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__54__4
Beginning of Section Conj_PNo_rel_imv_ex__58__3
L710 Variable P : (set β ((set β prop ) β prop ) )
L711 Variable Q : (set β ((set β prop ) β prop ) )
L713 Variable p : (set β prop )
L715 Hypothesis H0 : ordinal x
L716 Hypothesis H1 : ordinal (ordsucc x )
L717 Hypothesis H2 : PNo_rel_strict_imv P Q (ordsucc x ) p
L719 Hypothesis H5 : (βq : set β prop , PNo_rel_strict_imv P Q (ordsucc y ) q β PNoEq_ (ordsucc y ) (Ξ»z : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) p2 β p2 z ) q )
L720 Theorem. (
Conj_PNo_rel_imv_ex__58__3 )
PNoEq_ (ordsucc y ) (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z ) p β (βq : set β prop , PNo_rel_strict_imv P Q (ordsucc y ) q β q y )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__58__3
Beginning of Section Conj_PNo_rel_imv_ex__62__6
L726 Variable P : (set β ((set β prop ) β prop ) )
L727 Variable Q : (set β ((set β prop ) β prop ) )
L730 Variable p : (set β prop )
L731 Variable q : (set β prop )
L733 Hypothesis H0 : TransSet x
L734 Hypothesis H1 : (βw : set , w β x β ordsucc w β x )
L735 Hypothesis H2 : (βw : set , w β x β PNo_rel_strict_uniq_imv P Q w (Ξ»u : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc u ) p2 β p2 u ) )
L737 Hypothesis H4 : ordinal y
L738 Hypothesis H5 : ordinal (ordsucc y )
L739 Hypothesis H7 : PNo_rel_strict_imv P Q (ordsucc y ) q
L741 Hypothesis H9 : Β¬ p z
L743
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__62__6
Beginning of Section Conj_PNo_rel_imv_ex__64__8
L749 Variable P : (set β ((set β prop ) β prop ) )
L750 Variable Q : (set β ((set β prop ) β prop ) )
L753 Variable p : (set β prop )
L754 Variable q : (set β prop )
L755 Hypothesis H0 : TransSet x
L756 Hypothesis H1 : (βz : set , z β x β ordsucc z β x )
L757 Hypothesis H2 : (βz : set , z β x β PNo_rel_strict_uniq_imv P Q z (Ξ»w : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) p2 β p2 w ) )
L759 Hypothesis H4 : PNo_downc P y p
L760 Hypothesis H5 : ordinal y
L761 Hypothesis H6 : ordinal (ordsucc y )
L762 Hypothesis H7 : PNoEq_ y (Ξ»z : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) p2 β p2 z ) p
L763 Hypothesis H9 : PNo_rel_strict_upperbd P (ordsucc y ) q
L764
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__64__8
Beginning of Section Conj_PNo_rel_imv_ex__65__3
L770 Variable P : (set β ((set β prop ) β prop ) )
L771 Variable Q : (set β ((set β prop ) β prop ) )
L773 Variable p : (set β prop )
L775 Hypothesis H0 : ordinal x
L776 Hypothesis H1 : ordinal (ordsucc x )
L777 Hypothesis H2 : PNo_rel_strict_imv P Q (ordsucc x ) p
L779 Hypothesis H5 : (βq : set β prop , PNo_rel_strict_imv P Q (ordsucc y ) q β PNoEq_ (ordsucc y ) (Ξ»z : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) p2 β p2 z ) q )
L780 Theorem. (
Conj_PNo_rel_imv_ex__65__3 )
PNoEq_ (ordsucc y ) (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z ) p β (βq : set β prop , PNo_rel_strict_imv P Q (ordsucc y ) q β q y )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__65__3
Beginning of Section Conj_PNo_rel_imv_ex__68__8
L786 Variable P : (set β ((set β prop ) β prop ) )
L787 Variable Q : (set β ((set β prop ) β prop ) )
L789 Variable p : (set β prop )
L791 Variable q : (set β prop )
L793 Hypothesis H0 : (βw : set , w β x β ordsucc w β x )
L794 Hypothesis H1 : (βw : set , w β x β PNo_rel_strict_uniq_imv P Q w (Ξ»u : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc u ) p2 β p2 u ) )
L795 Hypothesis H2 : PNoEq_ y (Ξ»w : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) p2 β p2 w ) p
L796 Hypothesis H3 : ordinal y
L797 Hypothesis H4 : ordinal (ordsucc y )
L798 Hypothesis H5 : PNo_rel_strict_imv P Q (ordsucc y ) q
L800 Hypothesis H7 : Β¬ p z
L802
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__68__8
Beginning of Section Conj_PNo_rel_imv_ex__71__8
L808 Variable P : (set β ((set β prop ) β prop ) )
L809 Variable Q : (set β ((set β prop ) β prop ) )
L812 Variable p : (set β prop )
L814 Variable q : (set β prop )
L815 Hypothesis H0 : TransSet x
L816 Hypothesis H1 : (βw : set , w β x β ordsucc w β x )
L817 Hypothesis H2 : (βw : set , w β x β PNo_rel_strict_uniq_imv P Q w (Ξ»u : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc u ) p2 β p2 u ) )
L818 Hypothesis H3 : PNo_downc P y p
L819 Hypothesis H4 : ordinal y
L822 Hypothesis H7 : PNoEq_ z (Ξ»w : set β βp2 : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) p2 β p2 w ) p
L823 Hypothesis H9 : ordinal z
L824 Hypothesis H10 : ordinal (ordsucc z )
L825 Hypothesis H11 : PNo_rel_strict_imv P Q (ordsucc z ) q
L826 Hypothesis H12 : PNo_rel_strict_upperbd P (ordsucc z ) q
L827
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__71__8
Beginning of Section Conj_PNo_rel_imv_ex__73__4
L833 Variable P : (set β ((set β prop ) β prop ) )
L834 Variable Q : (set β ((set β prop ) β prop ) )
L837 Variable p : (set β prop )
L839 Hypothesis H0 : TransSet x
L840 Hypothesis H1 : (βw : set , w β x β ordsucc w β x )
L841 Hypothesis H2 : (βw : set , w β x β PNo_rel_strict_uniq_imv P Q w (Ξ»u : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc u ) q β q u ) )
L842 Hypothesis H3 : PNo_downc P y p
L845 Hypothesis H7 : PNoEq_ z (Ξ»w : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) q β q w ) p
L846 Hypothesis H8 : Β¬ (βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z )
L848 Theorem. (
Conj_PNo_rel_imv_ex__73__4 )
ordinal z β PNoLt y p x (Ξ»w : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) q β q w )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__73__4
Beginning of Section Conj_PNo_rel_imv_ex__75__0
L854 Variable P : (set β ((set β prop ) β prop ) )
L855 Variable Q : (set β ((set β prop ) β prop ) )
L858 Variable p : (set β prop )
L859 Hypothesis H1 : TransSet x
L860 Hypothesis H2 : (βz : set , z β x β ordsucc z β x )
L861 Hypothesis H3 : (βz : set , z β x β PNo_rel_strict_uniq_imv P Q z (Ξ»w : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc w ) q β q w ) )
L863 Hypothesis H5 : PNo_downc P y p
L864 Theorem. (
Conj_PNo_rel_imv_ex__75__0 )
ordinal y β PNoLt y p x (Ξ»z : set β βq : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) q β q z )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__75__0
Beginning of Section Conj_PNo_rel_imv_ex__77__2
L870 Variable P : (set β ((set β prop ) β prop ) )
L871 Variable Q : (set β ((set β prop ) β prop ) )
L873 Hypothesis H0 : ordinal x
L874 Hypothesis H1 : TransSet x
L875 Hypothesis H3 : (βy : set , y β x β (βp : set β prop , PNo_rel_strict_uniq_imv P Q y p ) )
L876 Hypothesis H4 : (βy : set , y β x β ordsucc y β x )
L877 Theorem. (
Conj_PNo_rel_imv_ex__77__2 )
Β¬ (βy : set , ordinal y β y β x β PNo_rel_strict_uniq_imv P Q y (Ξ»z : set β βp : set β prop , PNo_rel_strict_imv P Q (ordsucc z ) p β p z ) )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_imv_ex__77__2
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__3__3
L883 Variable P : (set β ((set β prop ) β prop ) )
L885 Variable p : (set β prop )
L887 Variable q : (set β prop )
L888 Hypothesis H0 : ordinal x
L889 Hypothesis H1 : PNo_lenbdd x P
L890 Hypothesis H2 : PNo_rel_strict_lowerbd P x p
L891 Hypothesis H4 : PNoEq_ x p (Ξ»z : set β p z β§ z β x )
L892 Hypothesis H5 : y β ordsucc x
L893 Hypothesis H6 : PNo_upc P y q
L894
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__3__3
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__4__2
L901 Variable p : (set β prop )
L903 Variable q : (set β prop )
L905 Hypothesis H0 : ordinal x
L906 Hypothesis H1 : TransSet x
L909
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__4__2
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__5__0
L915 Variable P : (set β ((set β prop ) β prop ) )
L917 Variable p : (set β prop )
L919 Variable q : (set β prop )
L920 Hypothesis H1 : TransSet x
L921 Hypothesis H2 : PNo_rel_strict_upperbd P x p
L922 Hypothesis H3 : ordinal (ordsucc x )
L923 Hypothesis H4 : PNoEq_ x p (Ξ»z : set β p z β§ z β x )
L924 Hypothesis H5 : ordinal y
L926 Hypothesis H7 : y β ordsucc x
L927 Hypothesis H8 : PNo_downc P y q
L928
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__5__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__6__7
L934 Variable P : (set β ((set β prop ) β prop ) )
L936 Variable p : (set β prop )
L938 Variable q : (set β prop )
L939 Hypothesis H0 : ordinal x
L940 Hypothesis H1 : TransSet x
L941 Hypothesis H2 : PNo_rel_strict_upperbd P x p
L942 Hypothesis H3 : ordinal (ordsucc x )
L943 Hypothesis H4 : PNoEq_ x p (Ξ»z : set β p z β§ z β x )
L944 Hypothesis H5 : ordinal y
L945 Hypothesis H6 : P y q
L946 Hypothesis H8 : y β ordsucc x
L947
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__6__7
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__9__0
L953 Variable P : (set β ((set β prop ) β prop ) )
L955 Variable p : (set β prop )
L957 Variable q : (set β prop )
L958 Hypothesis H1 : TransSet x
L959 Hypothesis H2 : PNo_lenbdd x P
L960 Hypothesis H3 : PNo_rel_strict_upperbd P x p
L961 Hypothesis H4 : ordinal (ordsucc x )
L962 Hypothesis H5 : PNoEq_ x p (Ξ»z : set β p z β§ z β x )
L963 Hypothesis H6 : y β ordsucc x
L964 Hypothesis H7 : PNo_downc P y q
L965
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__9__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend0__10__0
L971 Variable P : (set β ((set β prop ) β prop ) )
L972 Variable Q : (set β ((set β prop ) β prop ) )
L974 Variable p : (set β prop )
L975 Hypothesis H1 : TransSet x
L976 Hypothesis H2 : PNo_lenbdd x P
L977 Hypothesis H3 : PNo_lenbdd x Q
L978 Hypothesis H4 : PNo_rel_strict_upperbd P x p
L979 Hypothesis H5 : PNo_rel_strict_lowerbd Q x p
L980 Hypothesis H6 : ordinal (ordsucc x )
L981 Theorem. (
Conj_PNo_lenbdd_strict_imv_extend0__10__0 )
PNoEq_ x p (Ξ»y : set β p y β§ y β x ) β PNo_rel_strict_upperbd P (ordsucc x ) (Ξ»y : set β p y β§ y β x ) β§ PNo_rel_strict_lowerbd Q (ordsucc x ) (Ξ»y : set β p y β§ y β x )
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend0__10__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__0
L987 Variable P : (set β ((set β prop ) β prop ) )
L989 Variable p : (set β prop )
L991 Variable q : (set β prop )
L992 Hypothesis H1 : TransSet x
L993 Hypothesis H2 : PNo_rel_strict_lowerbd P x p
L994 Hypothesis H3 : ordinal (ordsucc x )
L995 Hypothesis H4 : PNoEq_ x p (Ξ»z : set β p z β¨ z = x )
L996 Hypothesis H5 : ordinal y
L998 Hypothesis H7 : y β ordsucc x
L999 Hypothesis H8 : PNo_upc P y q
L1000
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__0
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__1
L1006 Variable P : (set β ((set β prop ) β prop ) )
L1008 Variable p : (set β prop )
L1010 Variable q : (set β prop )
L1011 Hypothesis H0 : ordinal x
L1012 Hypothesis H2 : PNo_rel_strict_lowerbd P x p
L1013 Hypothesis H3 : ordinal (ordsucc x )
L1014 Hypothesis H4 : PNoEq_ x p (Ξ»z : set β p z β¨ z = x )
L1015 Hypothesis H5 : ordinal y
L1017 Hypothesis H7 : y β ordsucc x
L1018 Hypothesis H8 : PNo_upc P y q
L1019
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__1
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__2__5
L1025 Variable P : (set β ((set β prop ) β prop ) )
L1027 Variable p : (set β prop )
L1029 Variable q : (set β prop )
L1030 Hypothesis H0 : ordinal x
L1031 Hypothesis H1 : TransSet x
L1032 Hypothesis H2 : PNo_rel_strict_lowerbd P x p
L1033 Hypothesis H3 : ordinal (ordsucc x )
L1034 Hypothesis H4 : PNoEq_ x p (Ξ»z : set β p z β¨ z = x )
L1036 Hypothesis H7 : y β ordsucc x
L1037 Hypothesis H8 : PNo_upc P y q
L1038
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__2__5
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__4__6
L1044 Variable P : (set β ((set β prop ) β prop ) )
L1046 Variable p : (set β prop )
L1048 Variable q : (set β prop )
L1049 Hypothesis H0 : ordinal x
L1050 Hypothesis H1 : TransSet x
L1051 Hypothesis H2 : PNo_rel_strict_lowerbd P x p
L1052 Hypothesis H3 : ordinal (ordsucc x )
L1053 Hypothesis H4 : PNoEq_ x p (Ξ»z : set β p z β¨ z = x )
L1054 Hypothesis H5 : ordinal y
L1056
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__4__6
Beginning of Section Conj_PNo_lenbdd_strict_imv_extend1__7__6
L1062 Variable P : (set β ((set β prop ) β prop ) )
L1064 Variable p : (set β prop )
L1066 Variable q : (set β prop )
L1067 Hypothesis H0 : ordinal x
L1068 Hypothesis H1 : TransSet x
L1069 Hypothesis H2 : PNo_lenbdd x P
L1070 Hypothesis H3 : PNo_rel_strict_lowerbd P x p
L1071 Hypothesis H4 : ordinal (ordsucc x )
L1072 Hypothesis H5 : PNoEq_ x p (Ξ»z : set β p z β¨ z = x )
L1073 Hypothesis H7 : PNo_upc P y q
L1074
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_lenbdd_strict_imv_extend1__7__6
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__1__5
L1082 Variable p : (set β prop )
L1084 Variable q : (set β prop )
L1085 Hypothesis H0 : ordinal x
L1087 Hypothesis H2 : TransSet x
L1088 Hypothesis H3 : ordinal y
L1089 Hypothesis H4 : ordinal z
L1090 Hypothesis H6 : PNoLt z q x p
L1092
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__1__5
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__3__9
L1100 Variable p : (set β prop )
L1102 Variable q : (set β prop )
L1104 Variable p2 : (set β prop )
L1105 Hypothesis H0 : ordinal x
L1106 Hypothesis H1 : y β ordsucc x
L1108 Hypothesis H3 : TransSet x
L1109 Hypothesis H4 : ordinal y
L1110 Hypothesis H5 : ordinal z
L1111 Hypothesis H6 : Subq z y
L1112 Hypothesis H7 : ordinal w
L1113 Hypothesis H8 : PNoLe z q w p2
L1114
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__3__9
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__4__0
L1120 Variable P : (set β ((set β prop ) β prop ) )
L1123 Variable p : (set β prop )
L1125 Variable q : (set β prop )
L1127 Variable p2 : (set β prop )
L1128 Hypothesis H1 : y β ordsucc x
L1129 Hypothesis H2 : PNo_strict_upperbd P x p
L1131 Hypothesis H4 : TransSet x
L1132 Hypothesis H5 : ordinal y
L1133 Hypothesis H6 : ordinal z
L1134 Hypothesis H7 : Subq z y
L1135 Hypothesis H8 : ordinal w
L1136 Hypothesis H9 : P w p2
L1137 Hypothesis H10 : PNoLe z q w p2
L1138
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__4__0
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__7__4
L1144 Variable P : (set β ((set β prop ) β prop ) )
L1147 Variable p : (set β prop )
L1149 Variable q : (set β prop )
L1150 Hypothesis H0 : ordinal x
L1151 Hypothesis H1 : y β ordsucc x
L1152 Hypothesis H2 : PNo_strict_upperbd P x p
L1154 Hypothesis H5 : TransSet x
L1155 Hypothesis H6 : ordinal y
L1156
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__7__4
Beginning of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__9__2
L1162 Variable P : (set β ((set β prop ) β prop ) )
L1165 Variable p : (set β prop )
L1167 Variable q : (set β prop )
L1168 Hypothesis H0 : ordinal x
L1169 Hypothesis H1 : y β ordsucc x
L1171 Hypothesis H4 : PNo_downc P z q
L1172 Hypothesis H5 : TransSet x
L1173
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_upperbd_imp_rel_strict_upperbd__9__2
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__4__8
L1179 Variable P : (set β ((set β prop ) β prop ) )
L1182 Variable p : (set β prop )
L1184 Variable q : (set β prop )
L1186 Variable p2 : (set β prop )
L1187 Hypothesis H0 : ordinal x
L1188 Hypothesis H1 : y β ordsucc x
L1189 Hypothesis H2 : PNo_strict_lowerbd P x p
L1191 Hypothesis H4 : TransSet x
L1192 Hypothesis H5 : ordinal y
L1193 Hypothesis H6 : ordinal z
L1194 Hypothesis H7 : Subq z y
L1195 Hypothesis H9 : P w p2
L1196 Hypothesis H10 : PNoLe w p2 z q
L1197
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__4__8
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__5__5
L1203 Variable P : (set β ((set β prop ) β prop ) )
L1206 Variable p : (set β prop )
L1208 Variable q : (set β prop )
L1209 Hypothesis H0 : ordinal x
L1210 Hypothesis H1 : y β ordsucc x
L1211 Hypothesis H2 : PNo_strict_lowerbd P x p
L1213 Hypothesis H4 : PNo_upc P z q
L1214 Hypothesis H6 : ordinal y
L1215 Hypothesis H7 : TransSet y
L1216 Hypothesis H8 : ordinal z
L1217
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__5__5
Beginning of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__7__2
L1223 Variable P : (set β ((set β prop ) β prop ) )
L1226 Variable p : (set β prop )
L1228 Variable q : (set β prop )
L1229 Hypothesis H0 : ordinal x
L1230 Hypothesis H1 : y β ordsucc x
L1232 Hypothesis H4 : PNo_upc P z q
L1233 Hypothesis H5 : TransSet x
L1234 Hypothesis H6 : ordinal y
L1235
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_lowerbd_imp_rel_strict_lowerbd__7__2
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__3__0
L1241 Variable P : (set β ((set β prop ) β prop ) )
L1243 Variable p : (set β prop )
L1245 Variable q : (set β prop )
L1247 Hypothesis H1 : ordinal (ordsucc x )
L1248 Hypothesis H2 : PNo_rel_strict_lowerbd P (ordsucc x ) (Ξ»w : set β p w β¨ w = x )
L1249 Hypothesis H3 : ordinal y
L1250 Hypothesis H4 : P y q
L1251 Hypothesis H5 : z β ordsucc x
L1252 Hypothesis H6 : PNoEq_ z q p
L1253 Hypothesis H7 : p z β¨ z = x
L1254 Hypothesis H8 : ordinal z
L1255 Hypothesis H9 : PNoLt y q z q
L1256
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__3__0
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__11__7
L1262 Variable P : (set β ((set β prop ) β prop ) )
L1264 Variable p : (set β prop )
L1266 Variable q : (set β prop )
L1268 Hypothesis H0 : ordinal x
L1269 Hypothesis H1 : ordinal (ordsucc x )
L1270 Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x ) (Ξ»w : set β p w β§ w β x )
L1271 Hypothesis H3 : ordinal y
L1272 Hypothesis H4 : P y q
L1273 Hypothesis H5 : z β ordsucc x
L1274 Hypothesis H6 : PNoEq_ z p q
L1275 Hypothesis H8 : ordinal z
L1276 Hypothesis H9 : PNoLt z q y q
L1277
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__11__7
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__14__6
L1283 Variable P : (set β ((set β prop ) β prop ) )
L1285 Variable p : (set β prop )
L1287 Variable q : (set β prop )
L1288 Hypothesis H0 : ordinal x
L1289 Hypothesis H1 : ordinal (ordsucc x )
L1290 Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x ) (Ξ»z : set β p z β§ z β x )
L1291 Hypothesis H3 : Β¬ (p x β§ x β x )
L1292 Hypothesis H4 : ordinal y
L1293 Hypothesis H5 : P y q
L1294
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__14__6
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__2
L1300 Variable P : (set β ((set β prop ) β prop ) )
L1302 Variable p : (set β prop )
L1304 Variable q : (set β prop )
L1305 Hypothesis H0 : ordinal x
L1306 Hypothesis H1 : ordinal (ordsucc x )
L1307 Hypothesis H3 : Β¬ (p x β§ x β x )
L1308 Hypothesis H4 : PNoLt (ordsucc x ) (Ξ»z : set β p z β§ z β x ) x p
L1309 Hypothesis H5 : ordinal y
L1310 Hypothesis H6 : P y q
L1311 Hypothesis H7 : PNo_downc P y q
L1312
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__2
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__6
L1318 Variable P : (set β ((set β prop ) β prop ) )
L1320 Variable p : (set β prop )
L1322 Variable q : (set β prop )
L1323 Hypothesis H0 : ordinal x
L1324 Hypothesis H1 : ordinal (ordsucc x )
L1325 Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x ) (Ξ»z : set β p z β§ z β x )
L1326 Hypothesis H3 : Β¬ (p x β§ x β x )
L1327 Hypothesis H4 : PNoLt (ordsucc x ) (Ξ»z : set β p z β§ z β x ) x p
L1328 Hypothesis H5 : ordinal y
L1329 Hypothesis H7 : PNo_downc P y q
L1330
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__15__6
Beginning of Section Conj_PNo_rel_split_imv_imp_strict_imv__19__4
L1336 Variable P : (set β ((set β prop ) β prop ) )
L1337 Variable Q : (set β ((set β prop ) β prop ) )
L1339 Variable p : (set β prop )
L1340 Hypothesis H0 : ordinal x
L1341 Hypothesis H1 : ordinal (ordsucc x )
L1342 Hypothesis H2 : PNo_rel_strict_upperbd P (ordsucc x ) (Ξ»y : set β p y β§ y β x )
L1343 Hypothesis H3 : PNo_rel_strict_lowerbd Q (ordsucc x ) (Ξ»y : set β p y β¨ y = x )
L1344
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_rel_split_imv_imp_strict_imv__19__4
Beginning of Section Conj_PNo_strict_imv_pred_eq__3__7
L1350 Variable P : (set β ((set β prop ) β prop ) )
L1351 Variable Q : (set β ((set β prop ) β prop ) )
L1353 Variable p : (set β prop )
L1354 Variable q : (set β prop )
L1356 Hypothesis H0 : ordinal x
L1357 Hypothesis H1 : (βz : set , z β x β (βp2 : set β prop , Β¬ PNo_strict_imv P Q z p2 ) )
L1358 Hypothesis H2 : PNo_strict_lowerbd Q x p
L1359 Hypothesis H3 : PNo_strict_upperbd P x q
L1360 Hypothesis H4 : ordinal y
L1362 Hypothesis H6 : Β¬ q y
L1363
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_imv_pred_eq__3__7
Beginning of Section Conj_PNo_strict_imv_pred_eq__6__3
L1369 Variable P : (set β ((set β prop ) β prop ) )
L1370 Variable Q : (set β ((set β prop ) β prop ) )
L1372 Variable p : (set β prop )
L1373 Variable q : (set β prop )
L1374 Hypothesis H0 : ordinal x
L1375 Hypothesis H1 : TransSet x
L1376 Hypothesis H2 : (βy : set , y β x β (βp2 : set β prop , Β¬ PNo_strict_imv P Q y p2 ) )
L1377 Hypothesis H4 : PNo_strict_lowerbd Q x p
L1378 Hypothesis H5 : PNo_strict_upperbd P x q
L1379 Hypothesis H6 : PNo_strict_lowerbd Q x q
L1380
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_strict_imv_pred_eq__6__3
Beginning of Section Conj_PNo_bd_In__1__3
L1386 Variable P : (set β ((set β prop ) β prop ) )
L1387 Variable Q : (set β ((set β prop ) β prop ) )
L1390 Variable p : (set β prop )
L1391 Hypothesis H0 : (βz : set , z β PNo_bd P Q β (βq : set β prop , Β¬ PNo_strict_imv P Q z q ) )
L1392 Hypothesis H1 : y β ordsucc x
L1393 Hypothesis H2 : PNo_strict_imv P Q y p
L1394
Proof: Load proof Proof not loaded.
End of Section Conj_PNo_bd_In__1__3
Beginning of Section Conj_SNoLtE__1__3
L1404 Hypothesis H0 : (βw : set , SNo w β SNoLev w β binintersect (SNoLev x ) (SNoLev y ) β SNoEq_ (SNoLev w ) w x β SNoEq_ (SNoLev w ) w y β x < w β w < y β nIn (SNoLev w ) x β SNoLev w β y β P )
L1405 Hypothesis H1 : z β binintersect (SNoLev x ) (SNoLev y )
L1406 Hypothesis H2 : PNoEq_ z (Ξ»w : set β w β x ) (Ξ»w : set β w β y )
L1408 Hypothesis H5 : z β SNoLev x
L1409 Hypothesis H6 : z β SNoLev y
L1410 Hypothesis H7 : SNo (PSNo z (Ξ»w : set β w β x ) )
L1411 Hypothesis H8 : SNoLev (PSNo z (Ξ»w : set β w β x ) ) = z
L1412 Hypothesis H9 : SNoEq_ z (PSNo z (Ξ»w : set β w β x ) ) x
L1413
Proof: Load proof Proof not loaded.
End of Section Conj_SNoLtE__1__3
Beginning of Section Conj_SNoLtE__1__4
L1423 Hypothesis H0 : (βw : set , SNo w β SNoLev w β binintersect (SNoLev x ) (SNoLev y ) β SNoEq_ (SNoLev w ) w x β SNoEq_ (SNoLev w ) w y β x < w β w < y β nIn (SNoLev w ) x β SNoLev w β y β P )
L1424 Hypothesis H1 : z β binintersect (SNoLev x ) (SNoLev y )
L1425 Hypothesis H2 : PNoEq_ z (Ξ»w : set β w β x ) (Ξ»w : set β w β y )
L1426 Hypothesis H3 : Β¬ z β x
L1427 Hypothesis H5 : z β SNoLev x
L1428 Hypothesis H6 : z β SNoLev y
L1429 Hypothesis H7 : SNo (PSNo z (Ξ»w : set β w β x ) )
L1430 Hypothesis H8 : SNoLev (PSNo z (Ξ»w : set β w β x ) ) = z
L1431 Hypothesis H9 : SNoEq_ z (PSNo z (Ξ»w : set β w β x ) ) x
L1432
Proof: Load proof Proof not loaded.
End of Section Conj_SNoLtE__1__4
Beginning of Section Conj_SNoLtE__1__5
L1442 Hypothesis H0 : (βw : set , SNo w β SNoLev w β binintersect (SNoLev x ) (SNoLev y ) β SNoEq_ (SNoLev w ) w x β SNoEq_ (SNoLev w ) w y β x < w β w < y β nIn (SNoLev w ) x β SNoLev w β y β P )
L1443 Hypothesis H1 : z β binintersect (SNoLev x ) (SNoLev y )
L1444 Hypothesis H2 : PNoEq_ z (Ξ»w : set β w β x ) (Ξ»w : set β w β y )
L1445 Hypothesis H3 : Β¬ z β x
L1447 Hypothesis H6 : z β SNoLev y
L1448 Hypothesis H7 : SNo (PSNo z (Ξ»w : set β w β x ) )
L1449 Hypothesis H8 : SNoLev (PSNo z (Ξ»w : set β w β x ) ) = z
L1450 Hypothesis H9 : SNoEq_ z (PSNo z (Ξ»w : set β w β x ) ) x
L1451
Proof: Load proof Proof not loaded.
End of Section Conj_SNoLtE__1__5
Beginning of Section Conj_SNoLtE__1__8
L1461 Hypothesis H0 : (βw : set , SNo w β SNoLev w β binintersect (SNoLev x ) (SNoLev y ) β SNoEq_ (SNoLev w ) w x β SNoEq_ (SNoLev w ) w y β x < w β w < y β nIn (SNoLev w ) x β SNoLev w β y β P )
L1462 Hypothesis H1 : z β binintersect (SNoLev x ) (SNoLev y )
L1463 Hypothesis H2 : PNoEq_ z (Ξ»w : set β w β x ) (Ξ»w : set β w β y )
L1464 Hypothesis H3 : Β¬ z β x
L1466 Hypothesis H5 : z β SNoLev x
L1467 Hypothesis H6 : z β SNoLev y
L1468 Hypothesis H7 : SNo (PSNo z (Ξ»w : set β w β x ) )
L1469 Hypothesis H9 : SNoEq_ z (PSNo z (Ξ»w : set β w β x ) ) x
L1470
Proof: Load proof Proof not loaded.
End of Section Conj_SNoLtE__1__8
Beginning of Section Conj_SNoLtE__1__9
L1480 Hypothesis H0 : (βw : set , SNo w β SNoLev w β binintersect (SNoLev x ) (SNoLev y ) β SNoEq_ (SNoLev w ) w x β SNoEq_ (SNoLev w ) w y β x < w β w < y β nIn (SNoLev w ) x β SNoLev w β y β P )
L1481 Hypothesis H1 : z β binintersect (SNoLev x ) (SNoLev y )
L1482 Hypothesis H2 : PNoEq_ z (Ξ»w : set β w β x ) (Ξ»w : set β w β y )
L1483 Hypothesis H3 : Β¬ z β x
L1485 Hypothesis H5 : z β SNoLev x
L1486 Hypothesis H6 : z β SNoLev y
L1487 Hypothesis H7 : SNo (PSNo z (Ξ»w : set β w β x ) )
L1488 Hypothesis H8 : SNoLev (PSNo z (Ξ»w : set β w β x ) ) = z
L1489
Proof: Load proof Proof not loaded.
End of Section Conj_SNoLtE__1__9
Beginning of Section Conj_SNoLtE__6__5
L1499 Hypothesis H0 : (βw : set , SNo w β SNoLev w β binintersect (SNoLev x ) (SNoLev y ) β SNoEq_ (SNoLev w ) w x β SNoEq_ (SNoLev w ) w y β x < w β w < y β nIn (SNoLev w ) x β SNoLev w β y β P )
L1500 Hypothesis H1 : ordinal (SNoLev x )
L1501 Hypothesis H2 : z β binintersect (SNoLev x ) (SNoLev y )
L1502 Hypothesis H3 : PNoEq_ z (Ξ»w : set β w β x ) (Ξ»w : set β w β y )
L1503 Hypothesis H4 : Β¬ z β x
L1504 Hypothesis H6 : z β SNoLev x
L1505 Hypothesis H7 : z β SNoLev y
L1506
Proof: Load proof Proof not loaded.
End of Section Conj_SNoLtE__6__5
Beginning of Section Conj_SNoLtE__8__3
L1515 Hypothesis H0 : SNo x
L1516 Hypothesis H1 : SNo y
L1517 Hypothesis H2 : x < y
L1518 Hypothesis H4 : SNoLev x β SNoLev y β SNoEq_ (SNoLev x ) x y β SNoLev x β y β P
L1519 Hypothesis H5 : SNoLev y β SNoLev x β SNoEq_ (SNoLev y ) x y β nIn (SNoLev y ) x β P
L1520
Proof: Load proof Proof not loaded.
End of Section Conj_SNoLtE__8__3
Beginning of Section Conj_SNoCutP_SNoCut__1__4
L1529 Hypothesis H0 : ordinal (PNo_bd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) )
L1530 Hypothesis H1 : PNo_strict_upperbd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (PNo_bd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) ) (PNo_pred (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) )
L1532 Hypothesis H3 : ordinal (SNoLev z )
L1533 Theorem. (
Conj_SNoCutP_SNoCut__1__4 )
ordinal (SNoLev z ) β§ PSNo (SNoLev z ) (Ξ»w : set β w β z ) β x β z < PSNo (PNo_bd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) ) (PNo_pred (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__1__4
Beginning of Section Conj_SNoCutP_SNoCut__9__3
L1543 Hypothesis H0 : ordinal (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1544 Hypothesis H1 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1545 Hypothesis H2 : (βu : set , u β PNo_bd (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β x ) (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β y ) β (βp : set β prop , Β¬ PNo_strict_imv (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β x ) (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β y ) u p ) )
L1546 Hypothesis H4 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (SNoLev z ) (Ξ»u : set β u β z )
L1547 Hypothesis H5 : Subq (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (SNoLev z )
L1548 Hypothesis H6 : w β PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y )
L1549 Hypothesis H7 : PNoEq_ w (Ξ»u : set β u β z ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1550 Hypothesis H8 : nIn w z
L1551 Hypothesis H9 : PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) w
L1552 Hypothesis H10 : ordinal w
L1553 Hypothesis H11 : ordinal (ordsucc w )
L1554 Hypothesis H12 : Β¬ (w β z β§ w β w )
L1555
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__9__3
Beginning of Section Conj_SNoCutP_SNoCut__9__11
L1565 Hypothesis H0 : ordinal (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1566 Hypothesis H1 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1567 Hypothesis H2 : (βu : set , u β PNo_bd (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β x ) (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β y ) β (βp : set β prop , Β¬ PNo_strict_imv (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β x ) (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β y ) u p ) )
L1568 Hypothesis H3 : ordinal (SNoLev z )
L1569 Hypothesis H4 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (SNoLev z ) (Ξ»u : set β u β z )
L1570 Hypothesis H5 : Subq (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (SNoLev z )
L1571 Hypothesis H6 : w β PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y )
L1572 Hypothesis H7 : PNoEq_ w (Ξ»u : set β u β z ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1573 Hypothesis H8 : nIn w z
L1574 Hypothesis H9 : PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) w
L1575 Hypothesis H10 : ordinal w
L1576 Hypothesis H12 : Β¬ (w β z β§ w β w )
L1577
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__9__11
Beginning of Section Conj_SNoCutP_SNoCut__10__0
L1587 Hypothesis H1 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1588 Hypothesis H2 : (βu : set , u β PNo_bd (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β x ) (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β y ) β (βp : set β prop , Β¬ PNo_strict_imv (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β x ) (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β y ) u p ) )
L1589 Hypothesis H3 : ordinal (SNoLev z )
L1590 Hypothesis H4 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (SNoLev z ) (Ξ»u : set β u β z )
L1591 Hypothesis H5 : Subq (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (SNoLev z )
L1592 Hypothesis H6 : w β PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y )
L1593 Hypothesis H7 : PNoEq_ w (Ξ»u : set β u β z ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1594 Hypothesis H8 : nIn w z
L1595 Hypothesis H9 : PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) w
L1596 Hypothesis H10 : ordinal w
L1597 Hypothesis H11 : ordinal (ordsucc w )
L1598
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__10__0
Beginning of Section Conj_SNoCutP_SNoCut__12__7
L1608 Hypothesis H0 : ordinal (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1609 Hypothesis H1 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1610 Hypothesis H2 : (βu : set , u β PNo_bd (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β x ) (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β y ) β (βp : set β prop , Β¬ PNo_strict_imv (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β x ) (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β y ) u p ) )
L1611 Hypothesis H3 : ordinal (SNoLev z )
L1612 Hypothesis H4 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (SNoLev z ) (Ξ»u : set β u β z )
L1613 Hypothesis H5 : Subq (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (SNoLev z )
L1614 Hypothesis H6 : w β PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y )
L1615 Hypothesis H8 : nIn w z
L1616 Hypothesis H9 : PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) w
L1617
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__12__7
Beginning of Section Conj_SNoCutP_SNoCut__14__7
L1627 Hypothesis H0 : ordinal (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1628 Hypothesis H1 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1629 Hypothesis H2 : (βu : set , u β PNo_bd (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β x ) (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β y ) β (βp : set β prop , Β¬ PNo_strict_imv (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β x ) (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β y ) u p ) )
L1630 Hypothesis H3 : ordinal (SNoLev z )
L1631 Hypothesis H4 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (SNoLev z ) (Ξ»u : set β u β z )
L1632 Hypothesis H5 : Subq (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (SNoLev z )
L1633 Hypothesis H6 : w β PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y )
L1634 Hypothesis H8 : Β¬ PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) w
L1636 Hypothesis H10 : ordinal w
L1637 Hypothesis H11 : ordinal (ordsucc w )
L1638
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__14__7
Beginning of Section Conj_SNoCutP_SNoCut__15__3
L1648 Hypothesis H0 : ordinal (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1649 Hypothesis H1 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) )
L1650 Hypothesis H2 : (βu : set , u β PNo_bd (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β x ) (Ξ»v : set β Ξ»p : set β prop β ordinal v β§ PSNo v p β y ) β (βp : set β prop , Β¬ PNo_strict_imv (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β x ) (Ξ»v : set β Ξ»q : set β prop β ordinal v β§ PSNo v q β y ) u p ) )
L1651 Hypothesis H4 : PNo_strict_imv (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) (SNoLev z ) (Ξ»u : set β u β z )
L1652 Hypothesis H5 : Subq (PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (SNoLev z )
L1653 Hypothesis H6 : w β PNo_bd (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y )
L1654 Hypothesis H7 : PNoEq_ w (PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) ) (Ξ»u : set β u β z )
L1655 Hypothesis H8 : Β¬ PNo_pred (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β x ) (Ξ»u : set β Ξ»p : set β prop β ordinal u β§ PSNo u p β y ) w
L1657 Hypothesis H10 : ordinal w
L1658
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__15__3
Beginning of Section Conj_SNoCutP_SNoCut__20__2
L1667 Hypothesis H0 : ordinal (PNo_bd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) )
L1668 Hypothesis H1 : PNo_strict_imv (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) (PNo_bd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) ) (PNo_pred (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) )
L1669 Hypothesis H3 : SNoLev (SNoCut x y ) = PNo_bd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y )
L1670 Hypothesis H4 : PNoEq_ (PNo_bd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) ) (Ξ»w : set β w β SNoCut x y ) (PNo_pred (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) )
L1671 Hypothesis H5 : SNo z
L1672 Hypothesis H6 : (βw : set , w β x β w < z )
L1673 Hypothesis H7 : (βw : set , w β y β z < w )
L1674 Theorem. (
Conj_SNoCutP_SNoCut__20__2 )
ordinal (SNoLev z ) β Subq (SNoLev (SNoCut x y ) ) (SNoLev z ) β§ PNoEq_ (SNoLev (SNoCut x y ) ) (Ξ»w : set β w β SNoCut x y ) (Ξ»w : set β w β z )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__20__2
Beginning of Section Conj_SNoCutP_SNoCut__21__7
L1682 Hypothesis H0 : (βz : set , z β y β SNo z )
L1683 Hypothesis H1 : ordinal (PNo_bd (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) )
L1684 Hypothesis H2 : PNo_strict_imv (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) (PNo_bd (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) ) (PNo_pred (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) )
L1685 Hypothesis H3 : (βz : set , z β PNo_bd (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β x ) (Ξ»w : set β Ξ»p : set β prop β ordinal w β§ PSNo w p β y ) β (βp : set β prop , Β¬ PNo_strict_imv (Ξ»w : set β Ξ»q : set β prop β ordinal w β§ PSNo w q β x ) (Ξ»w : set β Ξ»q : set β prop β ordinal w β§ PSNo w q β y ) z p ) )
L1686 Hypothesis H4 : PNo_strict_lowerbd (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) (PNo_bd (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) ) (PNo_pred (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) )
L1687 Hypothesis H5 : SNo (SNoCut x y )
L1688 Hypothesis H6 : SNoLev (SNoCut x y ) = PNo_bd (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y )
L1689 Hypothesis H8 : PNoEq_ (PNo_bd (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) ) (Ξ»z : set β z β SNoCut x y ) (PNo_pred (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) )
L1690 Hypothesis H9 : (βz : set , z β x β z < SNoCut x y )
L1691 Theorem. (
Conj_SNoCutP_SNoCut__21__7 )
(βz : set , z β y β SNoCut x y < z ) β SNo (SNoCut x y ) β§ SNoLev (SNoCut x y ) β ordsucc (binunion (famunion x (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion y (Ξ»z : set β ordsucc (SNoLev z ) ) ) ) β§ (βz : set , z β x β z < SNoCut x y ) β§ (βz : set , z β y β SNoCut x y < z ) β§ (βz : set , SNo z β (βw : set , w β x β w < z ) β (βw : set , w β y β z < w ) β Subq (SNoLev (SNoCut x y ) ) (SNoLev z ) β§ PNoEq_ (SNoLev (SNoCut x y ) ) (Ξ»w : set β w β SNoCut x y ) (Ξ»w : set β w β z ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__21__7
Beginning of Section Conj_SNoCutP_SNoCut__29__1
L1699 Hypothesis H0 : (βz : set , z β x β SNo z )
L1700 Hypothesis H2 : PNoLt_pwise (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y )
L1701 Hypothesis H3 : ordinal (binunion (famunion x (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion y (Ξ»z : set β ordsucc (SNoLev z ) ) ) )
L1702 Hypothesis H4 : PNo_lenbdd (binunion (famunion x (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion y (Ξ»z : set β ordsucc (SNoLev z ) ) ) ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x )
L1703 Theorem. (
Conj_SNoCutP_SNoCut__29__1 )
PNo_lenbdd (binunion (famunion x (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion y (Ξ»z : set β ordsucc (SNoLev z ) ) ) ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) β SNo (SNoCut x y ) β§ SNoLev (SNoCut x y ) β ordsucc (binunion (famunion x (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion y (Ξ»z : set β ordsucc (SNoLev z ) ) ) ) β§ (βz : set , z β x β z < SNoCut x y ) β§ (βz : set , z β y β SNoCut x y < z ) β§ (βz : set , SNo z β (βw : set , w β x β w < z ) β (βw : set , w β y β z < w ) β Subq (SNoLev (SNoCut x y ) ) (SNoLev z ) β§ PNoEq_ (SNoLev (SNoCut x y ) ) (Ξ»w : set β w β SNoCut x y ) (Ξ»w : set β w β z ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__29__1
Beginning of Section Conj_SNoCutP_SNoCut__34__2
L1711 Hypothesis H0 : (βz : set , z β x β SNo z )
L1712 Hypothesis H1 : (βz : set , z β y β SNo z )
L1713 Theorem. (
Conj_SNoCutP_SNoCut__34__2 )
PNoLt_pwise (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β x ) (Ξ»z : set β Ξ»p : set β prop β ordinal z β§ PSNo z p β y ) β SNo (SNoCut x y ) β§ SNoLev (SNoCut x y ) β ordsucc (binunion (famunion x (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion y (Ξ»z : set β ordsucc (SNoLev z ) ) ) ) β§ (βz : set , z β x β z < SNoCut x y ) β§ (βz : set , z β y β SNoCut x y < z ) β§ (βz : set , SNo z β (βw : set , w β x β w < z ) β (βw : set , w β y β z < w ) β Subq (SNoLev (SNoCut x y ) ) (SNoLev z ) β§ PNoEq_ (SNoLev (SNoCut x y ) ) (Ξ»w : set β w β SNoCut x y ) (Ξ»w : set β w β z ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoCut__34__2
Beginning of Section Conj_SNoCutP_SNoL_SNoR__5__1
L1720 Hypothesis H0 : SNo x
L1721 Theorem. (
Conj_SNoCutP_SNoL_SNoR__5__1 )
(βy : set , y β SNoL x β SNo y ) β (βy : set , y β SNoL x β SNo y ) β§ (βy : set , y β SNoR x β SNo y ) β§ (βy : set , y β SNoL x β (βz : set , z β SNoR x β y < z ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCutP_SNoL_SNoR__5__1
Beginning of Section Conj_SNo_eta__5__1
L1728 Hypothesis H0 : SNo x
L1729
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_eta__5__1
Beginning of Section Conj_SNoCut_Le__3__5
L1740 Hypothesis H0 : (βv : set , v β y β SNo v )
L1741 Hypothesis H1 : SNo (SNoCut x y )
L1742 Hypothesis H2 : (βv : set , v β y β SNoCut x y < v )
L1743 Hypothesis H3 : (βv : set , SNo v β (βx2 : set , x2 β x β x2 < v ) β (βx2 : set , x2 β y β v < x2 ) β Subq (SNoLev (SNoCut x y ) ) (SNoLev v ) β§ SNoEq_ (SNoLev (SNoCut x y ) ) (SNoCut x y ) v )
L1744 Hypothesis H4 : SNo u
L1745 Hypothesis H6 : u < SNoCut x y
L1746 Hypothesis H7 : (βv : set , v β x β v < u )
L1747
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCut_Le__3__5
Beginning of Section Conj_SNoCut_ext__2__3
L1757 Hypothesis H0 : SNoCutP x y
L1758 Hypothesis H1 : SNoCutP z w
L1759 Hypothesis H2 : (βu : set , u β x β u < SNoCut z w )
L1760 Hypothesis H4 : (βu : set , u β z β u < SNoCut x y )
L1761 Hypothesis H5 : (βu : set , u β w β SNoCut x y < u )
L1762
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCut_ext__2__3
Beginning of Section Conj_SNoCut_ext__2__5
L1772 Hypothesis H0 : SNoCutP x y
L1773 Hypothesis H1 : SNoCutP z w
L1774 Hypothesis H2 : (βu : set , u β x β u < SNoCut z w )
L1775 Hypothesis H3 : (βu : set , u β y β SNoCut z w < u )
L1776 Hypothesis H4 : (βu : set , u β z β u < SNoCut x y )
L1777
Proof: Load proof Proof not loaded.
End of Section Conj_SNoCut_ext__2__5
Beginning of Section Conj_ordinal_SNoR__1__0
L1784 Hypothesis H1 : SNo x
L1785
Proof: Load proof Proof not loaded.
End of Section Conj_ordinal_SNoR__1__0
Beginning of Section Conj_ordinal_In_SNoLt__1__0
L1794 Hypothesis H2 : ordinal y
L1795 Hypothesis H3 : SNo y
L1796
Proof: Load proof Proof not loaded.
End of Section Conj_ordinal_In_SNoLt__1__0
Beginning of Section Conj_ordinal_SNoLev_max_2__5__0
L1804 Hypothesis H1 : TransSet x
L1805 Hypothesis H2 : SNo y
L1806 Hypothesis H3 : SNo x
L1807 Hypothesis H4 : SNoLev x = x
L1808 Hypothesis H5 : SNoLev y = x
L1809 Hypothesis H6 : Β¬ y β€ x
L1810
Proof: Load proof Proof not loaded.
End of Section Conj_ordinal_SNoLev_max_2__5__0
Beginning of Section Conj_SNoL_1__1__0
L1817 Hypothesis H1 : SNoLev x β ordsucc Empty
L1818
Proof: Load proof Proof not loaded.
End of Section Conj_SNoL_1__1__0
Beginning of Section Conj_SNo__eps___3__3
L1827 Hypothesis H0 : nat_p x
L1828 Hypothesis H1 : y β ordsucc x
L1829 Hypothesis H2 : nat_p z
L1830
Proof: Load proof Proof not loaded.
End of Section Conj_SNo__eps___3__3
Beginning of Section Conj_SNo_pos_eps_Lt__1__3
L1838 Hypothesis H0 : Empty < y
L1839 Hypothesis H1 : ordinal (SNoLev y )
L1840 Hypothesis H2 : SNo y
L1841
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_pos_eps_Lt__1__3
Beginning of Section Conj_SNo_pos_eps_Lt__2__3
L1850 Hypothesis H0 : Empty < y
L1851 Hypothesis H1 : SNo y
L1852 Hypothesis H2 : SNo z
L1853 Hypothesis H4 : SNoLev z β eps_ x
L1854
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_pos_eps_Lt__2__3
Beginning of Section Conj_SNo_pos_eps_Le__1__3
L1862 Hypothesis H0 : Empty < y
L1863 Hypothesis H1 : ordinal (SNoLev y )
L1864 Hypothesis H2 : SNo y
L1865
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_pos_eps_Le__1__3
Beginning of Section Conj_SNo_pos_eps_Le__2__3
L1874 Hypothesis H0 : Empty < y
L1875 Hypothesis H1 : SNo y
L1876 Hypothesis H2 : SNo z
L1877 Hypothesis H4 : SNoLev z β eps_ x
L1878
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_pos_eps_Le__2__3
Beginning of Section Conj_eps_SNoCut__5__2
L1886 Hypothesis H0 : (βz : set , z β Repl x eps_ β SNo z )
L1887 Hypothesis H1 : SNo (SNoCut (Sing Empty ) (Repl x eps_ ) )
L1888 Hypothesis H3 : (βz : set , SNo z β (βw : set , w β Sing Empty β w < z ) β (βw : set , w β Repl x eps_ β z < w ) β Subq (SNoLev (SNoCut (Sing Empty ) (Repl x eps_ ) ) ) (SNoLev z ) β§ SNoEq_ (SNoLev (SNoCut (Sing Empty ) (Repl x eps_ ) ) ) (SNoCut (Sing Empty ) (Repl x eps_ ) ) z )
L1889 Hypothesis H4 : SNo y
L1890 Hypothesis H5 : SNoLev y β binintersect (SNoLev (eps_ x ) ) (SNoLev (SNoCut (Sing Empty ) (Repl x eps_ ) ) )
L1891 Hypothesis H6 : y < SNoCut (Sing Empty ) (Repl x eps_ )
L1892 Hypothesis H7 : (βz : set , z β Sing Empty β z < y )
L1893
Proof: Load proof Proof not loaded.
End of Section Conj_eps_SNoCut__5__2
Beginning of Section Conj_eps_SNoCut__6__5
L1902 Hypothesis H1 : (βz : set , z β Repl x eps_ β SNo z )
L1903 Hypothesis H2 : SNo (SNoCut (Sing Empty ) (Repl x eps_ ) )
L1904 Hypothesis H3 : (βz : set , z β Repl x eps_ β SNoCut (Sing Empty ) (Repl x eps_ ) < z )
L1905 Hypothesis H4 : (βz : set , SNo z β (βw : set , w β Sing Empty β w < z ) β (βw : set , w β Repl x eps_ β z < w ) β Subq (SNoLev (SNoCut (Sing Empty ) (Repl x eps_ ) ) ) (SNoLev z ) β§ SNoEq_ (SNoLev (SNoCut (Sing Empty ) (Repl x eps_ ) ) ) (SNoCut (Sing Empty ) (Repl x eps_ ) ) z )
L1906 Hypothesis H6 : SNoLev y β binintersect (SNoLev (eps_ x ) ) (SNoLev (SNoCut (Sing Empty ) (Repl x eps_ ) ) )
L1907 Hypothesis H7 : eps_ x < y
L1908 Hypothesis H8 : y < SNoCut (Sing Empty ) (Repl x eps_ )
L1909
Proof: Load proof Proof not loaded.
End of Section Conj_eps_SNoCut__6__5
Beginning of Section Conj_SNo_etaE__2__1
L1918 Hypothesis H0 : y < x
L1919 Hypothesis H2 : SNo_ z y
L1920 Hypothesis H3 : ordinal z
L1921 Hypothesis H4 : SNo y
L1922
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_etaE__2__1
Beginning of Section Conj_SNo_etaE__3__2
L1931 Hypothesis H0 : y < x
L1932 Hypothesis H1 : z β SNoLev x
L1933 Hypothesis H3 : ordinal z
L1934
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_etaE__3__2
Beginning of Section Conj_SNo_etaE__5__0
L1943 Hypothesis H1 : z β SNoLev x
L1944 Hypothesis H2 : SNo y
L1945 Hypothesis H3 : SNoLev y = z
L1946
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_etaE__5__0
Beginning of Section Conj_SNo_etaE__5__1
L1955 Hypothesis H0 : x < y
L1956 Hypothesis H2 : SNo y
L1957 Hypothesis H3 : SNoLev y = z
L1958
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_etaE__5__1
Beginning of Section Conj_SNo_etaE__7__0
L1967 Hypothesis H1 : z β SNoLev x
L1968 Hypothesis H2 : SNo_ z y
L1969 Hypothesis H3 : ordinal z
L1970
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_etaE__7__0
Beginning of Section Conj_SNo_etaE__12__1
L1978 Hypothesis H0 : SNo x
L1979
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_etaE__12__1
Beginning of Section Conj_SNo_rec2_eq_1__1__2
L1985 Variable P : (set β (set β ((set β (set β set ) ) β set ) ) )
L1987 Variable g : (set β (set β set ) )
L1989 Variable f : (set β set )
L1990 Variable f2 : (set β set )
L1991 Hypothesis H0 : (βz : set , SNo z β (βw : set , SNo w β (βh : set β set β set , βg2 : set β set β set , (βu : set , u β SNoS_ (SNoLev z ) β (βv : set , SNo v β h u v = g2 u v ) ) β (βu : set , u β SNoS_ (SNoLev w ) β h z u = g2 z u ) β P z w h = P z w g2 ) ) )
L1992 Hypothesis H1 : SNo x
L1993 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev y ) β f z = f2 z )
L1994 Theorem. (
Conj_SNo_rec2_eq_1__1__2 )
(βz : set , z β SNoS_ (SNoLev x ) β g z = g z ) β P x y (Ξ»z : set β Ξ»w : set β If_i (z = x ) (f w ) (g z w ) ) = P x y (Ξ»z : set β Ξ»w : set β If_i (z = x ) (f2 w ) (g z w ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_rec2_eq_1__1__2
Beginning of Section Conj_SNo_rec2_eq__1__1
L2000 Variable P : (set β (set β ((set β (set β set ) ) β set ) ) )
L2002 Variable g : (set β (set β set ) )
L2003 Variable h : (set β (set β set ) )
L2005 Hypothesis H0 : (βz : set , SNo z β (βw : set , SNo w β (βg2 : set β set β set , βh2 : set β set β set , (βu : set , u β SNoS_ (SNoLev z ) β (βv : set , SNo v β g2 u v = h2 u v ) ) β (βu : set , u β SNoS_ (SNoLev w ) β g2 z u = h2 z u ) β P z w g2 = P z w h2 ) ) )
L2006 Hypothesis H2 : (βz : set , z β SNoS_ (SNoLev x ) β g z = h z )
L2007 Hypothesis H3 : SNo y
L2008 Theorem. (
Conj_SNo_rec2_eq__1__1 )
(βz : set , ordinal z β (βw : set , w β SNoS_ z β SNo_rec_i (Ξ»u : set β Ξ»f : set β set β P x u (Ξ»v : set β Ξ»x2 : set β If_i (v = x ) (f x2 ) (g v x2 ) ) ) w = SNo_rec_i (Ξ»u : set β Ξ»f : set β set β P x u (Ξ»v : set β Ξ»x2 : set β If_i (v = x ) (f x2 ) (h v x2 ) ) ) w ) ) β SNo_rec_i (Ξ»z : set β Ξ»f : set β set β P x z (Ξ»w : set β Ξ»u : set β If_i (w = x ) (f u ) (g w u ) ) ) y = SNo_rec_i (Ξ»z : set β Ξ»f : set β set β P x z (Ξ»w : set β Ξ»u : set β If_i (w = x ) (f u ) (h w u ) ) ) y
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_rec2_eq__1__1
Beginning of Section Conj_SNo_rec2_eq__4__1
L2014 Variable P : (set β (set β ((set β (set β set ) ) β set ) ) )
L2017 Hypothesis H0 : (βz : set , SNo z β (βw : set , SNo w β (βg : set β set β set , βh : set β set β set , (βu : set , u β SNoS_ (SNoLev z ) β (βv : set , SNo v β g u v = h u v ) ) β (βu : set , u β SNoS_ (SNoLev w ) β g z u = h z u ) β P z w g = P z w h ) ) )
L2018 Hypothesis H2 : SNo y
L2019 Hypothesis H3 : (βz : set , SNo z β (βg : set β set β set , βh : set β set β set , (βw : set , w β SNoS_ (SNoLev z ) β g w = h w ) β (Ξ»w : set β If_i (SNo w ) (SNo_rec_i (Ξ»u : set β Ξ»f : set β set β P z u (Ξ»v : set β Ξ»x2 : set β If_i (v = z ) (f x2 ) (g v x2 ) ) ) w ) Empty ) = (Ξ»w : set β If_i (SNo w ) (SNo_rec_i (Ξ»u : set β Ξ»f : set β set β P z u (Ξ»v : set β Ξ»x2 : set β If_i (v = z ) (f x2 ) (h v x2 ) ) ) w ) Empty ) ) )
L2020 Hypothesis H4 : (βz : set , z β SNoS_ (SNoLev x ) β (βw : set , SNo w β If_i (z = x ) (SNo_rec_i (Ξ»u : set β Ξ»f : set β set β P x u (Ξ»v : set β Ξ»x2 : set β If_i (v = x ) (f x2 ) (SNo_rec_ii (Ξ»y2 : set β Ξ»g : set β set β set β Ξ»z2 : set β If_i (SNo z2 ) (SNo_rec_i (Ξ»w2 : set β Ξ»f2 : set β set β P y2 w2 (Ξ»u2 : set β Ξ»v2 : set β If_i (u2 = y2 ) (f2 v2 ) (g u2 v2 ) ) ) z2 ) Empty ) v x2 ) ) ) w ) (SNo_rec_ii (Ξ»u : set β Ξ»g : set β set β set β Ξ»v : set β If_i (SNo v ) (SNo_rec_i (Ξ»x2 : set β Ξ»f : set β set β P u x2 (Ξ»y2 : set β Ξ»z2 : set β If_i (y2 = u ) (f z2 ) (g y2 z2 ) ) ) v ) Empty ) z w ) = SNo_rec_ii (Ξ»u : set β Ξ»g : set β set β set β Ξ»v : set β If_i (SNo v ) (SNo_rec_i (Ξ»x2 : set β Ξ»f : set β set β P u x2 (Ξ»y2 : set β Ξ»z2 : set β If_i (y2 = u ) (f z2 ) (g y2 z2 ) ) ) v ) Empty ) z w ) )
L2021 Theorem. (
Conj_SNo_rec2_eq__4__1 )
(βz : set , z β SNoS_ (SNoLev y ) β If_i (x = x ) (SNo_rec_i (Ξ»w : set β Ξ»f : set β set β P x w (Ξ»u : set β Ξ»v : set β If_i (u = x ) (f v ) (SNo_rec_ii (Ξ»x2 : set β Ξ»g : set β set β set β Ξ»y2 : set β If_i (SNo y2 ) (SNo_rec_i (Ξ»z2 : set β Ξ»f2 : set β set β P x2 z2 (Ξ»w2 : set β Ξ»u2 : set β If_i (w2 = x2 ) (f2 u2 ) (g w2 u2 ) ) ) y2 ) Empty ) u v ) ) ) z ) (SNo_rec_ii (Ξ»w : set β Ξ»g : set β set β set β Ξ»u : set β If_i (SNo u ) (SNo_rec_i (Ξ»v : set β Ξ»f : set β set β P w v (Ξ»x2 : set β Ξ»y2 : set β If_i (x2 = w ) (f y2 ) (g x2 y2 ) ) ) u ) Empty ) x z ) = SNo_rec_ii (Ξ»w : set β Ξ»g : set β set β set β Ξ»u : set β If_i (SNo u ) (SNo_rec_i (Ξ»v : set β Ξ»f : set β set β P w v (Ξ»x2 : set β Ξ»y2 : set β If_i (x2 = w ) (f y2 ) (g x2 y2 ) ) ) u ) Empty ) x z ) β P x y (Ξ»z : set β Ξ»w : set β If_i (z = x ) (SNo_rec_i (Ξ»u : set β Ξ»f : set β set β P x u (Ξ»v : set β Ξ»x2 : set β If_i (v = x ) (f x2 ) (SNo_rec_ii (Ξ»y2 : set β Ξ»g : set β set β set β Ξ»z2 : set β If_i (SNo z2 ) (SNo_rec_i (Ξ»w2 : set β Ξ»f2 : set β set β P y2 w2 (Ξ»u2 : set β Ξ»v2 : set β If_i (u2 = y2 ) (f2 v2 ) (g u2 v2 ) ) ) z2 ) Empty ) v x2 ) ) ) w ) (SNo_rec_ii (Ξ»u : set β Ξ»g : set β set β set β Ξ»v : set β If_i (SNo v ) (SNo_rec_i (Ξ»x2 : set β Ξ»f : set β set β P u x2 (Ξ»y2 : set β Ξ»z2 : set β If_i (y2 = u ) (f z2 ) (g y2 z2 ) ) ) v ) Empty ) z w ) ) = P x y (SNo_rec_ii (Ξ»z : set β Ξ»g : set β set β set β Ξ»w : set β If_i (SNo w ) (SNo_rec_i (Ξ»u : set β Ξ»f : set β set β P z u (Ξ»v : set β Ξ»x2 : set β If_i (v = z ) (f x2 ) (g v x2 ) ) ) w ) Empty ) )
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_rec2_eq__4__1
Beginning of Section Conj_SNo_ordinal_ind__2__1
L2027 Variable p : (set β prop )
L2029 Hypothesis H0 : (βy : set , ordinal y β (βz : set , z β SNoS_ y β p z ) )
L2030 Hypothesis H2 : ordinal (SNoLev x )
L2031
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_ordinal_ind__2__1
Beginning of Section Conj_SNo_ordinal_ind2__5__1
L2037 Variable r : (set β (set β prop ) )
L2040 Hypothesis H0 : (βz : set , ordinal z β (βw : set , ordinal w β (βu : set , u β SNoS_ z β (βv : set , v β SNoS_ w β r u v ) ) ) )
L2041 Hypothesis H2 : SNo y
L2042 Hypothesis H3 : ordinal (SNoLev x )
L2043
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_ordinal_ind2__5__1
Beginning of Section Conj_SNo_ordinal_ind3__6__1
L2049 Variable P : (set β (set β (set β prop ) ) )
L2053 Hypothesis H0 : (βw : set , ordinal w β (βu : set , ordinal u β (βv : set , ordinal v β (βx2 : set , x2 β SNoS_ w β (βy2 : set , y2 β SNoS_ u β (βz2 : set , z2 β SNoS_ v β P x2 y2 z2 ) ) ) ) ) )
L2054 Hypothesis H2 : SNo z
L2055 Hypothesis H3 : ordinal (ordsucc (SNoLev x ) )
L2056 Hypothesis H4 : x β SNoS_ (ordsucc (SNoLev x ) )
L2057
Proof: Load proof Proof not loaded.
End of Section Conj_SNo_ordinal_ind3__6__1
Beginning of Section Conj_restr_SNo__1__2
L2065 Hypothesis H0 : SNo x
L2066 Hypothesis H1 : y β SNoLev x
L2067 Theorem. (
Conj_restr_SNo__1__2 )
SNo_ y (binintersect x (SNoElts_ y ) ) β SNo (binintersect x (SNoElts_ y ) )
Proof: Load proof Proof not loaded.
End of Section Conj_restr_SNo__1__2
Beginning of Section Conj_minus_SNo_prop1__1__2
L2075 Hypothesis H0 : SNo x
L2076 Hypothesis H1 : (βz : set , z β SNoS_ (SNoLev x ) β SNo (- z ) β§ (βw : set , w β SNoL z β - z < - w ) β§ (βw : set , w β SNoR z β - w < - z ) β§ SNoCutP (Repl (SNoR z ) minus_SNo ) (Repl (SNoL z ) minus_SNo ) )
L2077 Hypothesis H3 : SNoLev y β SNoLev x
L2078
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_prop1__1__2
Beginning of Section Conj_minus_SNo_prop1__2__2
L2086 Hypothesis H0 : SNo x
L2087 Hypothesis H1 : (βz : set , z β SNoS_ (SNoLev x ) β SNo (- z ) β§ (βw : set , w β SNoL z β - z < - w ) β§ (βw : set , w β SNoR z β - w < - z ) β§ SNoCutP (Repl (SNoR z ) minus_SNo ) (Repl (SNoL z ) minus_SNo ) )
L2088 Hypothesis H3 : SNoLev y β SNoLev x
L2089
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_prop1__2__2
Beginning of Section Conj_minus_SNo_prop1__4__5
L2099 Hypothesis H0 : SNo x
L2100 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β SNo (- u ) β§ (βv : set , v β SNoL u β - u < - v ) β§ (βv : set , v β SNoR u β - v < - u ) β§ SNoCutP (Repl (SNoR u ) minus_SNo ) (Repl (SNoL u ) minus_SNo ) )
L2101 Hypothesis H2 : SNo y
L2102 Hypothesis H3 : SNoLev y β SNoLev x
L2103 Hypothesis H4 : SNo z
L2104 Hypothesis H6 : (βu : set , u β SNoR z β - u < - z )
L2105 Hypothesis H7 : SNo (- y )
L2106 Hypothesis H8 : (βu : set , u β SNoL y β - y < - u )
L2107 Hypothesis H9 : SNo w
L2108 Hypothesis H10 : z < w
L2109 Hypothesis H11 : w < y
L2110 Hypothesis H12 : SNoLev w β SNoLev z
L2111 Hypothesis H13 : SNoLev w β SNoLev y
L2112
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_prop1__4__5
Beginning of Section Conj_minus_SNo_prop1__5__7
L2121 Hypothesis H0 : SNo x
L2122 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β SNo (- w ) β§ (βu : set , u β SNoL w β - w < - u ) β§ (βu : set , u β SNoR w β - u < - w ) β§ SNoCutP (Repl (SNoR w ) minus_SNo ) (Repl (SNoL w ) minus_SNo ) )
L2123 Hypothesis H2 : SNo y
L2124 Hypothesis H3 : SNoLev y β SNoLev x
L2125 Hypothesis H4 : x < y
L2126 Hypothesis H5 : SNo z
L2127 Hypothesis H6 : z < x
L2128 Hypothesis H8 : (βw : set , w β SNoR z β - w < - z )
L2129 Hypothesis H9 : SNo (- y )
L2130 Hypothesis H10 : (βw : set , w β SNoL y β - y < - w )
L2131
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_prop1__5__7
Beginning of Section Conj_minus_SNo_prop1__5__9
L2140 Hypothesis H0 : SNo x
L2141 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β SNo (- w ) β§ (βu : set , u β SNoL w β - w < - u ) β§ (βu : set , u β SNoR w β - u < - w ) β§ SNoCutP (Repl (SNoR w ) minus_SNo ) (Repl (SNoL w ) minus_SNo ) )
L2142 Hypothesis H2 : SNo y
L2143 Hypothesis H3 : SNoLev y β SNoLev x
L2144 Hypothesis H4 : x < y
L2145 Hypothesis H5 : SNo z
L2146 Hypothesis H6 : z < x
L2147 Hypothesis H7 : SNo (- z )
L2148 Hypothesis H8 : (βw : set , w β SNoR z β - w < - z )
L2149 Hypothesis H10 : (βw : set , w β SNoL y β - y < - w )
L2150
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_prop1__5__9
Beginning of Section Conj_minus_SNo_prop1__9__3
L2157 Hypothesis H0 : SNo x
L2158 Hypothesis H1 : (βy : set , y β SNoS_ (SNoLev x ) β SNo (- y ) β§ (βz : set , z β SNoL y β - y < - z ) β§ (βz : set , z β SNoR y β - z < - y ) β§ SNoCutP (Repl (SNoR y ) minus_SNo ) (Repl (SNoL y ) minus_SNo ) )
L2159 Hypothesis H2 : (βy : set , y β SNoL x β SNo (- y ) β§ (βz : set , z β SNoL y β - y < - z ) β§ (βz : set , z β SNoR y β - z < - y ) )
L2160 Theorem. (
Conj_minus_SNo_prop1__9__3 )
SNoCutP (Repl (SNoR x ) minus_SNo ) (Repl (SNoL x ) minus_SNo ) β SNo (- x ) β§ (βy : set , y β SNoL x β - x < - y ) β§ (βy : set , y β SNoR x β - y < - x ) β§ SNoCutP (Repl (SNoR x ) minus_SNo ) (Repl (SNoL x ) minus_SNo )
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_prop1__9__3
Beginning of Section Conj_minus_SNo_prop1__11__0
L2167 Hypothesis H1 : (βy : set , y β SNoS_ (SNoLev x ) β SNo (- y ) β§ (βz : set , z β SNoL y β - y < - z ) β§ (βz : set , z β SNoR y β - z < - y ) β§ SNoCutP (Repl (SNoR y ) minus_SNo ) (Repl (SNoL y ) minus_SNo ) )
L2168 Theorem. (
Conj_minus_SNo_prop1__11__0 )
(βy : set , y β SNoL x β SNo (- y ) β§ (βz : set , z β SNoL y β - y < - z ) β§ (βz : set , z β SNoR y β - z < - y ) ) β SNo (- x ) β§ (βy : set , y β SNoL x β - x < - y ) β§ (βy : set , y β SNoR x β - y < - x ) β§ SNoCutP (Repl (SNoR x ) minus_SNo ) (Repl (SNoL x ) minus_SNo )
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_prop1__11__0
Beginning of Section Conj_minus_SNo_Lev_lem1__1__2
L2178 Hypothesis H0 : y β ordsucc (SNoLev z )
L2179 Hypothesis H1 : z = - w
L2180 Hypothesis H3 : Subq (SNoLev (- w ) ) (SNoLev w )
L2181 Hypothesis H4 : Subq (SNoLev x ) y
L2182
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__1__2
Beginning of Section Conj_minus_SNo_Lev_lem1__3__1
L2192 Hypothesis H0 : ordinal (SNoLev x )
L2193 Hypothesis H2 : z = - w
L2194 Hypothesis H3 : SNoLev w β SNoLev x
L2195 Hypothesis H4 : Subq (SNoLev (- w ) ) (SNoLev w )
L2196 Hypothesis H5 : ordinal (SNoLev (- w ) )
L2197
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__3__1
Beginning of Section Conj_minus_SNo_Lev_lem1__3__3
L2207 Hypothesis H0 : ordinal (SNoLev x )
L2208 Hypothesis H1 : y β ordsucc (SNoLev z )
L2209 Hypothesis H2 : z = - w
L2210 Hypothesis H4 : Subq (SNoLev (- w ) ) (SNoLev w )
L2211 Hypothesis H5 : ordinal (SNoLev (- w ) )
L2212
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__3__3
Beginning of Section Conj_minus_SNo_Lev_lem1__3__5
L2222 Hypothesis H0 : ordinal (SNoLev x )
L2223 Hypothesis H1 : y β ordsucc (SNoLev z )
L2224 Hypothesis H2 : z = - w
L2225 Hypothesis H3 : SNoLev w β SNoLev x
L2226 Hypothesis H4 : Subq (SNoLev (- w ) ) (SNoLev w )
L2227
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__3__5
Beginning of Section Conj_minus_SNo_Lev_lem1__4__5
L2237 Hypothesis H0 : ordinal (SNoLev x )
L2238 Hypothesis H1 : y β ordsucc (SNoLev z )
L2239 Hypothesis H2 : z = - w
L2240 Hypothesis H3 : SNoLev w β SNoLev x
L2241 Hypothesis H4 : Subq (SNoLev (- w ) ) (SNoLev w )
L2242
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__4__5
Beginning of Section Conj_minus_SNo_Lev_lem1__6__0
L2252 Hypothesis H1 : y β ordsucc (SNoLev z )
L2253 Hypothesis H2 : z = - w
L2254 Hypothesis H3 : SNo w
L2255 Hypothesis H4 : SNoLev w β SNoLev x
L2256 Hypothesis H5 : Subq (SNoLev (- w ) ) (SNoLev w )
L2257
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__6__0
Beginning of Section Conj_minus_SNo_Lev_lem1__6__4
L2267 Hypothesis H0 : ordinal (SNoLev x )
L2268 Hypothesis H1 : y β ordsucc (SNoLev z )
L2269 Hypothesis H2 : z = - w
L2270 Hypothesis H3 : SNo w
L2271 Hypothesis H5 : Subq (SNoLev (- w ) ) (SNoLev w )
L2272
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__6__4
Beginning of Section Conj_minus_SNo_Lev_lem1__7__1
L2283 Hypothesis H0 : (βv : set , v β x β (βx2 : set , x2 β SNoS_ v β Subq (SNoLev (- x2 ) ) (SNoLev x2 ) ) )
L2284 Hypothesis H2 : z β ordsucc (SNoLev w )
L2285 Hypothesis H3 : w = - u
L2286 Hypothesis H4 : SNo u
L2287 Hypothesis H5 : SNoLev u β SNoLev y
L2288 Hypothesis H6 : u β SNoS_ (ordsucc (SNoLev u ) )
L2289 Hypothesis H7 : ordsucc (SNoLev u ) β x
L2290
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__7__1
Beginning of Section Conj_minus_SNo_Lev_lem1__10__2
L2300 Hypothesis H0 : y β ordsucc (SNoLev z )
L2301 Hypothesis H1 : z = - w
L2302 Hypothesis H3 : Subq (SNoLev (- w ) ) (SNoLev w )
L2303 Hypothesis H4 : Subq (SNoLev x ) y
L2304
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__10__2
Beginning of Section Conj_minus_SNo_Lev_lem1__12__1
L2314 Hypothesis H0 : ordinal (SNoLev x )
L2315 Hypothesis H2 : z = - w
L2316 Hypothesis H3 : SNoLev w β SNoLev x
L2317 Hypothesis H4 : Subq (SNoLev (- w ) ) (SNoLev w )
L2318 Hypothesis H5 : ordinal (SNoLev (- w ) )
L2319
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__12__1
Beginning of Section Conj_minus_SNo_Lev_lem1__12__3
L2329 Hypothesis H0 : ordinal (SNoLev x )
L2330 Hypothesis H1 : y β ordsucc (SNoLev z )
L2331 Hypothesis H2 : z = - w
L2332 Hypothesis H4 : Subq (SNoLev (- w ) ) (SNoLev w )
L2333 Hypothesis H5 : ordinal (SNoLev (- w ) )
L2334
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__12__3
Beginning of Section Conj_minus_SNo_Lev_lem1__12__5
L2344 Hypothesis H0 : ordinal (SNoLev x )
L2345 Hypothesis H1 : y β ordsucc (SNoLev z )
L2346 Hypothesis H2 : z = - w
L2347 Hypothesis H3 : SNoLev w β SNoLev x
L2348 Hypothesis H4 : Subq (SNoLev (- w ) ) (SNoLev w )
L2349
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__12__5
Beginning of Section Conj_minus_SNo_Lev_lem1__13__5
L2359 Hypothesis H0 : ordinal (SNoLev x )
L2360 Hypothesis H1 : y β ordsucc (SNoLev z )
L2361 Hypothesis H2 : z = - w
L2362 Hypothesis H3 : SNoLev w β SNoLev x
L2363 Hypothesis H4 : Subq (SNoLev (- w ) ) (SNoLev w )
L2364
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__13__5
Beginning of Section Conj_minus_SNo_Lev_lem1__15__0
L2374 Hypothesis H1 : y β ordsucc (SNoLev z )
L2375 Hypothesis H2 : z = - w
L2376 Hypothesis H3 : SNo w
L2377 Hypothesis H4 : SNoLev w β SNoLev x
L2378 Hypothesis H5 : Subq (SNoLev (- w ) ) (SNoLev w )
L2379
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__15__0
Beginning of Section Conj_minus_SNo_Lev_lem1__15__4
L2389 Hypothesis H0 : ordinal (SNoLev x )
L2390 Hypothesis H1 : y β ordsucc (SNoLev z )
L2391 Hypothesis H2 : z = - w
L2392 Hypothesis H3 : SNo w
L2393 Hypothesis H5 : Subq (SNoLev (- w ) ) (SNoLev w )
L2394
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__15__4
Beginning of Section Conj_minus_SNo_Lev_lem1__16__1
L2405 Hypothesis H0 : (βv : set , v β x β (βx2 : set , x2 β SNoS_ v β Subq (SNoLev (- x2 ) ) (SNoLev x2 ) ) )
L2406 Hypothesis H2 : z β ordsucc (SNoLev w )
L2407 Hypothesis H3 : w = - u
L2408 Hypothesis H4 : SNo u
L2409 Hypothesis H5 : SNoLev u β SNoLev y
L2410 Hypothesis H6 : u β SNoS_ (ordsucc (SNoLev u ) )
L2411 Hypothesis H7 : ordsucc (SNoLev u ) β x
L2412
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__16__1
Beginning of Section Conj_minus_SNo_Lev_lem1__22__2
L2420 Hypothesis H0 : TransSet x
L2421 Hypothesis H1 : (βz : set , z β x β (βw : set , w β SNoS_ z β Subq (SNoLev (- w ) ) (SNoLev w ) ) )
L2422 Hypothesis H3 : ordinal (SNoLev y )
L2423 Hypothesis H4 : SNo y
L2424
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_Lev_lem1__22__2
Beginning of Section Conj_minus_SNo_invol__5__6
L2432 Hypothesis H0 : SNoCutP x y
L2433 Hypothesis H1 : (βz : set , z β x β - (- z ) = z )
L2434 Hypothesis H2 : (βz : set , z β y β - (- z ) = z )
L2435 Hypothesis H3 : (βz : set , z β x β SNo z )
L2436 Hypothesis H4 : (βz : set , z β y β SNo z )
L2437 Hypothesis H5 : SNo (SNoCut x y )
L2438 Hypothesis H7 : SNo (- (- (SNoCut x y ) ) )
L2439 Theorem. (
Conj_minus_SNo_invol__5__6 )
Subq (SNoLev (SNoCut x y ) ) (SNoLev (- (- (SNoCut x y ) ) ) ) β§ SNoEq_ (SNoLev (SNoCut x y ) ) (SNoCut x y ) (- (- (SNoCut x y ) ) ) β - (- (SNoCut x y ) ) = SNoCut x y
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_invol__5__6
Beginning of Section Conj_minus_SNo_invol__8__0
L2447 Hypothesis H1 : (βz : set , z β x β - (- z ) = z )
L2448 Hypothesis H2 : (βz : set , z β y β - (- z ) = z )
L2449 Hypothesis H3 : (βz : set , z β x β SNo z )
L2450 Hypothesis H4 : (βz : set , z β y β SNo z )
L2451
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_invol__8__0
Beginning of Section Conj_minus_SNo_invol__8__2
L2459 Hypothesis H0 : SNoCutP x y
L2460 Hypothesis H1 : (βz : set , z β x β - (- z ) = z )
L2461 Hypothesis H3 : (βz : set , z β x β SNo z )
L2462 Hypothesis H4 : (βz : set , z β y β SNo z )
L2463
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNo_invol__8__2
Beginning of Section Conj_minus_SNoCut_eq_lem__5__2
L2472 Hypothesis H0 : SNo x
L2473 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β (βu : set , βv : set , SNoCutP u v β w = SNoCut u v β - w = SNoCut (Repl v minus_SNo ) (Repl u minus_SNo ) ) )
L2474 Hypothesis H3 : (βw : set , w β z β SNo w )
L2475 Hypothesis H4 : x = SNoCut y z
L2476 Hypothesis H5 : SNoCutP (Repl z minus_SNo ) (Repl y minus_SNo )
L2477 Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) )
L2478 Hypothesis H7 : SNoLev (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) β SNoLev (- x )
L2479
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNoCut_eq_lem__5__2
Beginning of Section Conj_minus_SNoCut_eq_lem__6__2
L2488 Hypothesis H0 : SNo x
L2489 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β (βu : set , βv : set , SNoCutP u v β w = SNoCut u v β - w = SNoCut (Repl v minus_SNo ) (Repl u minus_SNo ) ) )
L2490 Hypothesis H3 : (βw : set , w β z β SNo w )
L2491 Hypothesis H4 : x = SNoCut y z
L2492 Hypothesis H5 : SNoCutP (Repl z minus_SNo ) (Repl y minus_SNo )
L2493 Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) )
L2494 Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) ) (SNoLev (- x ) )
L2495 Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) ) (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) (- x )
L2496 Hypothesis H9 : ordinal (SNoLev (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) ) )
L2497
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNoCut_eq_lem__6__2
Beginning of Section Conj_minus_SNoCut_eq_lem__6__9
L2506 Hypothesis H0 : SNo x
L2507 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β (βu : set , βv : set , SNoCutP u v β w = SNoCut u v β - w = SNoCut (Repl v minus_SNo ) (Repl u minus_SNo ) ) )
L2508 Hypothesis H2 : (βw : set , w β y β SNo w )
L2509 Hypothesis H3 : (βw : set , w β z β SNo w )
L2510 Hypothesis H4 : x = SNoCut y z
L2511 Hypothesis H5 : SNoCutP (Repl z minus_SNo ) (Repl y minus_SNo )
L2512 Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) )
L2513 Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) ) (SNoLev (- x ) )
L2514 Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) ) (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) (- x )
L2515
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNoCut_eq_lem__6__9
Beginning of Section Conj_minus_SNoCut_eq_lem__7__5
L2524 Hypothesis H0 : SNo x
L2525 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β (βu : set , βv : set , SNoCutP u v β w = SNoCut u v β - w = SNoCut (Repl v minus_SNo ) (Repl u minus_SNo ) ) )
L2526 Hypothesis H2 : (βw : set , w β y β SNo w )
L2527 Hypothesis H3 : (βw : set , w β z β SNo w )
L2528 Hypothesis H4 : x = SNoCut y z
L2529 Hypothesis H6 : SNo (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) )
L2530 Hypothesis H7 : Subq (SNoLev (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) ) (SNoLev (- x ) )
L2531 Hypothesis H8 : SNoEq_ (SNoLev (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) ) (SNoCut (Repl z (Ξ»w : set β - w ) ) (Repl y (Ξ»w : set β - w ) ) ) (- x )
L2532 Theorem. (
Conj_minus_SNoCut_eq_lem__7__5 )
ordinal (SNoLev (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) ) ) β - x = SNoCut (Repl z minus_SNo ) (Repl y minus_SNo )
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNoCut_eq_lem__7__5
Beginning of Section Conj_minus_SNoCut_eq_lem__8__3
L2541 Hypothesis H0 : SNo x
L2542 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β (βu : set , βv : set , SNoCutP u v β w = SNoCut u v β - w = SNoCut (Repl v minus_SNo ) (Repl u minus_SNo ) ) )
L2543 Hypothesis H2 : SNoCutP y z
L2544 Hypothesis H4 : (βw : set , w β z β SNo w )
L2545 Hypothesis H5 : x = SNoCut y z
L2546 Hypothesis H6 : SNoCutP (Repl z minus_SNo ) (Repl y minus_SNo )
L2547 Hypothesis H7 : SNo (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) )
L2548 Hypothesis H8 : (βw : set , SNo w β (βu : set , u β Repl z minus_SNo β u < w ) β (βu : set , u β Repl y minus_SNo β w < u ) β Subq (SNoLev (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) ) ) (SNoLev w ) β§ SNoEq_ (SNoLev (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) ) ) (SNoCut (Repl z minus_SNo ) (Repl y minus_SNo ) ) w )
L2549 Hypothesis H9 : (βw : set , w β Repl z minus_SNo β w < - x )
L2550
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNoCut_eq_lem__8__3
Beginning of Section Conj_minus_SNoCut_eq_lem__11__3
L2559 Hypothesis H0 : SNo x
L2560 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β (βu : set , βv : set , SNoCutP u v β w = SNoCut u v β - w = SNoCut (Repl v minus_SNo ) (Repl u minus_SNo ) ) )
L2561 Hypothesis H2 : SNoCutP y z
L2562 Hypothesis H4 : (βw : set , w β z β SNo w )
L2563 Hypothesis H5 : x = SNoCut y z
L2564
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNoCut_eq_lem__11__3
Beginning of Section Conj_minus_SNoCut_eq_lem__11__5
L2573 Hypothesis H0 : SNo x
L2574 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β (βu : set , βv : set , SNoCutP u v β w = SNoCut u v β - w = SNoCut (Repl v minus_SNo ) (Repl u minus_SNo ) ) )
L2575 Hypothesis H2 : SNoCutP y z
L2576 Hypothesis H3 : (βw : set , w β y β SNo w )
L2577 Hypothesis H4 : (βw : set , w β z β SNo w )
L2578
Proof: Load proof Proof not loaded.
End of Section Conj_minus_SNoCut_eq_lem__11__5
Beginning of Section Conj_add_SNo_prop1__1__1
L2587 Hypothesis H0 : SNo x
L2588 Hypothesis H2 : SNo z
L2589 Hypothesis H3 : SNoLev z β SNoLev x
L2590 Theorem. (
Conj_add_SNo_prop1__1__1 )
z β SNoS_ (SNoLev x ) β SNo (z + y ) β§ (βw : set , w β SNoL z β (w + y ) < z + y ) β§ (βw : set , w β SNoR z β (z + y ) < w + y ) β§ (βw : set , w β SNoL y β (z + w ) < z + y ) β§ (βw : set , w β SNoR y β (z + y ) < z + w ) β§ SNoCutP (binunion (Repl (SNoL z ) (Ξ»w : set β w + y ) ) (Repl (SNoL y ) (add_SNo z ) ) ) (binunion (Repl (SNoR z ) (Ξ»w : set β w + y ) ) (Repl (SNoR y ) (add_SNo z ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__1__1
Beginning of Section Conj_add_SNo_prop1__2__1
L2599 Hypothesis H0 : SNo x
L2600 Hypothesis H2 : SNo z
L2601 Hypothesis H3 : SNoLev z β SNoLev x
L2602 Theorem. (
Conj_add_SNo_prop1__2__1 )
z β SNoS_ (SNoLev x ) β SNo (z + y ) β§ (βw : set , w β SNoL z β (w + y ) < z + y ) β§ (βw : set , w β SNoR z β (z + y ) < w + y ) β§ (βw : set , w β SNoL y β (z + w ) < z + y ) β§ (βw : set , w β SNoR y β (z + y ) < z + w ) β§ SNoCutP (binunion (Repl (SNoL z ) (Ξ»w : set β w + y ) ) (Repl (SNoL y ) (add_SNo z ) ) ) (binunion (Repl (SNoR z ) (Ξ»w : set β w + y ) ) (Repl (SNoR y ) (add_SNo z ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__2__1
Beginning of Section Conj_add_SNo_prop1__3__2
L2611 Hypothesis H0 : SNo y
L2612 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev y ) β SNo (x + w ) β§ (βu : set , u β SNoL x β (u + w ) < x + w ) β§ (βu : set , u β SNoR x β (x + w ) < u + w ) β§ (βu : set , u β SNoL w β (x + u ) < x + w ) β§ (βu : set , u β SNoR w β (x + w ) < x + u ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»u : set β u + w ) ) (Repl (SNoL w ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»u : set β u + w ) ) (Repl (SNoR w ) (add_SNo x ) ) ) )
L2613 Hypothesis H3 : SNoLev z β SNoLev y
L2614 Theorem. (
Conj_add_SNo_prop1__3__2 )
z β SNoS_ (SNoLev y ) β SNo (x + z ) β§ (βw : set , w β SNoL x β (w + z ) < x + z ) β§ (βw : set , w β SNoR x β (x + z ) < w + z ) β§ (βw : set , w β SNoL z β (x + w ) < x + z ) β§ (βw : set , w β SNoR z β (x + z ) < x + w ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»w : set β w + z ) ) (Repl (SNoL z ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»w : set β w + z ) ) (Repl (SNoR z ) (add_SNo x ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__3__2
Beginning of Section Conj_add_SNo_prop1__4__2
L2623 Hypothesis H0 : SNo y
L2624 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev y ) β SNo (x + w ) β§ (βu : set , u β SNoL x β (u + w ) < x + w ) β§ (βu : set , u β SNoR x β (x + w ) < u + w ) β§ (βu : set , u β SNoL w β (x + u ) < x + w ) β§ (βu : set , u β SNoR w β (x + w ) < x + u ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»u : set β u + w ) ) (Repl (SNoL w ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»u : set β u + w ) ) (Repl (SNoR w ) (add_SNo x ) ) ) )
L2625 Hypothesis H3 : SNoLev z β SNoLev y
L2626 Theorem. (
Conj_add_SNo_prop1__4__2 )
z β SNoS_ (SNoLev y ) β SNo (x + z ) β§ (βw : set , w β SNoL x β (w + z ) < x + z ) β§ (βw : set , w β SNoR x β (x + z ) < w + z ) β§ (βw : set , w β SNoL z β (x + w ) < x + z ) β§ (βw : set , w β SNoR z β (x + z ) < x + w ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»w : set β w + z ) ) (Repl (SNoL z ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»w : set β w + z ) ) (Repl (SNoR z ) (add_SNo x ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__4__2
Beginning of Section Conj_add_SNo_prop1__5__5
L2637 Hypothesis H0 : (βv : set , βx2 : set , SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) β (βP : prop , (SNo (v + x2 ) β (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β P ) β P ) )
L2638 Hypothesis H1 : (βv : set , v β SNoS_ (SNoLev y ) β SNo (x + v ) β§ (βx2 : set , x2 β SNoL x β (x2 + v ) < x + v ) β§ (βx2 : set , x2 β SNoR x β (x + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (x + x2 ) < x + v ) β§ (βx2 : set , x2 β SNoR v β (x + v ) < x + x2 ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo x ) ) ) )
L2639 Hypothesis H2 : SNo z
L2640 Hypothesis H3 : SNo (x + z )
L2641 Hypothesis H4 : (βv : set , v β SNoR z β (x + z ) < x + v )
L2642 Hypothesis H6 : SNo (x + w )
L2643 Hypothesis H7 : (βv : set , v β SNoL w β (x + v ) < x + w )
L2644 Hypothesis H8 : SNo u
L2645 Hypothesis H9 : z < u
L2646 Hypothesis H10 : u < w
L2647 Hypothesis H11 : SNoLev u β SNoLev z
L2648 Hypothesis H12 : SNoLev u β SNoLev w
L2649 Hypothesis H13 : u β SNoS_ (SNoLev y )
L2650
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__5__5
Beginning of Section Conj_add_SNo_prop1__5__13
L2661 Hypothesis H0 : (βv : set , βx2 : set , SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) β (βP : prop , (SNo (v + x2 ) β (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β P ) β P ) )
L2662 Hypothesis H1 : (βv : set , v β SNoS_ (SNoLev y ) β SNo (x + v ) β§ (βx2 : set , x2 β SNoL x β (x2 + v ) < x + v ) β§ (βx2 : set , x2 β SNoR x β (x + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (x + x2 ) < x + v ) β§ (βx2 : set , x2 β SNoR v β (x + v ) < x + x2 ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo x ) ) ) )
L2663 Hypothesis H2 : SNo z
L2664 Hypothesis H3 : SNo (x + z )
L2665 Hypothesis H4 : (βv : set , v β SNoR z β (x + z ) < x + v )
L2666 Hypothesis H5 : SNo w
L2667 Hypothesis H6 : SNo (x + w )
L2668 Hypothesis H7 : (βv : set , v β SNoL w β (x + v ) < x + w )
L2669 Hypothesis H8 : SNo u
L2670 Hypothesis H9 : z < u
L2671 Hypothesis H10 : u < w
L2672 Hypothesis H11 : SNoLev u β SNoLev z
L2673 Hypothesis H12 : SNoLev u β SNoLev w
L2674
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__5__13
Beginning of Section Conj_add_SNo_prop1__6__4
L2685 Hypothesis H0 : (βv : set , βx2 : set , SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) β (βP : prop , (SNo (v + x2 ) β (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β P ) β P ) )
L2686 Hypothesis H1 : SNo y
L2687 Hypothesis H2 : (βv : set , v β SNoS_ (SNoLev y ) β SNo (x + v ) β§ (βx2 : set , x2 β SNoL x β (x2 + v ) < x + v ) β§ (βx2 : set , x2 β SNoR x β (x + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (x + x2 ) < x + v ) β§ (βx2 : set , x2 β SNoR v β (x + v ) < x + x2 ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo x ) ) ) )
L2688 Hypothesis H3 : SNo z
L2689 Hypothesis H5 : (βv : set , v β SNoR z β (x + z ) < x + v )
L2690 Hypothesis H6 : SNo w
L2691 Hypothesis H7 : SNo (x + w )
L2692 Hypothesis H8 : (βv : set , v β SNoL w β (x + v ) < x + w )
L2693 Hypothesis H9 : SNo u
L2694 Hypothesis H10 : z < u
L2695 Hypothesis H11 : u < w
L2696 Hypothesis H12 : SNoLev u β SNoLev z
L2697 Hypothesis H13 : SNoLev u β SNoLev w
L2698 Hypothesis H14 : SNoLev u β SNoLev y
L2699
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__6__4
Beginning of Section Conj_add_SNo_prop1__8__1
L2709 Hypothesis H0 : (βu : set , βv : set , SNo (u + v ) β§ (βx2 : set , x2 β SNoL u β (x2 + v ) < u + v ) β§ (βx2 : set , x2 β SNoR u β (u + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (u + x2 ) < u + v ) β§ (βx2 : set , x2 β SNoR v β (u + v ) < u + x2 ) β§ SNoCutP (binunion (Repl (SNoL u ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo u ) ) ) (binunion (Repl (SNoR u ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo u ) ) ) β (βP : prop , (SNo (u + v ) β (βx2 : set , x2 β SNoL u β (x2 + v ) < u + v ) β (βx2 : set , x2 β SNoR u β (u + v ) < x2 + v ) β (βx2 : set , x2 β SNoL v β (u + x2 ) < u + v ) β (βx2 : set , x2 β SNoR v β (u + v ) < u + x2 ) β P ) β P ) )
L2710 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β SNo (x + u ) β§ (βv : set , v β SNoL x β (v + u ) < x + u ) β§ (βv : set , v β SNoR x β (x + u ) < v + u ) β§ (βv : set , v β SNoL u β (x + v ) < x + u ) β§ (βv : set , v β SNoR u β (x + u ) < x + v ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»v : set β v + u ) ) (Repl (SNoL u ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»v : set β v + u ) ) (Repl (SNoR u ) (add_SNo x ) ) ) )
L2711 Hypothesis H3 : TransSet (SNoLev y )
L2712 Hypothesis H4 : SNo z
L2713 Hypothesis H5 : z < y
L2714 Hypothesis H6 : SNo (x + z )
L2715 Hypothesis H7 : (βu : set , u β SNoR z β (x + z ) < x + u )
L2716 Hypothesis H8 : SNo w
L2717 Hypothesis H9 : SNoLev w β SNoLev y
L2718 Hypothesis H10 : y < w
L2719 Hypothesis H11 : SNo (x + w )
L2720 Hypothesis H12 : (βu : set , u β SNoL w β (x + u ) < x + w )
L2721
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__8__1
Beginning of Section Conj_add_SNo_prop1__8__10
L2731 Hypothesis H0 : (βu : set , βv : set , SNo (u + v ) β§ (βx2 : set , x2 β SNoL u β (x2 + v ) < u + v ) β§ (βx2 : set , x2 β SNoR u β (u + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (u + x2 ) < u + v ) β§ (βx2 : set , x2 β SNoR v β (u + v ) < u + x2 ) β§ SNoCutP (binunion (Repl (SNoL u ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo u ) ) ) (binunion (Repl (SNoR u ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo u ) ) ) β (βP : prop , (SNo (u + v ) β (βx2 : set , x2 β SNoL u β (x2 + v ) < u + v ) β (βx2 : set , x2 β SNoR u β (u + v ) < x2 + v ) β (βx2 : set , x2 β SNoL v β (u + x2 ) < u + v ) β (βx2 : set , x2 β SNoR v β (u + v ) < u + x2 ) β P ) β P ) )
L2732 Hypothesis H1 : SNo y
L2733 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β SNo (x + u ) β§ (βv : set , v β SNoL x β (v + u ) < x + u ) β§ (βv : set , v β SNoR x β (x + u ) < v + u ) β§ (βv : set , v β SNoL u β (x + v ) < x + u ) β§ (βv : set , v β SNoR u β (x + u ) < x + v ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»v : set β v + u ) ) (Repl (SNoL u ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»v : set β v + u ) ) (Repl (SNoR u ) (add_SNo x ) ) ) )
L2734 Hypothesis H3 : TransSet (SNoLev y )
L2735 Hypothesis H4 : SNo z
L2736 Hypothesis H5 : z < y
L2737 Hypothesis H6 : SNo (x + z )
L2738 Hypothesis H7 : (βu : set , u β SNoR z β (x + z ) < x + u )
L2739 Hypothesis H8 : SNo w
L2740 Hypothesis H9 : SNoLev w β SNoLev y
L2741 Hypothesis H11 : SNo (x + w )
L2742 Hypothesis H12 : (βu : set , u β SNoL w β (x + u ) < x + w )
L2743
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__8__10
Beginning of Section Conj_add_SNo_prop1__10__9
L2754 Hypothesis H0 : (βv : set , βx2 : set , SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) β (βP : prop , (SNo (v + x2 ) β (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β P ) β P ) )
L2755 Hypothesis H1 : SNo x
L2756 Hypothesis H2 : SNo y
L2757 Hypothesis H3 : (βv : set , v β SNoS_ (SNoLev y ) β SNo (x + v ) β§ (βx2 : set , x2 β SNoL x β (x2 + v ) < x + v ) β§ (βx2 : set , x2 β SNoR x β (x + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (x + x2 ) < x + v ) β§ (βx2 : set , x2 β SNoR v β (x + v ) < x + x2 ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo x ) ) ) )
L2758 Hypothesis H4 : (βv : set , v β SNoS_ (SNoLev x ) β (βx2 : set , x2 β SNoS_ (SNoLev y ) β SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) ) )
L2759 Hypothesis H5 : TransSet (SNoLev y )
L2760 Hypothesis H6 : (βv : set , v β SNoR x β SNo (v + y ) β§ (βx2 : set , x2 β SNoL v β (x2 + y ) < v + y ) β§ (βx2 : set , x2 β SNoR v β (v + y ) < x2 + y ) β§ (βx2 : set , x2 β SNoL y β (v + x2 ) < v + y ) β§ (βx2 : set , x2 β SNoR y β (v + y ) < v + x2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoL y ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoR y ) (add_SNo v ) ) ) )
L2761 Hypothesis H7 : (βv : set , v β SNoL y β SNo (x + v ) β§ (βx2 : set , x2 β SNoL x β (x2 + v ) < x + v ) β§ (βx2 : set , x2 β SNoR x β (x + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (x + x2 ) < x + v ) β§ (βx2 : set , x2 β SNoR v β (x + v ) < x + x2 ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo x ) ) ) )
L2762 Hypothesis H8 : (βv : set , v β SNoR y β SNo (x + v ) β§ (βx2 : set , x2 β SNoL x β (x2 + v ) < x + v ) β§ (βx2 : set , x2 β SNoR x β (x + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (x + x2 ) < x + v ) β§ (βx2 : set , x2 β SNoR v β (x + v ) < x + x2 ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo x ) ) ) )
L2763 Hypothesis H10 : u β SNoL y
L2764 Hypothesis H11 : z = x + u
L2765 Hypothesis H12 : SNo u
L2766 Hypothesis H13 : SNoLev u β SNoLev y
L2767 Hypothesis H14 : u < y
L2768
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__10__9
Beginning of Section Conj_add_SNo_prop1__11__8
L2779 Hypothesis H0 : (βv : set , βx2 : set , SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) β (βP : prop , (SNo (v + x2 ) β (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β P ) β P ) )
L2780 Hypothesis H1 : SNo x
L2781 Hypothesis H2 : SNo y
L2782 Hypothesis H3 : (βv : set , v β SNoS_ (SNoLev x ) β (βx2 : set , x2 β SNoS_ (SNoLev y ) β SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) ) )
L2783 Hypothesis H4 : (βv : set , v β SNoR y β SNo (x + v ) β§ (βx2 : set , x2 β SNoL x β (x2 + v ) < x + v ) β§ (βx2 : set , x2 β SNoR x β (x + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (x + x2 ) < x + v ) β§ (βx2 : set , x2 β SNoR v β (x + v ) < x + x2 ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo x ) ) ) )
L2784 Hypothesis H5 : SNo w
L2785 Hypothesis H6 : SNoLev w β SNoLev x
L2786 Hypothesis H7 : w < x
L2787 Hypothesis H9 : SNo (w + y )
L2788 Hypothesis H10 : (βv : set , v β SNoR y β (w + y ) < w + v )
L2789 Hypothesis H11 : u β SNoR y
L2790 Hypothesis H12 : z = x + u
L2791 Hypothesis H13 : SNo u
L2792 Hypothesis H14 : SNoLev u β SNoLev y
L2793 Hypothesis H15 : y < u
L2794
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__11__8
Beginning of Section Conj_add_SNo_prop1__13__13
L2805 Hypothesis H0 : (βv : set , βx2 : set , SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) β (βP : prop , (SNo (v + x2 ) β (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β P ) β P ) )
L2806 Hypothesis H1 : SNo x
L2807 Hypothesis H2 : (βv : set , v β SNoS_ (SNoLev x ) β SNo (v + y ) β§ (βx2 : set , x2 β SNoL v β (x2 + y ) < v + y ) β§ (βx2 : set , x2 β SNoR v β (v + y ) < x2 + y ) β§ (βx2 : set , x2 β SNoL y β (v + x2 ) < v + y ) β§ (βx2 : set , x2 β SNoR y β (v + y ) < v + x2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoL y ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoR y ) (add_SNo v ) ) ) )
L2808 Hypothesis H3 : SNo z
L2809 Hypothesis H4 : SNo (z + y )
L2810 Hypothesis H5 : (βv : set , v β SNoR z β (z + y ) < v + y )
L2811 Hypothesis H6 : SNo w
L2812 Hypothesis H7 : SNo (w + y )
L2813 Hypothesis H8 : (βv : set , v β SNoL w β (v + y ) < w + y )
L2814 Hypothesis H9 : SNo u
L2815 Hypothesis H10 : z < u
L2816 Hypothesis H11 : u < w
L2817 Hypothesis H12 : SNoLev u β SNoLev z
L2818 Hypothesis H14 : SNoLev u β SNoLev x
L2819
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__13__13
Beginning of Section Conj_add_SNo_prop1__14__3
L2830 Hypothesis H0 : (βv : set , βx2 : set , SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) β (βP : prop , (SNo (v + x2 ) β (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β P ) β P ) )
L2831 Hypothesis H1 : SNo x
L2832 Hypothesis H2 : (βv : set , v β SNoS_ (SNoLev x ) β SNo (v + y ) β§ (βx2 : set , x2 β SNoL v β (x2 + y ) < v + y ) β§ (βx2 : set , x2 β SNoR v β (v + y ) < x2 + y ) β§ (βx2 : set , x2 β SNoL y β (v + x2 ) < v + y ) β§ (βx2 : set , x2 β SNoR y β (v + y ) < v + x2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoL y ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoR y ) (add_SNo v ) ) ) )
L2833 Hypothesis H4 : SNo z
L2834 Hypothesis H5 : SNoLev z β SNoLev x
L2835 Hypothesis H6 : SNo (z + y )
L2836 Hypothesis H7 : (βv : set , v β SNoR z β (z + y ) < v + y )
L2837 Hypothesis H8 : SNo w
L2838 Hypothesis H9 : SNo (w + y )
L2839 Hypothesis H10 : (βv : set , v β SNoL w β (v + y ) < w + y )
L2840 Hypothesis H11 : SNo u
L2841 Hypothesis H12 : z < u
L2842 Hypothesis H13 : u < w
L2843 Hypothesis H14 : SNoLev u β SNoLev z
L2844 Hypothesis H15 : SNoLev u β SNoLev w
L2845
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__14__3
Beginning of Section Conj_add_SNo_prop1__16__5
L2856 Hypothesis H0 : (βv : set , βx2 : set , SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) β (βP : prop , (SNo (v + x2 ) β (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β P ) β P ) )
L2857 Hypothesis H1 : SNo x
L2858 Hypothesis H2 : SNo y
L2859 Hypothesis H3 : (βv : set , v β SNoS_ (SNoLev x ) β SNo (v + y ) β§ (βx2 : set , x2 β SNoL v β (x2 + y ) < v + y ) β§ (βx2 : set , x2 β SNoR v β (v + y ) < x2 + y ) β§ (βx2 : set , x2 β SNoL y β (v + x2 ) < v + y ) β§ (βx2 : set , x2 β SNoR y β (v + y ) < v + x2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoL y ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoR y ) (add_SNo v ) ) ) )
L2860 Hypothesis H4 : (βv : set , v β SNoS_ (SNoLev x ) β (βx2 : set , x2 β SNoS_ (SNoLev y ) β SNo (v + x2 ) β§ (βy2 : set , y2 β SNoL v β (y2 + x2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR v β (v + x2 ) < y2 + x2 ) β§ (βy2 : set , y2 β SNoL x2 β (v + y2 ) < v + x2 ) β§ (βy2 : set , y2 β SNoR x2 β (v + x2 ) < v + y2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoL x2 ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»y2 : set β y2 + x2 ) ) (Repl (SNoR x2 ) (add_SNo v ) ) ) ) )
L2861 Hypothesis H6 : (βv : set , v β SNoL x β SNo (v + y ) β§ (βx2 : set , x2 β SNoL v β (x2 + y ) < v + y ) β§ (βx2 : set , x2 β SNoR v β (v + y ) < x2 + y ) β§ (βx2 : set , x2 β SNoL y β (v + x2 ) < v + y ) β§ (βx2 : set , x2 β SNoR y β (v + y ) < v + x2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoL y ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoR y ) (add_SNo v ) ) ) )
L2862 Hypothesis H7 : (βv : set , v β SNoR x β SNo (v + y ) β§ (βx2 : set , x2 β SNoL v β (x2 + y ) < v + y ) β§ (βx2 : set , x2 β SNoR v β (v + y ) < x2 + y ) β§ (βx2 : set , x2 β SNoL y β (v + x2 ) < v + y ) β§ (βx2 : set , x2 β SNoR y β (v + y ) < v + x2 ) β§ SNoCutP (binunion (Repl (SNoL v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoL y ) (add_SNo v ) ) ) (binunion (Repl (SNoR v ) (Ξ»x2 : set β x2 + y ) ) (Repl (SNoR y ) (add_SNo v ) ) ) )
L2863 Hypothesis H8 : (βv : set , v β SNoR y β SNo (x + v ) β§ (βx2 : set , x2 β SNoL x β (x2 + v ) < x + v ) β§ (βx2 : set , x2 β SNoR x β (x + v ) < x2 + v ) β§ (βx2 : set , x2 β SNoL v β (x + x2 ) < x + v ) β§ (βx2 : set , x2 β SNoR v β (x + v ) < x + x2 ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoL v ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»x2 : set β x2 + v ) ) (Repl (SNoR v ) (add_SNo x ) ) ) )
L2864 Hypothesis H9 : w β binunion (Repl (SNoR x ) (Ξ»v : set β v + y ) ) (Repl (SNoR y ) (add_SNo x ) )
L2865 Hypothesis H10 : u β SNoL x
L2866 Hypothesis H11 : z = u + y
L2867 Hypothesis H12 : SNo u
L2868 Hypothesis H13 : SNoLev u β SNoLev x
L2869 Hypothesis H14 : u < x
L2870
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__16__5
Beginning of Section Conj_add_SNo_prop1__21__2
L2878 Hypothesis H0 : SNo x
L2879 Hypothesis H1 : SNo y
L2880 Theorem. (
Conj_add_SNo_prop1__21__2 )
SNo (SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) ) β SNo (x + y ) β§ (βz : set , z β SNoL x β (z + y ) < x + y ) β§ (βz : set , z β SNoR x β (x + y ) < z + y ) β§ (βz : set , z β SNoL y β (x + z ) < x + y ) β§ (βz : set , z β SNoR y β (x + y ) < x + z ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__21__2
Beginning of Section Conj_add_SNo_prop1__28__1
L2888 Hypothesis H0 : (βz : set , βw : set , SNo (z + w ) β§ (βu : set , u β SNoL z β (u + w ) < z + w ) β§ (βu : set , u β SNoR z β (z + w ) < u + w ) β§ (βu : set , u β SNoL w β (z + u ) < z + w ) β§ (βu : set , u β SNoR w β (z + w ) < z + u ) β§ SNoCutP (binunion (Repl (SNoL z ) (Ξ»u : set β u + w ) ) (Repl (SNoL w ) (add_SNo z ) ) ) (binunion (Repl (SNoR z ) (Ξ»u : set β u + w ) ) (Repl (SNoR w ) (add_SNo z ) ) ) β (βP : prop , (SNo (z + w ) β (βu : set , u β SNoL z β (u + w ) < z + w ) β (βu : set , u β SNoR z β (z + w ) < u + w ) β (βu : set , u β SNoL w β (z + u ) < z + w ) β (βu : set , u β SNoR w β (z + w ) < z + u ) β P ) β P ) )
L2889 Hypothesis H2 : SNo y
L2890 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev x ) β SNo (z + y ) β§ (βw : set , w β SNoL z β (w + y ) < z + y ) β§ (βw : set , w β SNoR z β (z + y ) < w + y ) β§ (βw : set , w β SNoL y β (z + w ) < z + y ) β§ (βw : set , w β SNoR y β (z + y ) < z + w ) β§ SNoCutP (binunion (Repl (SNoL z ) (Ξ»w : set β w + y ) ) (Repl (SNoL y ) (add_SNo z ) ) ) (binunion (Repl (SNoR z ) (Ξ»w : set β w + y ) ) (Repl (SNoR y ) (add_SNo z ) ) ) )
L2891 Hypothesis H4 : (βz : set , z β SNoS_ (SNoLev y ) β SNo (x + z ) β§ (βw : set , w β SNoL x β (w + z ) < x + z ) β§ (βw : set , w β SNoR x β (x + z ) < w + z ) β§ (βw : set , w β SNoL z β (x + w ) < x + z ) β§ (βw : set , w β SNoR z β (x + z ) < x + w ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»w : set β w + z ) ) (Repl (SNoL z ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»w : set β w + z ) ) (Repl (SNoR z ) (add_SNo x ) ) ) )
L2892 Hypothesis H5 : (βz : set , z β SNoS_ (SNoLev x ) β (βw : set , w β SNoS_ (SNoLev y ) β SNo (z + w ) β§ (βu : set , u β SNoL z β (u + w ) < z + w ) β§ (βu : set , u β SNoR z β (z + w ) < u + w ) β§ (βu : set , u β SNoL w β (z + u ) < z + w ) β§ (βu : set , u β SNoR w β (z + w ) < z + u ) β§ SNoCutP (binunion (Repl (SNoL z ) (Ξ»u : set β u + w ) ) (Repl (SNoL w ) (add_SNo z ) ) ) (binunion (Repl (SNoR z ) (Ξ»u : set β u + w ) ) (Repl (SNoR w ) (add_SNo z ) ) ) ) )
L2893 Hypothesis H6 : TransSet (SNoLev x )
L2894 Theorem. (
Conj_add_SNo_prop1__28__1 )
ordinal (SNoLev y ) β SNo (x + y ) β§ (βz : set , z β SNoL x β (z + y ) < x + y ) β§ (βz : set , z β SNoR x β (x + y ) < z + y ) β§ (βz : set , z β SNoL y β (x + z ) < x + y ) β§ (βz : set , z β SNoR y β (x + y ) < x + z ) β§ SNoCutP (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_prop1__28__1
Beginning of Section Conj_add_SNo_com__1__1
L2903 Hypothesis H0 : SNo x
L2904 Hypothesis H2 : SNo z
L2905 Hypothesis H3 : SNoLev z β SNoLev x
L2906
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_com__1__1
Beginning of Section Conj_add_SNo_com__1__3
L2915 Hypothesis H0 : SNo x
L2916 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β w + y = y + w )
L2917 Hypothesis H2 : SNo z
L2918
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_com__1__3
Beginning of Section Conj_add_SNo_com__2__1
L2927 Hypothesis H0 : SNo x
L2928 Hypothesis H2 : SNo z
L2929 Hypothesis H3 : SNoLev z β SNoLev x
L2930
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_com__2__1
Beginning of Section Conj_add_SNo_com__2__3
L2939 Hypothesis H0 : SNo x
L2940 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β w + y = y + w )
L2941 Hypothesis H2 : SNo z
L2942
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_com__2__3
Beginning of Section Conj_add_SNo_com__6__2
L2950 Hypothesis H0 : (βz : set , z β SNoR x β z + y = y + z )
L2951 Hypothesis H1 : (βz : set , z β SNoR y β x + z = z + x )
L2952 Hypothesis H3 : Repl (SNoL y ) (add_SNo x ) = Repl (SNoL y ) (Ξ»z : set β z + x )
L2953 Theorem. (
Conj_add_SNo_com__6__2 )
Repl (SNoR x ) (Ξ»z : set β z + y ) = Repl (SNoR x ) (add_SNo y ) β SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) = SNoCut (binunion (Repl (SNoL y ) (Ξ»z : set β z + x ) ) (Repl (SNoL x ) (add_SNo y ) ) ) (binunion (Repl (SNoR y ) (Ξ»z : set β z + x ) ) (Repl (SNoR x ) (add_SNo y ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_com__6__2
Beginning of Section Conj_add_SNo_com__9__0
L2961 Hypothesis H1 : SNo y
L2962 Hypothesis H2 : (βz : set , z β SNoS_ (SNoLev y ) β x + z = z + x )
L2963 Hypothesis H3 : (βz : set , z β SNoL x β z + y = y + z )
L2964 Hypothesis H4 : (βz : set , z β SNoR x β z + y = y + z )
L2965 Hypothesis H5 : (βz : set , z β SNoL y β x + z = z + x )
L2966
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_com__9__0
Beginning of Section Conj_add_SNo_com__10__1
L2974 Hypothesis H0 : SNo x
L2975 Hypothesis H2 : (βz : set , z β SNoS_ (SNoLev y ) β x + z = z + x )
L2976 Hypothesis H3 : (βz : set , z β SNoL x β z + y = y + z )
L2977 Hypothesis H4 : (βz : set , z β SNoR x β z + y = y + z )
L2978
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_com__10__1
Beginning of Section Conj_add_SNo_minus_SNo_linv__4__0
L2987 Hypothesis H1 : SNo (- x )
L2988 Hypothesis H2 : y = z + x
L2989 Hypothesis H3 : SNo z
L2990 Hypothesis H4 : - x < z
L2991 Hypothesis H5 : SNo (- z )
L2992 Hypothesis H6 : - z + z = Empty
L2993
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_minus_SNo_linv__4__0
Beginning of Section Conj_add_SNo_minus_SNo_linv__8__6
L3002 Hypothesis H0 : SNo x
L3003 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β - w + w = Empty )
L3004 Hypothesis H2 : SNo (- x )
L3005 Hypothesis H3 : y = - x + z
L3006 Hypothesis H4 : SNo z
L3007 Hypothesis H5 : SNoLev z β SNoLev x
L3008 Hypothesis H7 : SNo (- z )
L3009
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_minus_SNo_linv__8__6
Beginning of Section Conj_add_SNo_minus_SNo_linv__9__5
L3018 Hypothesis H0 : SNo x
L3019 Hypothesis H1 : (βw : set , w β SNoS_ (SNoLev x ) β - w + w = Empty )
L3020 Hypothesis H2 : SNo (- x )
L3021 Hypothesis H3 : y = - x + z
L3022 Hypothesis H4 : SNo z
L3023 Hypothesis H6 : z < x
L3024
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_minus_SNo_linv__9__5
Beginning of Section Conj_add_SNo_ordinal_ordinal__3__3
L3032 Hypothesis H0 : ordinal x
L3033 Hypothesis H1 : ordinal y
L3034 Hypothesis H2 : SNo x
L3035
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_ordinal__3__3
Beginning of Section Conj_add_SNo_ordinal_ordinal__4__1
L3043 Hypothesis H0 : ordinal x
L3044 Hypothesis H2 : SNo x
L3045
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_ordinal__4__1
Beginning of Section Conj_add_SNo_ordinal_ordinal__4__2
L3053 Hypothesis H0 : ordinal x
L3054 Hypothesis H1 : ordinal y
L3055
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_ordinal__4__2
Beginning of Section Conj_add_SNo_ordinal_SL__1__0
L3064 Hypothesis H1 : SNo x
L3065 Hypothesis H2 : SNo y
L3066 Hypothesis H3 : ordinal (x + y )
L3067 Hypothesis H4 : SNo (ordsucc x )
L3068 Hypothesis H5 : ordinal (ordsucc (x + y ) )
L3069 Hypothesis H6 : SNo (ordsucc (x + y ) )
L3070 Hypothesis H7 : SNoLev z β y
L3071 Hypothesis H8 : ordinal (SNoLev z )
L3072 Hypothesis H9 : SNo z
L3073 Hypothesis H10 : ordsucc x + SNoLev z = ordsucc (x + SNoLev z )
L3074 Hypothesis H11 : SNo (ordsucc x + z )
L3075 Hypothesis H12 : ordinal (x + SNoLev z )
L3076 Hypothesis H13 : ordinal (ordsucc x + SNoLev z )
L3077
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SL__1__0
Beginning of Section Conj_add_SNo_ordinal_SL__1__4
L3086 Hypothesis H0 : ordinal y
L3087 Hypothesis H1 : SNo x
L3088 Hypothesis H2 : SNo y
L3089 Hypothesis H3 : ordinal (x + y )
L3090 Hypothesis H5 : ordinal (ordsucc (x + y ) )
L3091 Hypothesis H6 : SNo (ordsucc (x + y ) )
L3092 Hypothesis H7 : SNoLev z β y
L3093 Hypothesis H8 : ordinal (SNoLev z )
L3094 Hypothesis H9 : SNo z
L3095 Hypothesis H10 : ordsucc x + SNoLev z = ordsucc (x + SNoLev z )
L3096 Hypothesis H11 : SNo (ordsucc x + z )
L3097 Hypothesis H12 : ordinal (x + SNoLev z )
L3098 Hypothesis H13 : ordinal (ordsucc x + SNoLev z )
L3099
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SL__1__4
Beginning of Section Conj_add_SNo_ordinal_SL__6__8
L3108 Hypothesis H0 : ordinal x
L3109 Hypothesis H1 : SNo x
L3110 Hypothesis H2 : SNo y
L3111 Hypothesis H3 : ordinal (x + y )
L3112 Hypothesis H4 : ordinal (ordsucc (x + y ) )
L3113 Hypothesis H5 : SNo (ordsucc (x + y ) )
L3114 Hypothesis H6 : SNoLev z β ordsucc x
L3115 Hypothesis H7 : ordinal (SNoLev z )
L3116 Hypothesis H9 : ordinal (SNoLev z + y )
L3117
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SL__6__8
Beginning of Section Conj_add_SNo_ordinal_SL__7__1
L3126 Hypothesis H0 : ordinal x
L3127 Hypothesis H2 : SNo x
L3128 Hypothesis H3 : SNo y
L3129 Hypothesis H4 : ordinal (x + y )
L3130 Hypothesis H5 : ordinal (ordsucc (x + y ) )
L3131 Hypothesis H6 : SNo (ordsucc (x + y ) )
L3132 Hypothesis H7 : SNoLev z β ordsucc x
L3133 Hypothesis H8 : ordinal (SNoLev z )
L3134 Hypothesis H9 : SNo z
L3135
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SL__7__1
Beginning of Section Conj_add_SNo_ordinal_SL__7__3
L3144 Hypothesis H0 : ordinal x
L3145 Hypothesis H1 : ordinal y
L3146 Hypothesis H2 : SNo x
L3147 Hypothesis H4 : ordinal (x + y )
L3148 Hypothesis H5 : ordinal (ordsucc (x + y ) )
L3149 Hypothesis H6 : SNo (ordsucc (x + y ) )
L3150 Hypothesis H7 : SNoLev z β ordsucc x
L3151 Hypothesis H8 : ordinal (SNoLev z )
L3152 Hypothesis H9 : SNo z
L3153
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SL__7__3
Beginning of Section Conj_add_SNo_ordinal_SL__11__9
L3161 Hypothesis H0 : ordinal x
L3162 Hypothesis H1 : ordinal y
L3163 Hypothesis H2 : (βz : set , z β y β ordsucc x + z = ordsucc (x + z ) )
L3164 Hypothesis H3 : SNo x
L3165 Hypothesis H4 : SNo y
L3166 Hypothesis H5 : ordinal (x + y )
L3167 Hypothesis H6 : ordinal (ordsucc x )
L3168 Hypothesis H7 : SNo (ordsucc x )
L3169 Hypothesis H8 : ordinal (ordsucc x + y )
L3170 Hypothesis H10 : ordsucc (x + y ) β ordsucc x + y
L3171
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SL__11__9
Beginning of Section Conj_add_SNo_ordinal_SL__14__0
L3179 Hypothesis H1 : ordinal y
L3180 Hypothesis H2 : (βz : set , z β y β ordsucc x + z = ordsucc (x + z ) )
L3181 Hypothesis H3 : SNo x
L3182 Hypothesis H4 : SNo y
L3183 Hypothesis H5 : ordinal (x + y )
L3184 Hypothesis H6 : ordinal (ordsucc x )
L3185
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SL__14__0
Beginning of Section Conj_add_SNo_ordinal_SR__4__0
L3193 Hypothesis H1 : ordinal y
L3194
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SR__4__0
Beginning of Section Conj_add_SNo_ordinal_SR__5__1
L3202 Hypothesis H0 : ordinal x
L3203
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_SR__5__1
Beginning of Section Conj_add_SNo_ordinal_InR__1__1
L3212 Hypothesis H0 : ordinal x
L3214 Hypothesis H3 : SNo x
L3215 Hypothesis H4 : SNo y
L3216 Hypothesis H5 : ordinal z
L3217
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_ordinal_InR__1__1
Beginning of Section Conj_add_nat_add_SNo__1__1
L3224 Hypothesis H0 : ordinal x
L3225
Proof: Load proof Proof not loaded.
End of Section Conj_add_nat_add_SNo__1__1
Beginning of Section Conj_add_SNo_SNoL_interpolate__2__11
L3235 Hypothesis H0 : SNo x
L3236 Hypothesis H1 : SNo y
L3237 Hypothesis H2 : SNo (x + y )
L3238 Hypothesis H3 : SNo z
L3239 Hypothesis H4 : (βu : set , u β SNoS_ (SNoLev z ) β SNoLev u β SNoLev (x + y ) β u < x + y β (βv : set , v β SNoL x β§ u β€ v + y ) β¨ (βv : set , v β SNoL y β§ u β€ x + v ) )
L3240 Hypothesis H5 : SNoLev z β SNoLev (x + y )
L3241 Hypothesis H6 : Β¬ ((βu : set , u β SNoL x β§ z β€ u + y ) β¨ (βu : set , u β SNoL y β§ z β€ x + u ) )
L3242 Hypothesis H7 : w β SNoR z
L3243 Hypothesis H8 : SNo w
L3244 Hypothesis H9 : SNoLev w β SNoLev z
L3245 Hypothesis H10 : z < w
L3246
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_SNoL_interpolate__2__11
Beginning of Section Conj_add_SNo_SNoR_interpolate__1__1
L3256 Hypothesis H0 : SNo x
L3257 Hypothesis H2 : Β¬ ((βu : set , u β SNoR x β§ (u + y ) β€ z ) β¨ (βu : set , u β SNoR y β§ (x + u ) β€ z ) )
L3258 Hypothesis H3 : w β SNoR y
L3259 Hypothesis H4 : SNo w
L3260
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_SNoR_interpolate__1__1
Beginning of Section Conj_add_SNo_assoc__3__0
L3271 Hypothesis H1 : SNo y
L3272 Hypothesis H2 : SNo z
L3273 Hypothesis H3 : (βv : set , v β SNoS_ (SNoLev x ) β v + y + z = (v + y ) + z )
L3274 Hypothesis H4 : SNo (y + z )
L3275 Hypothesis H5 : SNo w
L3276 Hypothesis H6 : u β SNoR x
L3277 Hypothesis H7 : (u + y ) β€ w
L3278 Hypothesis H8 : SNo u
L3279 Hypothesis H9 : x < u
L3280
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_assoc__3__0
Beginning of Section Conj_add_SNo_assoc__6__7
L3291 Hypothesis H0 : SNo x
L3292 Hypothesis H1 : SNo y
L3293 Hypothesis H2 : SNo z
L3294 Hypothesis H3 : (βv : set , v β SNoS_ (SNoLev x ) β v + y + z = (v + y ) + z )
L3295 Hypothesis H4 : SNo (y + z )
L3296 Hypothesis H5 : SNo w
L3297 Hypothesis H6 : u β SNoL x
L3298 Hypothesis H8 : SNo u
L3299 Hypothesis H9 : u < x
L3300
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_assoc__6__7
Beginning of Section Conj_add_SNo_assoc__7__3
L3311 Hypothesis H0 : SNo x
L3312 Hypothesis H1 : SNo y
L3313 Hypothesis H2 : SNo z
L3314 Hypothesis H4 : SNo (x + y )
L3315 Hypothesis H5 : SNo w
L3316 Hypothesis H6 : u β SNoR z
L3317 Hypothesis H7 : (y + u ) β€ w
L3318 Hypothesis H8 : SNo u
L3319 Hypothesis H9 : z < u
L3320
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_assoc__7__3
Beginning of Section Conj_add_SNo_assoc__10__0
L3331 Hypothesis H1 : SNo y
L3332 Hypothesis H2 : SNo z
L3333 Hypothesis H3 : (βv : set , v β SNoS_ (SNoLev z ) β x + y + v = (x + y ) + v )
L3334 Hypothesis H4 : SNo (x + y )
L3335 Hypothesis H5 : SNo w
L3336 Hypothesis H6 : u β SNoL z
L3337 Hypothesis H7 : w β€ y + u
L3338 Hypothesis H8 : SNo u
L3339 Hypothesis H9 : u < z
L3340
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_assoc__10__0
Beginning of Section Conj_add_SNo_assoc__14__4
L3349 Hypothesis H0 : SNo x
L3350 Hypothesis H1 : SNo y
L3351 Hypothesis H2 : SNo z
L3352 Hypothesis H3 : (βw : set , w β SNoS_ (SNoLev x ) β w + y + z = (w + y ) + z )
L3353 Hypothesis H5 : (βw : set , w β SNoS_ (SNoLev z ) β x + y + w = (x + y ) + w )
L3354 Hypothesis H6 : SNo (x + y )
L3355 Hypothesis H7 : SNo (y + z )
L3356 Theorem. (
Conj_add_SNo_assoc__14__4 )
SNoCutP (binunion (Repl (SNoL x ) (Ξ»w : set β w + y + z ) ) (Repl (SNoL (y + z ) ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»w : set β w + y + z ) ) (Repl (SNoR (y + z ) ) (add_SNo x ) ) ) β SNoCut (binunion (Repl (SNoL x ) (Ξ»w : set β w + y + z ) ) (Repl (SNoL (y + z ) ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»w : set β w + y + z ) ) (Repl (SNoR (y + z ) ) (add_SNo x ) ) ) = SNoCut (binunion (Repl (SNoL (x + y ) ) (Ξ»w : set β w + z ) ) (Repl (SNoL z ) (add_SNo (x + y ) ) ) ) (binunion (Repl (SNoR (x + y ) ) (Ξ»w : set β w + z ) ) (Repl (SNoR z ) (add_SNo (x + y ) ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_assoc__14__4
Beginning of Section Conj_add_SNo_cancel_L__2__3
L3365 Hypothesis H0 : SNo x
L3366 Hypothesis H1 : SNo y
L3367 Hypothesis H2 : SNo z
L3368 Hypothesis H4 : SNo (- x )
L3369
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_cancel_L__2__3
Beginning of Section Conj_minus_add_SNo_distr__1__0
L3377 Hypothesis H1 : SNo y
L3378 Hypothesis H2 : SNo (- x )
L3379 Hypothesis H3 : SNo (- y )
L3380 Hypothesis H4 : SNo (x + y )
L3381
Proof: Load proof Proof not loaded.
End of Section Conj_minus_add_SNo_distr__1__0
Beginning of Section Conj_minus_add_SNo_distr__3__2
L3389 Hypothesis H0 : SNo x
L3390 Hypothesis H1 : SNo y
L3391
Proof: Load proof Proof not loaded.
End of Section Conj_minus_add_SNo_distr__3__2
Beginning of Section Conj_add_SNo_Lev_bd__3__0
L3400 Variable p : (set β prop )
L3402 Hypothesis H1 : w β SNoR x
L3403 Hypothesis H2 : z = w + y
L3404
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__3__0
Beginning of Section Conj_add_SNo_Lev_bd__6__2
L3414 Hypothesis H0 : SNo x
L3415 Hypothesis H1 : ordinal (SNoLev x + SNoLev y )
L3416 Hypothesis H3 : z β ordsucc (SNoLev (x + w ) )
L3417 Hypothesis H4 : ordinal z
L3418 Hypothesis H5 : Subq (SNoLev x + SNoLev y ) z
L3419 Hypothesis H6 : Subq (SNoLev (x + w ) ) (SNoLev x + SNoLev w )
L3420 Hypothesis H7 : SNoLev x + SNoLev w β SNoLev x + SNoLev y
L3421
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__6__2
Beginning of Section Conj_add_SNo_Lev_bd__7__7
L3431 Hypothesis H0 : SNo x
L3432 Hypothesis H1 : SNo y
L3433 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3434 Hypothesis H3 : SNo w
L3435 Hypothesis H4 : SNoLev w β SNoLev y
L3436 Hypothesis H5 : z β ordsucc (SNoLev (x + w ) )
L3437 Hypothesis H6 : ordinal z
L3438 Hypothesis H8 : Subq (SNoLev (x + w ) ) (SNoLev x + SNoLev w )
L3439
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__7__7
Beginning of Section Conj_add_SNo_Lev_bd__10__5
L3449 Hypothesis H0 : SNo y
L3450 Hypothesis H1 : SNo w
L3451 Hypothesis H2 : z β ordsucc (SNoLev (w + y ) )
L3452 Hypothesis H3 : ordinal z
L3453 Hypothesis H4 : Subq (SNoLev x + SNoLev y ) z
L3454 Hypothesis H6 : SNoLev w + SNoLev y β SNoLev x + SNoLev y
L3455
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__10__5
Beginning of Section Conj_add_SNo_Lev_bd__11__2
L3465 Hypothesis H0 : SNo y
L3466 Hypothesis H1 : ordinal (SNoLev x + SNoLev y )
L3467 Hypothesis H3 : z β ordsucc (SNoLev (w + y ) )
L3468 Hypothesis H4 : ordinal z
L3469 Hypothesis H5 : Subq (SNoLev x + SNoLev y ) z
L3470 Hypothesis H6 : Subq (SNoLev (w + y ) ) (SNoLev w + SNoLev y )
L3471 Hypothesis H7 : SNoLev w + SNoLev y β SNoLev x + SNoLev y
L3472
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__11__2
Beginning of Section Conj_add_SNo_Lev_bd__12__6
L3482 Hypothesis H0 : SNo x
L3483 Hypothesis H1 : SNo y
L3484 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3485 Hypothesis H3 : SNo w
L3486 Hypothesis H4 : SNoLev w β SNoLev x
L3487 Hypothesis H5 : z β ordsucc (SNoLev (w + y ) )
L3488 Hypothesis H7 : Subq (SNoLev x + SNoLev y ) z
L3489 Hypothesis H8 : Subq (SNoLev (w + y ) ) (SNoLev w + SNoLev y )
L3490
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__12__6
Beginning of Section Conj_add_SNo_Lev_bd__13__3
L3500 Hypothesis H0 : SNo x
L3501 Hypothesis H1 : SNo y
L3502 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3503 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3504 Hypothesis H5 : SNo w
L3505 Hypothesis H6 : SNoLev w β SNoLev x
L3506 Hypothesis H7 : z β ordsucc (SNoLev (w + y ) )
L3507 Hypothesis H8 : ordinal z
L3508 Hypothesis H9 : Subq (SNoLev x + SNoLev y ) z
L3509
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__13__3
Beginning of Section Conj_add_SNo_Lev_bd__13__5
L3519 Hypothesis H0 : SNo x
L3520 Hypothesis H1 : SNo y
L3521 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3522 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev x ) β Subq (SNoLev (u + y ) ) (SNoLev u + SNoLev y ) )
L3523 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3524 Hypothesis H6 : SNoLev w β SNoLev x
L3525 Hypothesis H7 : z β ordsucc (SNoLev (w + y ) )
L3526 Hypothesis H8 : ordinal z
L3527 Hypothesis H9 : Subq (SNoLev x + SNoLev y ) z
L3528
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__13__5
Beginning of Section Conj_add_SNo_Lev_bd__13__6
L3538 Hypothesis H0 : SNo x
L3539 Hypothesis H1 : SNo y
L3540 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3541 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev x ) β Subq (SNoLev (u + y ) ) (SNoLev u + SNoLev y ) )
L3542 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3543 Hypothesis H5 : SNo w
L3544 Hypothesis H7 : z β ordsucc (SNoLev (w + y ) )
L3545 Hypothesis H8 : ordinal z
L3546 Hypothesis H9 : Subq (SNoLev x + SNoLev y ) z
L3547
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__13__6
Beginning of Section Conj_add_SNo_Lev_bd__13__7
L3557 Hypothesis H0 : SNo x
L3558 Hypothesis H1 : SNo y
L3559 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3560 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev x ) β Subq (SNoLev (u + y ) ) (SNoLev u + SNoLev y ) )
L3561 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3562 Hypothesis H5 : SNo w
L3563 Hypothesis H6 : SNoLev w β SNoLev x
L3564 Hypothesis H8 : ordinal z
L3565 Hypothesis H9 : Subq (SNoLev x + SNoLev y ) z
L3566
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__13__7
Beginning of Section Conj_add_SNo_Lev_bd__14__5
L3576 Hypothesis H0 : SNo x
L3577 Hypothesis H1 : SNo y
L3578 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3579 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev x ) β Subq (SNoLev (u + y ) ) (SNoLev u + SNoLev y ) )
L3580 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3581 Hypothesis H6 : SNoLev w β SNoLev x
L3582 Hypothesis H7 : z β ordsucc (SNoLev (w + y ) )
L3583
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__14__5
Beginning of Section Conj_add_SNo_Lev_bd__16__2
L3593 Hypothesis H0 : SNo x
L3594 Hypothesis H1 : ordinal (SNoLev x + SNoLev y )
L3595 Hypothesis H3 : z β ordsucc (SNoLev (x + w ) )
L3596 Hypothesis H4 : ordinal z
L3597 Hypothesis H5 : Subq (SNoLev x + SNoLev y ) z
L3598 Hypothesis H6 : Subq (SNoLev (x + w ) ) (SNoLev x + SNoLev w )
L3599 Hypothesis H7 : SNoLev x + SNoLev w β SNoLev x + SNoLev y
L3600
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__16__2
Beginning of Section Conj_add_SNo_Lev_bd__17__7
L3610 Hypothesis H0 : SNo x
L3611 Hypothesis H1 : SNo y
L3612 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3613 Hypothesis H3 : SNo w
L3614 Hypothesis H4 : SNoLev w β SNoLev y
L3615 Hypothesis H5 : z β ordsucc (SNoLev (x + w ) )
L3616 Hypothesis H6 : ordinal z
L3617 Hypothesis H8 : Subq (SNoLev (x + w ) ) (SNoLev x + SNoLev w )
L3618
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__17__7
Beginning of Section Conj_add_SNo_Lev_bd__20__5
L3628 Hypothesis H0 : SNo y
L3629 Hypothesis H1 : SNo w
L3630 Hypothesis H2 : z β ordsucc (SNoLev (w + y ) )
L3631 Hypothesis H3 : ordinal z
L3632 Hypothesis H4 : Subq (SNoLev x + SNoLev y ) z
L3633 Hypothesis H6 : SNoLev w + SNoLev y β SNoLev x + SNoLev y
L3634
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__20__5
Beginning of Section Conj_add_SNo_Lev_bd__21__2
L3644 Hypothesis H0 : SNo y
L3645 Hypothesis H1 : ordinal (SNoLev x + SNoLev y )
L3646 Hypothesis H3 : z β ordsucc (SNoLev (w + y ) )
L3647 Hypothesis H4 : ordinal z
L3648 Hypothesis H5 : Subq (SNoLev x + SNoLev y ) z
L3649 Hypothesis H6 : Subq (SNoLev (w + y ) ) (SNoLev w + SNoLev y )
L3650 Hypothesis H7 : SNoLev w + SNoLev y β SNoLev x + SNoLev y
L3651
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__21__2
Beginning of Section Conj_add_SNo_Lev_bd__22__6
L3661 Hypothesis H0 : SNo x
L3662 Hypothesis H1 : SNo y
L3663 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3664 Hypothesis H3 : SNo w
L3665 Hypothesis H4 : SNoLev w β SNoLev x
L3666 Hypothesis H5 : z β ordsucc (SNoLev (w + y ) )
L3667 Hypothesis H7 : Subq (SNoLev x + SNoLev y ) z
L3668 Hypothesis H8 : Subq (SNoLev (w + y ) ) (SNoLev w + SNoLev y )
L3669
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__22__6
Beginning of Section Conj_add_SNo_Lev_bd__23__3
L3679 Hypothesis H0 : SNo x
L3680 Hypothesis H1 : SNo y
L3681 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3682 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3683 Hypothesis H5 : SNo w
L3684 Hypothesis H6 : SNoLev w β SNoLev x
L3685 Hypothesis H7 : z β ordsucc (SNoLev (w + y ) )
L3686 Hypothesis H8 : ordinal z
L3687 Hypothesis H9 : Subq (SNoLev x + SNoLev y ) z
L3688
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__23__3
Beginning of Section Conj_add_SNo_Lev_bd__23__5
L3698 Hypothesis H0 : SNo x
L3699 Hypothesis H1 : SNo y
L3700 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3701 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev x ) β Subq (SNoLev (u + y ) ) (SNoLev u + SNoLev y ) )
L3702 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3703 Hypothesis H6 : SNoLev w β SNoLev x
L3704 Hypothesis H7 : z β ordsucc (SNoLev (w + y ) )
L3705 Hypothesis H8 : ordinal z
L3706 Hypothesis H9 : Subq (SNoLev x + SNoLev y ) z
L3707
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__23__5
Beginning of Section Conj_add_SNo_Lev_bd__23__6
L3717 Hypothesis H0 : SNo x
L3718 Hypothesis H1 : SNo y
L3719 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3720 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev x ) β Subq (SNoLev (u + y ) ) (SNoLev u + SNoLev y ) )
L3721 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3722 Hypothesis H5 : SNo w
L3723 Hypothesis H7 : z β ordsucc (SNoLev (w + y ) )
L3724 Hypothesis H8 : ordinal z
L3725 Hypothesis H9 : Subq (SNoLev x + SNoLev y ) z
L3726
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__23__6
Beginning of Section Conj_add_SNo_Lev_bd__23__7
L3736 Hypothesis H0 : SNo x
L3737 Hypothesis H1 : SNo y
L3738 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3739 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev x ) β Subq (SNoLev (u + y ) ) (SNoLev u + SNoLev y ) )
L3740 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3741 Hypothesis H5 : SNo w
L3742 Hypothesis H6 : SNoLev w β SNoLev x
L3743 Hypothesis H8 : ordinal z
L3744 Hypothesis H9 : Subq (SNoLev x + SNoLev y ) z
L3745
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__23__7
Beginning of Section Conj_add_SNo_Lev_bd__24__5
L3755 Hypothesis H0 : SNo x
L3756 Hypothesis H1 : SNo y
L3757 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3758 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev x ) β Subq (SNoLev (u + y ) ) (SNoLev u + SNoLev y ) )
L3759 Hypothesis H4 : w β SNoS_ (SNoLev x )
L3760 Hypothesis H6 : SNoLev w β SNoLev x
L3761 Hypothesis H7 : z β ordsucc (SNoLev (w + y ) )
L3762
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__24__5
Beginning of Section Conj_add_SNo_Lev_bd__29__1
L3770 Hypothesis H0 : SNo x
L3771 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3772 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev x ) β Subq (SNoLev (z + y ) ) (SNoLev z + SNoLev y ) )
L3773 Hypothesis H4 : (βz : set , z β SNoS_ (SNoLev y ) β Subq (SNoLev (x + z ) ) (SNoLev x + SNoLev z ) )
L3774 Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) ) β ordsucc (binunion (famunion (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) (Ξ»z : set β ordsucc (SNoLev z ) ) ) )
L3775 Hypothesis H6 : (βz : set , z β Repl (SNoL x ) (Ξ»w : set β w + y ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev x ) β z = w + y β SNo w β SNoLev w β SNoLev x β w < x β p (w + y ) ) β p z ) )
L3776 Hypothesis H7 : (βz : set , z β Repl (SNoL y ) (add_SNo x ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev y ) β z = x + w β SNo w β SNoLev w β SNoLev y β w < y β p (x + w ) ) β p z ) )
L3777 Hypothesis H8 : (βz : set , z β Repl (SNoR x ) (Ξ»w : set β w + y ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev x ) β z = w + y β SNo w β SNoLev w β SNoLev x β x < w β p (w + y ) ) β p z ) )
L3778 Hypothesis H9 : (βz : set , z β Repl (SNoR y ) (add_SNo x ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev y ) β z = x + w β SNo w β SNoLev w β SNoLev y β y < w β p (x + w ) ) β p z ) )
L3779 Hypothesis H10 : (βz : set , z β Repl (SNoL x ) (Ξ»w : set β w + y ) β SNo z )
L3780 Hypothesis H11 : (βz : set , z β Repl (SNoL y ) (add_SNo x ) β SNo z )
L3781 Theorem. (
Conj_add_SNo_Lev_bd__29__1 )
(βz : set , z β Repl (SNoR x ) (Ξ»w : set β w + y ) β SNo z ) β Subq (SNoLev (SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) ) ) (SNoLev x + SNoLev y )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__29__1
Beginning of Section Conj_add_SNo_Lev_bd__29__4
L3789 Hypothesis H0 : SNo x
L3790 Hypothesis H1 : SNo y
L3791 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3792 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev x ) β Subq (SNoLev (z + y ) ) (SNoLev z + SNoLev y ) )
L3793 Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) ) β ordsucc (binunion (famunion (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) (Ξ»z : set β ordsucc (SNoLev z ) ) ) )
L3794 Hypothesis H6 : (βz : set , z β Repl (SNoL x ) (Ξ»w : set β w + y ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev x ) β z = w + y β SNo w β SNoLev w β SNoLev x β w < x β p (w + y ) ) β p z ) )
L3795 Hypothesis H7 : (βz : set , z β Repl (SNoL y ) (add_SNo x ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev y ) β z = x + w β SNo w β SNoLev w β SNoLev y β w < y β p (x + w ) ) β p z ) )
L3796 Hypothesis H8 : (βz : set , z β Repl (SNoR x ) (Ξ»w : set β w + y ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev x ) β z = w + y β SNo w β SNoLev w β SNoLev x β x < w β p (w + y ) ) β p z ) )
L3797 Hypothesis H9 : (βz : set , z β Repl (SNoR y ) (add_SNo x ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev y ) β z = x + w β SNo w β SNoLev w β SNoLev y β y < w β p (x + w ) ) β p z ) )
L3798 Hypothesis H10 : (βz : set , z β Repl (SNoL x ) (Ξ»w : set β w + y ) β SNo z )
L3799 Hypothesis H11 : (βz : set , z β Repl (SNoL y ) (add_SNo x ) β SNo z )
L3800 Theorem. (
Conj_add_SNo_Lev_bd__29__4 )
(βz : set , z β Repl (SNoR x ) (Ξ»w : set β w + y ) β SNo z ) β Subq (SNoLev (SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) ) ) (SNoLev x + SNoLev y )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__29__4
Beginning of Section Conj_add_SNo_Lev_bd__29__5
L3808 Hypothesis H0 : SNo x
L3809 Hypothesis H1 : SNo y
L3810 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3811 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev x ) β Subq (SNoLev (z + y ) ) (SNoLev z + SNoLev y ) )
L3812 Hypothesis H4 : (βz : set , z β SNoS_ (SNoLev y ) β Subq (SNoLev (x + z ) ) (SNoLev x + SNoLev z ) )
L3813 Hypothesis H6 : (βz : set , z β Repl (SNoL x ) (Ξ»w : set β w + y ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev x ) β z = w + y β SNo w β SNoLev w β SNoLev x β w < x β p (w + y ) ) β p z ) )
L3814 Hypothesis H7 : (βz : set , z β Repl (SNoL y ) (add_SNo x ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev y ) β z = x + w β SNo w β SNoLev w β SNoLev y β w < y β p (x + w ) ) β p z ) )
L3815 Hypothesis H8 : (βz : set , z β Repl (SNoR x ) (Ξ»w : set β w + y ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev x ) β z = w + y β SNo w β SNoLev w β SNoLev x β x < w β p (w + y ) ) β p z ) )
L3816 Hypothesis H9 : (βz : set , z β Repl (SNoR y ) (add_SNo x ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev y ) β z = x + w β SNo w β SNoLev w β SNoLev y β y < w β p (x + w ) ) β p z ) )
L3817 Hypothesis H10 : (βz : set , z β Repl (SNoL x ) (Ξ»w : set β w + y ) β SNo z )
L3818 Hypothesis H11 : (βz : set , z β Repl (SNoL y ) (add_SNo x ) β SNo z )
L3819 Theorem. (
Conj_add_SNo_Lev_bd__29__5 )
(βz : set , z β Repl (SNoR x ) (Ξ»w : set β w + y ) β SNo z ) β Subq (SNoLev (SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) ) ) (SNoLev x + SNoLev y )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__29__5
Beginning of Section Conj_add_SNo_Lev_bd__34__6
L3827 Hypothesis H0 : SNo x
L3828 Hypothesis H1 : SNo y
L3829 Hypothesis H2 : ordinal (SNoLev x + SNoLev y )
L3830 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev x ) β Subq (SNoLev (z + y ) ) (SNoLev z + SNoLev y ) )
L3831 Hypothesis H4 : (βz : set , z β SNoS_ (SNoLev y ) β Subq (SNoLev (x + z ) ) (SNoLev x + SNoLev z ) )
L3832 Hypothesis H5 : SNoLev (SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) ) β ordsucc (binunion (famunion (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (Ξ»z : set β ordsucc (SNoLev z ) ) ) (famunion (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) (Ξ»z : set β ordsucc (SNoLev z ) ) ) )
L3833 Theorem. (
Conj_add_SNo_Lev_bd__34__6 )
(βz : set , z β Repl (SNoL y ) (add_SNo x ) β (βp : set β prop , (βw : set , w β SNoS_ (SNoLev y ) β z = x + w β SNo w β SNoLev w β SNoLev y β w < y β p (x + w ) ) β p z ) ) β Subq (SNoLev (SNoCut (binunion (Repl (SNoL x ) (Ξ»z : set β z + y ) ) (Repl (SNoL y ) (add_SNo x ) ) ) (binunion (Repl (SNoR x ) (Ξ»z : set β z + y ) ) (Repl (SNoR y ) (add_SNo x ) ) ) ) ) (SNoLev x + SNoLev y )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__34__6
Beginning of Section Conj_add_SNo_Lev_bd__38__0
L3841 Hypothesis H1 : SNo y
L3842 Theorem. (
Conj_add_SNo_Lev_bd__38__0 )
SNo (x + y ) β (βz : set , z β SNoS_ (SNoLev x ) β Subq (SNoLev (z + y ) ) (SNoLev z + SNoLev y ) ) β (βz : set , z β SNoS_ (SNoLev y ) β Subq (SNoLev (x + z ) ) (SNoLev x + SNoLev z ) ) β (βz : set , z β SNoS_ (SNoLev x ) β (βw : set , w β SNoS_ (SNoLev y ) β Subq (SNoLev (z + w ) ) (SNoLev z + SNoLev w ) ) ) β Subq (SNoLev (x + y ) ) (SNoLev x + SNoLev y )
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lev_bd__38__0
Beginning of Section Conj_add_SNo_SNoS_omega__1__2
L3850 Hypothesis H0 : SNoLev x β Ο
L3851 Hypothesis H1 : SNo x
L3852 Hypothesis H3 : SNo y
L3853
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_SNoS_omega__1__2
Beginning of Section Conj_add_SNo_minus_Lt_lem__2__6
L3865 Hypothesis H0 : SNo x
L3866 Hypothesis H1 : SNo y
L3867 Hypothesis H2 : SNo z
L3868 Hypothesis H3 : SNo w
L3869 Hypothesis H4 : SNo u
L3870 Hypothesis H5 : SNo v
L3871 Hypothesis H7 : SNo (- z )
L3872 Hypothesis H8 : SNo (- v )
L3873
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_minus_Lt_lem__2__6
Beginning of Section Conj_add_SNo_Lt_subprop3c__2__3
L3885 Hypothesis H0 : SNo x
L3886 Hypothesis H1 : SNo y
L3887 Hypothesis H2 : SNo z
L3888 Hypothesis H4 : SNo u
L3889 Hypothesis H5 : SNo v
L3890 Hypothesis H6 : (y + v ) < u
L3891 Hypothesis H7 : (x + z ) < v + w
L3892
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lt_subprop3c__2__3
Beginning of Section Conj_add_SNo_Lt_subprop3c__2__7
L3904 Hypothesis H0 : SNo x
L3905 Hypothesis H1 : SNo y
L3906 Hypothesis H2 : SNo z
L3907 Hypothesis H3 : SNo w
L3908 Hypothesis H4 : SNo u
L3909 Hypothesis H5 : SNo v
L3910 Hypothesis H6 : (y + v ) < u
L3911
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lt_subprop3c__2__7
Beginning of Section Conj_add_SNo_Lt_subprop3c__3__0
L3925 Hypothesis H1 : SNo y
L3926 Hypothesis H2 : SNo z
L3927 Hypothesis H3 : SNo w
L3928 Hypothesis H4 : SNo u
L3929 Hypothesis H5 : SNo v
L3930 Hypothesis H6 : SNo x2
L3931 Hypothesis H7 : SNo y2
L3932 Hypothesis H8 : (x + v ) < x2 + y2
L3933 Hypothesis H9 : (y + y2 ) < u
L3934 Hypothesis H10 : (x2 + z ) < w + v
L3935
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lt_subprop3c__3__0
Beginning of Section Conj_add_SNo_Lt_subprop3c__3__6
L3949 Hypothesis H0 : SNo x
L3950 Hypothesis H1 : SNo y
L3951 Hypothesis H2 : SNo z
L3952 Hypothesis H3 : SNo w
L3953 Hypothesis H4 : SNo u
L3954 Hypothesis H5 : SNo v
L3955 Hypothesis H7 : SNo y2
L3956 Hypothesis H8 : (x + v ) < x2 + y2
L3957 Hypothesis H9 : (y + y2 ) < u
L3958 Hypothesis H10 : (x2 + z ) < w + v
L3959
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lt_subprop3c__3__6
Beginning of Section Conj_add_SNo_Lt_subprop3d__2__4
L3971 Hypothesis H0 : SNo x
L3972 Hypothesis H1 : SNo y
L3973 Hypothesis H2 : SNo z
L3974 Hypothesis H3 : SNo w
L3975 Hypothesis H5 : SNo v
L3976 Hypothesis H6 : (x + u ) < v + w
L3977
Proof: Load proof Proof not loaded.
End of Section Conj_add_SNo_Lt_subprop3d__2__4
Beginning of Section Conj_mul_SNo_eq__1__0
L3985 Variable g : (set β (set β set ) )
L3986 Variable h : (set β (set β set ) )
L3989 Hypothesis H1 : z β SNoS_ (SNoLev x )
L3990 Hypothesis H2 : SNo w
L3991 Hypothesis H3 : g z y = h z y
L3992 Hypothesis H4 : g x w = h x w
L3993
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__1__0
Beginning of Section Conj_mul_SNo_eq__1__1
L4001 Variable g : (set β (set β set ) )
L4002 Variable h : (set β (set β set ) )
L4005 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4006 Hypothesis H2 : SNo w
L4007 Hypothesis H3 : g z y = h z y
L4008 Hypothesis H4 : g x w = h x w
L4009
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__1__1
Beginning of Section Conj_mul_SNo_eq__1__2
L4017 Variable g : (set β (set β set ) )
L4018 Variable h : (set β (set β set ) )
L4021 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4022 Hypothesis H1 : z β SNoS_ (SNoLev x )
L4023 Hypothesis H3 : g z y = h z y
L4024 Hypothesis H4 : g x w = h x w
L4025
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__1__2
Beginning of Section Conj_mul_SNo_eq__2__3
L4033 Variable g : (set β (set β set ) )
L4034 Variable h : (set β (set β set ) )
L4037 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4038 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4039 Hypothesis H2 : z β SNoS_ (SNoLev x )
L4040 Hypothesis H4 : SNo w
L4041 Hypothesis H5 : g z y = h z y
L4042
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__2__3
Beginning of Section Conj_mul_SNo_eq__3__3
L4050 Variable g : (set β (set β set ) )
L4051 Variable h : (set β (set β set ) )
L4054 Hypothesis H0 : SNo y
L4055 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4056 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4057 Hypothesis H4 : w β SNoS_ (SNoLev y )
L4058 Hypothesis H5 : SNo w
L4059
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__3__3
Beginning of Section Conj_mul_SNo_eq__3__4
L4067 Variable g : (set β (set β set ) )
L4068 Variable h : (set β (set β set ) )
L4071 Hypothesis H0 : SNo y
L4072 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4073 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4074 Hypothesis H3 : z β SNoS_ (SNoLev x )
L4075 Hypothesis H5 : SNo w
L4076
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__3__4
Beginning of Section Conj_mul_SNo_eq__4__1
L4084 Variable g : (set β (set β set ) )
L4085 Variable h : (set β (set β set ) )
L4088 Hypothesis H0 : SNo y
L4089 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4090 Hypothesis H3 : w β SNoL y
L4091 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4092 Hypothesis H5 : w β SNoS_ (SNoLev y )
L4093
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__4__1
Beginning of Section Conj_mul_SNo_eq__4__3
L4101 Variable g : (set β (set β set ) )
L4102 Variable h : (set β (set β set ) )
L4105 Hypothesis H0 : SNo y
L4106 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4107 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4108 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4109 Hypothesis H5 : w β SNoS_ (SNoLev y )
L4110
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__4__3
Beginning of Section Conj_mul_SNo_eq__5__1
L4118 Variable g : (set β (set β set ) )
L4119 Variable h : (set β (set β set ) )
L4122 Hypothesis H0 : SNo y
L4123 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4124 Hypothesis H3 : w β SNoL y
L4125 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4126
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__5__1
Beginning of Section Conj_mul_SNo_eq__6__0
L4134 Variable g : (set β (set β set ) )
L4135 Variable h : (set β (set β set ) )
L4138 Hypothesis H1 : SNo y
L4139 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4140 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4141 Hypothesis H4 : z β SNoL x
L4142 Hypothesis H5 : w β SNoL y
L4143
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__6__0
Beginning of Section Conj_mul_SNo_eq__7__0
L4151 Variable g : (set β (set β set ) )
L4152 Variable h : (set β (set β set ) )
L4155 Hypothesis H1 : z β SNoS_ (SNoLev x )
L4156 Hypothesis H2 : SNo w
L4157 Hypothesis H3 : g z y = h z y
L4158 Hypothesis H4 : g x w = h x w
L4159
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__7__0
Beginning of Section Conj_mul_SNo_eq__7__1
L4167 Variable g : (set β (set β set ) )
L4168 Variable h : (set β (set β set ) )
L4171 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4172 Hypothesis H2 : SNo w
L4173 Hypothesis H3 : g z y = h z y
L4174 Hypothesis H4 : g x w = h x w
L4175
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__7__1
Beginning of Section Conj_mul_SNo_eq__7__2
L4183 Variable g : (set β (set β set ) )
L4184 Variable h : (set β (set β set ) )
L4187 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4188 Hypothesis H1 : z β SNoS_ (SNoLev x )
L4189 Hypothesis H3 : g z y = h z y
L4190 Hypothesis H4 : g x w = h x w
L4191
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__7__2
Beginning of Section Conj_mul_SNo_eq__8__3
L4199 Variable g : (set β (set β set ) )
L4200 Variable h : (set β (set β set ) )
L4203 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4204 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4205 Hypothesis H2 : z β SNoS_ (SNoLev x )
L4206 Hypothesis H4 : SNo w
L4207 Hypothesis H5 : g z y = h z y
L4208
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__8__3
Beginning of Section Conj_mul_SNo_eq__9__3
L4216 Variable g : (set β (set β set ) )
L4217 Variable h : (set β (set β set ) )
L4220 Hypothesis H0 : SNo y
L4221 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4222 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4223 Hypothesis H4 : w β SNoS_ (SNoLev y )
L4224 Hypothesis H5 : SNo w
L4225
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__9__3
Beginning of Section Conj_mul_SNo_eq__9__4
L4233 Variable g : (set β (set β set ) )
L4234 Variable h : (set β (set β set ) )
L4237 Hypothesis H0 : SNo y
L4238 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4239 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4240 Hypothesis H3 : z β SNoS_ (SNoLev x )
L4241 Hypothesis H5 : SNo w
L4242
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__9__4
Beginning of Section Conj_mul_SNo_eq__10__1
L4250 Variable g : (set β (set β set ) )
L4251 Variable h : (set β (set β set ) )
L4254 Hypothesis H0 : SNo y
L4255 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4256 Hypothesis H3 : w β SNoR y
L4257 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4258 Hypothesis H5 : w β SNoS_ (SNoLev y )
L4259
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__10__1
Beginning of Section Conj_mul_SNo_eq__10__3
L4267 Variable g : (set β (set β set ) )
L4268 Variable h : (set β (set β set ) )
L4271 Hypothesis H0 : SNo y
L4272 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4273 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4274 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4275 Hypothesis H5 : w β SNoS_ (SNoLev y )
L4276
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__10__3
Beginning of Section Conj_mul_SNo_eq__12__4
L4284 Variable g : (set β (set β set ) )
L4285 Variable h : (set β (set β set ) )
L4288 Hypothesis H0 : SNo x
L4289 Hypothesis H1 : SNo y
L4290 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4291 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4292 Hypothesis H5 : w β SNoR y
L4293
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__12__4
Beginning of Section Conj_mul_SNo_eq__13__0
L4301 Variable g : (set β (set β set ) )
L4302 Variable h : (set β (set β set ) )
L4305 Hypothesis H1 : z β SNoS_ (SNoLev x )
L4306 Hypothesis H2 : SNo w
L4307 Hypothesis H3 : g z y = h z y
L4308 Hypothesis H4 : g x w = h x w
L4309
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__13__0
Beginning of Section Conj_mul_SNo_eq__13__1
L4317 Variable g : (set β (set β set ) )
L4318 Variable h : (set β (set β set ) )
L4321 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4322 Hypothesis H2 : SNo w
L4323 Hypothesis H3 : g z y = h z y
L4324 Hypothesis H4 : g x w = h x w
L4325
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__13__1
Beginning of Section Conj_mul_SNo_eq__13__2
L4333 Variable g : (set β (set β set ) )
L4334 Variable h : (set β (set β set ) )
L4337 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4338 Hypothesis H1 : z β SNoS_ (SNoLev x )
L4339 Hypothesis H3 : g z y = h z y
L4340 Hypothesis H4 : g x w = h x w
L4341
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__13__2
Beginning of Section Conj_mul_SNo_eq__14__3
L4349 Variable g : (set β (set β set ) )
L4350 Variable h : (set β (set β set ) )
L4353 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4354 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4355 Hypothesis H2 : z β SNoS_ (SNoLev x )
L4356 Hypothesis H4 : SNo w
L4357 Hypothesis H5 : g z y = h z y
L4358
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__14__3
Beginning of Section Conj_mul_SNo_eq__15__3
L4366 Variable g : (set β (set β set ) )
L4367 Variable h : (set β (set β set ) )
L4370 Hypothesis H0 : SNo y
L4371 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4372 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4373 Hypothesis H4 : w β SNoS_ (SNoLev y )
L4374 Hypothesis H5 : SNo w
L4375
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__15__3
Beginning of Section Conj_mul_SNo_eq__15__4
L4383 Variable g : (set β (set β set ) )
L4384 Variable h : (set β (set β set ) )
L4387 Hypothesis H0 : SNo y
L4388 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4389 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4390 Hypothesis H3 : z β SNoS_ (SNoLev x )
L4391 Hypothesis H5 : SNo w
L4392
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__15__4
Beginning of Section Conj_mul_SNo_eq__16__1
L4400 Variable g : (set β (set β set ) )
L4401 Variable h : (set β (set β set ) )
L4404 Hypothesis H0 : SNo y
L4405 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4406 Hypothesis H3 : w β SNoR y
L4407 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4408 Hypothesis H5 : w β SNoS_ (SNoLev y )
L4409
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__16__1
Beginning of Section Conj_mul_SNo_eq__16__3
L4417 Variable g : (set β (set β set ) )
L4418 Variable h : (set β (set β set ) )
L4421 Hypothesis H0 : SNo y
L4422 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4423 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4424 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4425 Hypothesis H5 : w β SNoS_ (SNoLev y )
L4426
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__16__3
Beginning of Section Conj_mul_SNo_eq__18__4
L4434 Variable g : (set β (set β set ) )
L4435 Variable h : (set β (set β set ) )
L4438 Hypothesis H0 : SNo x
L4439 Hypothesis H1 : SNo y
L4440 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4441 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4442 Hypothesis H5 : w β SNoR y
L4443
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__18__4
Beginning of Section Conj_mul_SNo_eq__19__0
L4451 Variable g : (set β (set β set ) )
L4452 Variable h : (set β (set β set ) )
L4455 Hypothesis H1 : z β SNoS_ (SNoLev x )
L4456 Hypothesis H2 : SNo w
L4457 Hypothesis H3 : g z y = h z y
L4458 Hypothesis H4 : g x w = h x w
L4459
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__19__0
Beginning of Section Conj_mul_SNo_eq__19__1
L4467 Variable g : (set β (set β set ) )
L4468 Variable h : (set β (set β set ) )
L4471 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4472 Hypothesis H2 : SNo w
L4473 Hypothesis H3 : g z y = h z y
L4474 Hypothesis H4 : g x w = h x w
L4475
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__19__1
Beginning of Section Conj_mul_SNo_eq__19__2
L4483 Variable g : (set β (set β set ) )
L4484 Variable h : (set β (set β set ) )
L4487 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4488 Hypothesis H1 : z β SNoS_ (SNoLev x )
L4489 Hypothesis H3 : g z y = h z y
L4490 Hypothesis H4 : g x w = h x w
L4491
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__19__2
Beginning of Section Conj_mul_SNo_eq__20__3
L4499 Variable g : (set β (set β set ) )
L4500 Variable h : (set β (set β set ) )
L4503 Hypothesis H0 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4504 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4505 Hypothesis H2 : z β SNoS_ (SNoLev x )
L4506 Hypothesis H4 : SNo w
L4507 Hypothesis H5 : g z y = h z y
L4508
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__20__3
Beginning of Section Conj_mul_SNo_eq__21__3
L4516 Variable g : (set β (set β set ) )
L4517 Variable h : (set β (set β set ) )
L4520 Hypothesis H0 : SNo y
L4521 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4522 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4523 Hypothesis H4 : w β SNoS_ (SNoLev y )
L4524 Hypothesis H5 : SNo w
L4525
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__21__3
Beginning of Section Conj_mul_SNo_eq__21__4
L4533 Variable g : (set β (set β set ) )
L4534 Variable h : (set β (set β set ) )
L4537 Hypothesis H0 : SNo y
L4538 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4539 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4540 Hypothesis H3 : z β SNoS_ (SNoLev x )
L4541 Hypothesis H5 : SNo w
L4542
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__21__4
Beginning of Section Conj_mul_SNo_eq__22__1
L4550 Variable g : (set β (set β set ) )
L4551 Variable h : (set β (set β set ) )
L4554 Hypothesis H0 : SNo y
L4555 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4556 Hypothesis H3 : w β SNoL y
L4557 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4558 Hypothesis H5 : w β SNoS_ (SNoLev y )
L4559
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__22__1
Beginning of Section Conj_mul_SNo_eq__22__3
L4567 Variable g : (set β (set β set ) )
L4568 Variable h : (set β (set β set ) )
L4571 Hypothesis H0 : SNo y
L4572 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4573 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4574 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4575 Hypothesis H5 : w β SNoS_ (SNoLev y )
L4576
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__22__3
Beginning of Section Conj_mul_SNo_eq__23__1
L4584 Variable g : (set β (set β set ) )
L4585 Variable h : (set β (set β set ) )
L4588 Hypothesis H0 : SNo y
L4589 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev y ) β g x u = h x u )
L4590 Hypothesis H3 : w β SNoL y
L4591 Hypothesis H4 : z β SNoS_ (SNoLev x )
L4592
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__23__1
Beginning of Section Conj_mul_SNo_eq__24__3
L4600 Variable g : (set β (set β set ) )
L4601 Variable h : (set β (set β set ) )
L4604 Hypothesis H0 : SNo x
L4605 Hypothesis H1 : SNo y
L4606 Hypothesis H2 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β g u v = h u v ) )
L4607 Hypothesis H4 : z β SNoR x
L4608 Hypothesis H5 : w β SNoL y
L4609
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__24__3
Beginning of Section Conj_mul_SNo_eq__25__0
L4617 Variable g : (set β (set β set ) )
L4618 Variable h : (set β (set β set ) )
L4619 Hypothesis H1 : SNo y
L4620 Hypothesis H2 : (βz : set , z β SNoS_ (SNoLev x ) β (βw : set , SNo w β g z w = h z w ) )
L4621 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev y ) β g x z = h x z )
L4622 Hypothesis H4 : Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4623 Hypothesis H5 : Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4624 Hypothesis H6 : Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4625 Theorem. (
Conj_mul_SNo_eq__25__0 )
Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) β SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) = SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__25__0
Beginning of Section Conj_mul_SNo_eq__25__3
L4633 Variable g : (set β (set β set ) )
L4634 Variable h : (set β (set β set ) )
L4635 Hypothesis H0 : SNo x
L4636 Hypothesis H1 : SNo y
L4637 Hypothesis H2 : (βz : set , z β SNoS_ (SNoLev x ) β (βw : set , SNo w β g z w = h z w ) )
L4638 Hypothesis H4 : Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4639 Hypothesis H5 : Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4640 Hypothesis H6 : Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4641 Theorem. (
Conj_mul_SNo_eq__25__3 )
Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) β SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) = SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__25__3
Beginning of Section Conj_mul_SNo_eq__25__4
L4649 Variable g : (set β (set β set ) )
L4650 Variable h : (set β (set β set ) )
L4651 Hypothesis H0 : SNo x
L4652 Hypothesis H1 : SNo y
L4653 Hypothesis H2 : (βz : set , z β SNoS_ (SNoLev x ) β (βw : set , SNo w β g z w = h z w ) )
L4654 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev y ) β g x z = h x z )
L4655 Hypothesis H5 : Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4656 Hypothesis H6 : Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4657 Theorem. (
Conj_mul_SNo_eq__25__4 )
Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) β SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) = SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__25__4
Beginning of Section Conj_mul_SNo_eq__26__3
L4665 Variable g : (set β (set β set ) )
L4666 Variable h : (set β (set β set ) )
L4667 Hypothesis H0 : SNo x
L4668 Hypothesis H1 : SNo y
L4669 Hypothesis H2 : (βz : set , z β SNoS_ (SNoLev x ) β (βw : set , SNo w β g z w = h z w ) )
L4670 Hypothesis H4 : Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4671 Hypothesis H5 : Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4672 Theorem. (
Conj_mul_SNo_eq__26__3 )
Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) β SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) = SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__26__3
Beginning of Section Conj_mul_SNo_eq__27__2
L4680 Variable g : (set β (set β set ) )
L4681 Variable h : (set β (set β set ) )
L4682 Hypothesis H0 : SNo x
L4683 Hypothesis H1 : SNo y
L4684 Hypothesis H3 : (βz : set , z β SNoS_ (SNoLev y ) β g x z = h x z )
L4685 Hypothesis H4 : Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) )
L4686 Theorem. (
Conj_mul_SNo_eq__27__2 )
Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) = Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) β SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β g (ap z Empty ) y + g x (ap z (ordsucc Empty ) ) + - (g (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) = SNoCut (binunion (Repl (setprod (SNoL x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) ) (binunion (Repl (setprod (SNoL x ) (SNoR y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) (Repl (setprod (SNoR x ) (SNoL y ) ) (Ξ»z : set β h (ap z Empty ) y + h x (ap z (ordsucc Empty ) ) + - (h (ap z Empty ) (ap z (ordsucc Empty ) ) ) ) ) )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq__27__2
Beginning of Section Conj_mul_SNo_prop_1__2__0
L4698 Hypothesis H1 : SNo (w * v )
L4699 Hypothesis H2 : SNo (z * y )
L4700 Hypothesis H3 : SNo (x * u )
L4701 Hypothesis H4 : SNo (w * y )
L4702 Hypothesis H5 : SNo (x * v )
L4703 Hypothesis H6 : (z * y + x * u + w * v ) < w * y + x * v + z * u
L4704 Theorem. (
Conj_mul_SNo_prop_1__2__0 )
(z * y + x * u + - (z * u ) ) + z * u + w * v = z * y + x * u + w * v β ((z * y + x * u + - (z * u ) ) + z * u + w * v ) < (w * y + x * v + - (w * v ) ) + z * u + w * v
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__2__0
Beginning of Section Conj_mul_SNo_prop_1__3__6
L4718 Hypothesis H0 : (βz2 : set , z2 β SNoS_ (SNoLev x ) β (βw2 : set , SNo w2 β (βP : prop , (SNo (z2 * w2 ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoL w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoR w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoR w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoL w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β P ) β P ) ) )
L4719 Hypothesis H1 : v β SNoS_ (SNoLev x )
L4720 Hypothesis H2 : SNo x2
L4721 Hypothesis H3 : SNo (u * x2 )
L4722 Hypothesis H4 : SNo (v * y2 )
L4723 Hypothesis H5 : SNo (u * y )
L4724 Hypothesis H7 : SNo (v * y )
L4725 Hypothesis H8 : SNo (x * y2 )
L4726 Hypothesis H9 : SNo (u * y2 )
L4727 Theorem. (
Conj_mul_SNo_prop_1__3__6 )
SNo (v * x2 ) β (βP : prop , (SNo (u * y ) β SNo (x * x2 ) β SNo (u * x2 ) β SNo (v * y ) β SNo (x * y2 ) β SNo (v * y2 ) β SNo (u * y2 ) β SNo (v * x2 ) β (z = u * y + x * x2 + - (u * x2 ) β w = v * y + x * y2 + - (v * y2 ) β (u * y + x * x2 + v * y2 ) < v * y + x * y2 + u * x2 β z < w ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__3__6
Beginning of Section Conj_mul_SNo_prop_1__6__1
L4741 Hypothesis H0 : (βz2 : set , z2 β SNoS_ (SNoLev x ) β (βw2 : set , SNo w2 β (βP : prop , (SNo (z2 * w2 ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoL w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoR w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoR w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoL w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β P ) β P ) ) )
L4742 Hypothesis H2 : (βz2 : set , z2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * z2 ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoR z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoL z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β P ) β P ) )
L4743 Hypothesis H3 : u β SNoS_ (SNoLev x )
L4744 Hypothesis H4 : v β SNoS_ (SNoLev x )
L4745 Hypothesis H5 : y2 β SNoS_ (SNoLev y )
L4746 Hypothesis H6 : SNo x2
L4747 Hypothesis H7 : SNo y2
L4748 Hypothesis H8 : SNo (u * x2 )
L4749 Hypothesis H9 : SNo (v * y2 )
L4750 Hypothesis H10 : SNo (u * y )
L4751 Hypothesis H11 : SNo (x * x2 )
L4752 Theorem. (
Conj_mul_SNo_prop_1__6__1 )
SNo (v * y ) β (βP : prop , (SNo (u * y ) β SNo (x * x2 ) β SNo (u * x2 ) β SNo (v * y ) β SNo (x * y2 ) β SNo (v * y2 ) β SNo (u * y2 ) β SNo (v * x2 ) β (z = u * y + x * x2 + - (u * x2 ) β w = v * y + x * y2 + - (v * y2 ) β (u * y + x * x2 + v * y2 ) < v * y + x * y2 + u * x2 β z < w ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__6__1
Beginning of Section Conj_mul_SNo_prop_1__7__11
L4766 Hypothesis H0 : (βz2 : set , z2 β SNoS_ (SNoLev x ) β (βw2 : set , SNo w2 β (βP : prop , (SNo (z2 * w2 ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoL w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoR w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoR w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoL w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β P ) β P ) ) )
L4767 Hypothesis H1 : SNo y
L4768 Hypothesis H2 : (βz2 : set , z2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * z2 ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoR z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoL z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β P ) β P ) )
L4769 Hypothesis H3 : u β SNoS_ (SNoLev x )
L4770 Hypothesis H4 : v β SNoS_ (SNoLev x )
L4771 Hypothesis H5 : x2 β SNoS_ (SNoLev y )
L4772 Hypothesis H6 : y2 β SNoS_ (SNoLev y )
L4773 Hypothesis H7 : SNo x2
L4774 Hypothesis H8 : SNo y2
L4775 Hypothesis H9 : SNo (u * x2 )
L4776 Hypothesis H10 : SNo (v * y2 )
L4777 Theorem. (
Conj_mul_SNo_prop_1__7__11 )
SNo (x * x2 ) β (βP : prop , (SNo (u * y ) β SNo (x * x2 ) β SNo (u * x2 ) β SNo (v * y ) β SNo (x * y2 ) β SNo (v * y2 ) β SNo (u * y2 ) β SNo (v * x2 ) β (z = u * y + x * x2 + - (u * x2 ) β w = v * y + x * y2 + - (v * y2 ) β (u * y + x * x2 + v * y2 ) < v * y + x * y2 + u * x2 β z < w ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__7__11
Beginning of Section Conj_mul_SNo_prop_1__8__5
L4791 Hypothesis H0 : (βz2 : set , z2 β SNoS_ (SNoLev x ) β (βw2 : set , SNo w2 β (βP : prop , (SNo (z2 * w2 ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoL w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoR w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoR w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoL w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β P ) β P ) ) )
L4792 Hypothesis H1 : SNo y
L4793 Hypothesis H2 : (βz2 : set , z2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * z2 ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoR z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoL z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β P ) β P ) )
L4794 Hypothesis H3 : u β SNoS_ (SNoLev x )
L4795 Hypothesis H4 : v β SNoS_ (SNoLev x )
L4796 Hypothesis H6 : y2 β SNoS_ (SNoLev y )
L4797 Hypothesis H7 : SNo x2
L4798 Hypothesis H8 : SNo y2
L4799 Hypothesis H9 : SNo (u * x2 )
L4800 Hypothesis H10 : SNo (v * y2 )
L4801 Theorem. (
Conj_mul_SNo_prop_1__8__5 )
SNo (u * y ) β (βP : prop , (SNo (u * y ) β SNo (x * x2 ) β SNo (u * x2 ) β SNo (v * y ) β SNo (x * y2 ) β SNo (v * y2 ) β SNo (u * y2 ) β SNo (v * x2 ) β (z = u * y + x * x2 + - (u * x2 ) β w = v * y + x * y2 + - (v * y2 ) β (u * y + x * x2 + v * y2 ) < v * y + x * y2 + u * x2 β z < w ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__8__5
Beginning of Section Conj_mul_SNo_prop_1__9__1
L4815 Hypothesis H0 : (βz2 : set , z2 β SNoS_ (SNoLev x ) β (βw2 : set , SNo w2 β (βP : prop , (SNo (z2 * w2 ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoL w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoR w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoR w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoL w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β P ) β P ) ) )
L4816 Hypothesis H2 : (βz2 : set , z2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * z2 ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoR z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoL z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β P ) β P ) )
L4817 Hypothesis H3 : u β SNoS_ (SNoLev x )
L4818 Hypothesis H4 : v β SNoS_ (SNoLev x )
L4819 Hypothesis H5 : x2 β SNoS_ (SNoLev y )
L4820 Hypothesis H6 : y2 β SNoS_ (SNoLev y )
L4821 Hypothesis H7 : SNo x2
L4822 Hypothesis H8 : SNo y2
L4823 Hypothesis H9 : SNo (u * x2 )
L4824 Theorem. (
Conj_mul_SNo_prop_1__9__1 )
SNo (v * y2 ) β (βP : prop , (SNo (u * y ) β SNo (x * x2 ) β SNo (u * x2 ) β SNo (v * y ) β SNo (x * y2 ) β SNo (v * y2 ) β SNo (u * y2 ) β SNo (v * x2 ) β (z = u * y + x * x2 + - (u * x2 ) β w = v * y + x * y2 + - (v * y2 ) β (u * y + x * x2 + v * y2 ) < v * y + x * y2 + u * x2 β z < w ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__9__1
Beginning of Section Conj_mul_SNo_prop_1__9__6
L4838 Hypothesis H0 : (βz2 : set , z2 β SNoS_ (SNoLev x ) β (βw2 : set , SNo w2 β (βP : prop , (SNo (z2 * w2 ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoL w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoR w2 β (u2 * w2 + z2 * v2 ) < z2 * w2 + u2 * v2 ) ) β (βu2 : set , u2 β SNoL z2 β (βv2 : set , v2 β SNoR w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β (βu2 : set , u2 β SNoR z2 β (βv2 : set , v2 β SNoL w2 β (z2 * w2 + u2 * v2 ) < u2 * w2 + z2 * v2 ) ) β P ) β P ) ) )
L4839 Hypothesis H1 : SNo y
L4840 Hypothesis H2 : (βz2 : set , z2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * z2 ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + x * u2 ) < x * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL x β (βu2 : set , u2 β SNoR z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β (βw2 : set , w2 β SNoR x β (βu2 : set , u2 β SNoL z2 β (x * z2 + w2 * u2 ) < w2 * z2 + x * u2 ) ) β P ) β P ) )
L4841 Hypothesis H3 : u β SNoS_ (SNoLev x )
L4842 Hypothesis H4 : v β SNoS_ (SNoLev x )
L4843 Hypothesis H5 : x2 β SNoS_ (SNoLev y )
L4844 Hypothesis H7 : SNo x2
L4845 Hypothesis H8 : SNo y2
L4846 Hypothesis H9 : SNo (u * x2 )
L4847 Theorem. (
Conj_mul_SNo_prop_1__9__6 )
SNo (v * y2 ) β (βP : prop , (SNo (u * y ) β SNo (x * x2 ) β SNo (u * x2 ) β SNo (v * y ) β SNo (x * y2 ) β SNo (v * y2 ) β SNo (u * y2 ) β SNo (v * x2 ) β (z = u * y + x * x2 + - (u * x2 ) β w = v * y + x * y2 + - (v * y2 ) β (u * y + x * x2 + v * y2 ) < v * y + x * y2 + u * x2 β z < w ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__9__6
Beginning of Section Conj_mul_SNo_prop_1__13__4
L4859 Hypothesis H0 : SNo y
L4860 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L4861 Hypothesis H2 : z β SNoR y
L4862 Hypothesis H3 : w β SNoL y
L4863 Hypothesis H5 : SNo (x * w )
L4864 Hypothesis H6 : u β SNoR x
L4865 Hypothesis H7 : SNo (u * z )
L4866 Hypothesis H8 : SNo (u * w )
L4867 Hypothesis H9 : v β SNoL z
L4868 Hypothesis H10 : v β SNoR w
L4869 Hypothesis H11 : v β SNoS_ (SNoLev y )
L4870 Hypothesis H12 : SNo (u * v )
L4871
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__13__4
Beginning of Section Conj_mul_SNo_prop_1__13__5
L4883 Hypothesis H0 : SNo y
L4884 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L4885 Hypothesis H2 : z β SNoR y
L4886 Hypothesis H3 : w β SNoL y
L4887 Hypothesis H4 : SNo (x * z )
L4888 Hypothesis H6 : u β SNoR x
L4889 Hypothesis H7 : SNo (u * z )
L4890 Hypothesis H8 : SNo (u * w )
L4891 Hypothesis H9 : v β SNoL z
L4892 Hypothesis H10 : v β SNoR w
L4893 Hypothesis H11 : v β SNoS_ (SNoLev y )
L4894 Hypothesis H12 : SNo (u * v )
L4895
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__13__5
Beginning of Section Conj_mul_SNo_prop_1__17__11
L4906 Hypothesis H0 : SNo y
L4907 Hypothesis H1 : (βv : set , v β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * v ) β (βx2 : set , x2 β SNoL x β (βy2 : set , y2 β SNoL v β (x2 * v + x * y2 ) < x * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoR x β (βy2 : set , y2 β SNoR v β (x2 * v + x * y2 ) < x * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoL x β (βy2 : set , y2 β SNoR v β (x * v + x2 * y2 ) < x2 * v + x * y2 ) ) β (βx2 : set , x2 β SNoR x β (βy2 : set , y2 β SNoL v β (x * v + x2 * y2 ) < x2 * v + x * y2 ) ) β P ) β P ) )
L4908 Hypothesis H2 : (βv : set , v β SNoR x β (βx2 : set , SNo x2 β SNo (v * x2 ) ) )
L4909 Hypothesis H3 : z β SNoR y
L4910 Hypothesis H4 : SNo z
L4911 Hypothesis H5 : SNoLev z β SNoLev y
L4912 Hypothesis H6 : w β SNoL y
L4913 Hypothesis H7 : SNo w
L4914 Hypothesis H8 : SNo (x * z )
L4915 Hypothesis H9 : SNo (x * w )
L4916 Hypothesis H10 : w < z
L4917
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__17__11
Beginning of Section Conj_mul_SNo_prop_1__18__5
L4930 Hypothesis H0 : SNo x
L4931 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L4932 Hypothesis H2 : SNo y
L4933 Hypothesis H3 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L4934 Hypothesis H4 : (βy2 : set , y2 β SNoR x β SNo (y2 * y ) )
L4935 Hypothesis H6 : v β SNoL y
L4936 Hypothesis H7 : SNo v
L4937 Hypothesis H8 : SNo (z * y )
L4938 Hypothesis H9 : SNo (x * w )
L4939 Hypothesis H10 : SNo (z * w )
L4940 Hypothesis H11 : SNo (u * y )
L4941 Hypothesis H12 : SNo (x * v )
L4942 Hypothesis H13 : SNo (u * v )
L4943 Hypothesis H14 : SNo (z * v )
L4944 Hypothesis H15 : (x * w + z * v ) < z * w + x * v
L4945 Hypothesis H16 : x2 β SNoL u
L4946 Hypothesis H17 : x2 β SNoR x
L4947 Hypothesis H18 : (z * y + x2 * v ) < x2 * y + z * v
L4948
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__18__5
Beginning of Section Conj_mul_SNo_prop_1__19__5
L4961 Hypothesis H0 : SNo x
L4962 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L4963 Hypothesis H2 : SNo y
L4964 Hypothesis H3 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L4965 Hypothesis H4 : (βy2 : set , y2 β SNoR x β SNo (y2 * y ) )
L4966 Hypothesis H6 : u β SNoR x
L4967 Hypothesis H7 : v β SNoL y
L4968 Hypothesis H8 : SNo v
L4969 Hypothesis H9 : SNo (z * y )
L4970 Hypothesis H10 : SNo (x * w )
L4971 Hypothesis H11 : SNo (z * w )
L4972 Hypothesis H12 : SNo (u * y )
L4973 Hypothesis H13 : SNo (x * v )
L4974 Hypothesis H14 : SNo (u * v )
L4975 Hypothesis H15 : SNo (z * v )
L4976 Hypothesis H16 : (x * w + z * v ) < z * w + x * v
L4977 Hypothesis H17 : x2 β SNoR z
L4978 Hypothesis H18 : x2 β SNoL u
L4979 Hypothesis H19 : x2 β SNoR x
L4980
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__19__5
Beginning of Section Conj_mul_SNo_prop_1__20__0
L4993 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L4994 Hypothesis H2 : SNo y
L4995 Hypothesis H3 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L4996 Hypothesis H4 : (βy2 : set , y2 β SNoR x β SNo (y2 * y ) )
L4997 Hypothesis H5 : z β SNoR x
L4998 Hypothesis H6 : SNo z
L4999 Hypothesis H7 : SNoLev z β SNoLev x
L5000 Hypothesis H8 : x < z
L5001 Hypothesis H9 : u β SNoR x
L5002 Hypothesis H10 : v β SNoL y
L5003 Hypothesis H11 : SNo v
L5004 Hypothesis H12 : SNo (z * y )
L5005 Hypothesis H13 : SNo (x * w )
L5006 Hypothesis H14 : SNo (z * w )
L5007 Hypothesis H15 : SNo (u * y )
L5008 Hypothesis H16 : SNo (x * v )
L5009 Hypothesis H17 : SNo (u * v )
L5010 Hypothesis H18 : SNo (z * v )
L5011 Hypothesis H19 : (x * w + z * v ) < z * w + x * v
L5012 Hypothesis H20 : x2 β SNoR z
L5013 Hypothesis H21 : x2 β SNoL u
L5014 Hypothesis H22 : SNo x2
L5015 Hypothesis H23 : SNoLev x2 β SNoLev z
L5016 Hypothesis H24 : z < x2
L5017
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__20__0
Beginning of Section Conj_mul_SNo_prop_1__20__19
L5030 Hypothesis H0 : SNo x
L5031 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L5032 Hypothesis H2 : SNo y
L5033 Hypothesis H3 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L5034 Hypothesis H4 : (βy2 : set , y2 β SNoR x β SNo (y2 * y ) )
L5035 Hypothesis H5 : z β SNoR x
L5036 Hypothesis H6 : SNo z
L5037 Hypothesis H7 : SNoLev z β SNoLev x
L5038 Hypothesis H8 : x < z
L5039 Hypothesis H9 : u β SNoR x
L5040 Hypothesis H10 : v β SNoL y
L5041 Hypothesis H11 : SNo v
L5042 Hypothesis H12 : SNo (z * y )
L5043 Hypothesis H13 : SNo (x * w )
L5044 Hypothesis H14 : SNo (z * w )
L5045 Hypothesis H15 : SNo (u * y )
L5046 Hypothesis H16 : SNo (x * v )
L5047 Hypothesis H17 : SNo (u * v )
L5048 Hypothesis H18 : SNo (z * v )
L5049 Hypothesis H20 : x2 β SNoR z
L5050 Hypothesis H21 : x2 β SNoL u
L5051 Hypothesis H22 : SNo x2
L5052 Hypothesis H23 : SNoLev x2 β SNoLev z
L5053 Hypothesis H24 : z < x2
L5054
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__20__19
Beginning of Section Conj_mul_SNo_prop_1__20__24
L5067 Hypothesis H0 : SNo x
L5068 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L5069 Hypothesis H2 : SNo y
L5070 Hypothesis H3 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L5071 Hypothesis H4 : (βy2 : set , y2 β SNoR x β SNo (y2 * y ) )
L5072 Hypothesis H5 : z β SNoR x
L5073 Hypothesis H6 : SNo z
L5074 Hypothesis H7 : SNoLev z β SNoLev x
L5075 Hypothesis H8 : x < z
L5076 Hypothesis H9 : u β SNoR x
L5077 Hypothesis H10 : v β SNoL y
L5078 Hypothesis H11 : SNo v
L5079 Hypothesis H12 : SNo (z * y )
L5080 Hypothesis H13 : SNo (x * w )
L5081 Hypothesis H14 : SNo (z * w )
L5082 Hypothesis H15 : SNo (u * y )
L5083 Hypothesis H16 : SNo (x * v )
L5084 Hypothesis H17 : SNo (u * v )
L5085 Hypothesis H18 : SNo (z * v )
L5086 Hypothesis H19 : (x * w + z * v ) < z * w + x * v
L5087 Hypothesis H20 : x2 β SNoR z
L5088 Hypothesis H21 : x2 β SNoL u
L5089 Hypothesis H22 : SNo x2
L5090 Hypothesis H23 : SNoLev x2 β SNoLev z
L5091
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__20__24
Beginning of Section Conj_mul_SNo_prop_1__23__4
L5104 Hypothesis H0 : SNo x
L5105 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L5106 Hypothesis H2 : SNo y
L5107 Hypothesis H3 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L5108 Hypothesis H5 : z β SNoR x
L5109 Hypothesis H6 : w β SNoR y
L5110 Hypothesis H7 : SNo w
L5111 Hypothesis H8 : u β SNoR x
L5112 Hypothesis H9 : SNo u
L5113 Hypothesis H10 : SNoLev u β SNoLev x
L5114 Hypothesis H11 : x < u
L5115 Hypothesis H12 : SNo (z * y )
L5116 Hypothesis H13 : SNo (x * w )
L5117 Hypothesis H14 : SNo (z * w )
L5118 Hypothesis H15 : SNo (u * y )
L5119 Hypothesis H16 : SNo (x * v )
L5120 Hypothesis H17 : SNo (u * v )
L5121 Hypothesis H18 : SNo (u * w )
L5122 Hypothesis H19 : (x * w + u * v ) < u * w + x * v
L5123 Hypothesis H20 : x2 β SNoL z
L5124 Hypothesis H21 : x2 β SNoR u
L5125 Hypothesis H22 : SNo x2
L5126 Hypothesis H23 : SNoLev x2 β SNoLev u
L5127 Hypothesis H24 : u < x2
L5128
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__23__4
Beginning of Section Conj_mul_SNo_prop_1__25__24
L5140 Hypothesis H0 : SNo x
L5141 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5142 Hypothesis H2 : SNo y
L5143 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5144 Hypothesis H4 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5145 Hypothesis H5 : z β SNoR x
L5146 Hypothesis H6 : w β SNoR y
L5147 Hypothesis H7 : SNo z
L5148 Hypothesis H8 : SNoLev z β SNoLev x
L5149 Hypothesis H9 : x < z
L5150 Hypothesis H10 : SNo w
L5151 Hypothesis H11 : u β SNoR x
L5152 Hypothesis H12 : v β SNoL y
L5153 Hypothesis H13 : SNo u
L5154 Hypothesis H14 : SNoLev u β SNoLev x
L5155 Hypothesis H15 : x < u
L5156 Hypothesis H16 : SNo v
L5157 Hypothesis H17 : SNo (z * y )
L5158 Hypothesis H18 : SNo (x * w )
L5159 Hypothesis H19 : SNo (z * w )
L5160 Hypothesis H20 : SNo (u * y )
L5161 Hypothesis H21 : SNo (x * v )
L5162 Hypothesis H22 : SNo (u * v )
L5163 Hypothesis H23 : SNo (z * v )
L5164 Hypothesis H25 : (x * w + z * v ) < z * w + x * v
L5165 Hypothesis H26 : (x * w + u * v ) < u * w + x * v
L5166 Theorem. (
Conj_mul_SNo_prop_1__25__24 )
((z * y + u * v ) < u * y + z * v β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__25__24
Beginning of Section Conj_mul_SNo_prop_1__26__15
L5178 Hypothesis H0 : SNo x
L5179 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5180 Hypothesis H2 : SNo y
L5181 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5182 Hypothesis H4 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5183 Hypothesis H5 : z β SNoR x
L5184 Hypothesis H6 : w β SNoR y
L5185 Hypothesis H7 : SNo z
L5186 Hypothesis H8 : SNoLev z β SNoLev x
L5187 Hypothesis H9 : x < z
L5188 Hypothesis H10 : SNo w
L5189 Hypothesis H11 : u β SNoR x
L5190 Hypothesis H12 : v β SNoL y
L5191 Hypothesis H13 : SNo u
L5192 Hypothesis H14 : SNoLev u β SNoLev x
L5193 Hypothesis H16 : SNo v
L5194 Hypothesis H17 : SNo (z * y )
L5195 Hypothesis H18 : SNo (x * w )
L5196 Hypothesis H19 : SNo (z * w )
L5197 Hypothesis H20 : SNo (u * y )
L5198 Hypothesis H21 : SNo (x * v )
L5199 Hypothesis H22 : SNo (u * v )
L5200 Hypothesis H23 : SNo (z * v )
L5201 Hypothesis H24 : SNo (u * w )
L5202 Hypothesis H25 : (βx2 : set , x2 β SNoR x β (x * w + x2 * v ) < x2 * w + x * v )
L5203 Hypothesis H26 : (x * w + z * v ) < z * w + x * v
L5204
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__26__15
Beginning of Section Conj_mul_SNo_prop_1__27__8
L5216 Hypothesis H0 : SNo x
L5217 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5218 Hypothesis H2 : SNo y
L5219 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5220 Hypothesis H4 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5221 Hypothesis H5 : z β SNoR x
L5222 Hypothesis H6 : w β SNoR y
L5223 Hypothesis H7 : SNo z
L5224 Hypothesis H9 : x < z
L5225 Hypothesis H10 : SNo w
L5226 Hypothesis H11 : u β SNoR x
L5227 Hypothesis H12 : v β SNoL y
L5228 Hypothesis H13 : SNo u
L5229 Hypothesis H14 : SNoLev u β SNoLev x
L5230 Hypothesis H15 : x < u
L5231 Hypothesis H16 : SNo v
L5232 Hypothesis H17 : SNo (z * y )
L5233 Hypothesis H18 : SNo (x * w )
L5234 Hypothesis H19 : SNo (z * w )
L5235 Hypothesis H20 : SNo (u * y )
L5236 Hypothesis H21 : SNo (x * v )
L5237 Hypothesis H22 : SNo (u * v )
L5238 Hypothesis H23 : SNo (z * v )
L5239 Hypothesis H24 : SNo (u * w )
L5240 Hypothesis H25 : (βx2 : set , x2 β SNoR x β (x * w + x2 * v ) < x2 * w + x * v )
L5241
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__27__8
Beginning of Section Conj_mul_SNo_prop_1__28__0
L5253 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5254 Hypothesis H2 : SNo y
L5255 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5256 Hypothesis H4 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5257 Hypothesis H5 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5258 Hypothesis H6 : z β SNoR x
L5259 Hypothesis H7 : w β SNoR y
L5260 Hypothesis H8 : SNo z
L5261 Hypothesis H9 : SNoLev z β SNoLev x
L5262 Hypothesis H10 : x < z
L5263 Hypothesis H11 : SNo w
L5264 Hypothesis H12 : SNoLev w β SNoLev y
L5265 Hypothesis H13 : u β SNoR x
L5266 Hypothesis H14 : v β SNoL y
L5267 Hypothesis H15 : SNo u
L5268 Hypothesis H16 : SNoLev u β SNoLev x
L5269 Hypothesis H17 : x < u
L5270 Hypothesis H18 : SNo v
L5271 Hypothesis H19 : SNo (z * y )
L5272 Hypothesis H20 : SNo (x * w )
L5273 Hypothesis H21 : SNo (z * w )
L5274 Hypothesis H22 : SNo (u * y )
L5275 Hypothesis H23 : SNo (x * v )
L5276 Hypothesis H24 : SNo (u * v )
L5277 Hypothesis H25 : SNo (z * v )
L5278 Hypothesis H26 : SNo (u * w )
L5279 Hypothesis H27 : v < w
L5280 Theorem. (
Conj_mul_SNo_prop_1__28__0 )
(βx2 : set , x2 β SNoR x β (x * w + x2 * v ) < x2 * w + x * v ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__28__0
Beginning of Section Conj_mul_SNo_prop_1__28__13
L5292 Hypothesis H0 : SNo x
L5293 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5294 Hypothesis H2 : SNo y
L5295 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5296 Hypothesis H4 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5297 Hypothesis H5 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5298 Hypothesis H6 : z β SNoR x
L5299 Hypothesis H7 : w β SNoR y
L5300 Hypothesis H8 : SNo z
L5301 Hypothesis H9 : SNoLev z β SNoLev x
L5302 Hypothesis H10 : x < z
L5303 Hypothesis H11 : SNo w
L5304 Hypothesis H12 : SNoLev w β SNoLev y
L5305 Hypothesis H14 : v β SNoL y
L5306 Hypothesis H15 : SNo u
L5307 Hypothesis H16 : SNoLev u β SNoLev x
L5308 Hypothesis H17 : x < u
L5309 Hypothesis H18 : SNo v
L5310 Hypothesis H19 : SNo (z * y )
L5311 Hypothesis H20 : SNo (x * w )
L5312 Hypothesis H21 : SNo (z * w )
L5313 Hypothesis H22 : SNo (u * y )
L5314 Hypothesis H23 : SNo (x * v )
L5315 Hypothesis H24 : SNo (u * v )
L5316 Hypothesis H25 : SNo (z * v )
L5317 Hypothesis H26 : SNo (u * w )
L5318 Hypothesis H27 : v < w
L5319 Theorem. (
Conj_mul_SNo_prop_1__28__13 )
(βx2 : set , x2 β SNoR x β (x * w + x2 * v ) < x2 * w + x * v ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__28__13
Beginning of Section Conj_mul_SNo_prop_1__28__18
L5331 Hypothesis H0 : SNo x
L5332 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5333 Hypothesis H2 : SNo y
L5334 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5335 Hypothesis H4 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5336 Hypothesis H5 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5337 Hypothesis H6 : z β SNoR x
L5338 Hypothesis H7 : w β SNoR y
L5339 Hypothesis H8 : SNo z
L5340 Hypothesis H9 : SNoLev z β SNoLev x
L5341 Hypothesis H10 : x < z
L5342 Hypothesis H11 : SNo w
L5343 Hypothesis H12 : SNoLev w β SNoLev y
L5344 Hypothesis H13 : u β SNoR x
L5345 Hypothesis H14 : v β SNoL y
L5346 Hypothesis H15 : SNo u
L5347 Hypothesis H16 : SNoLev u β SNoLev x
L5348 Hypothesis H17 : x < u
L5349 Hypothesis H19 : SNo (z * y )
L5350 Hypothesis H20 : SNo (x * w )
L5351 Hypothesis H21 : SNo (z * w )
L5352 Hypothesis H22 : SNo (u * y )
L5353 Hypothesis H23 : SNo (x * v )
L5354 Hypothesis H24 : SNo (u * v )
L5355 Hypothesis H25 : SNo (z * v )
L5356 Hypothesis H26 : SNo (u * w )
L5357 Hypothesis H27 : v < w
L5358 Theorem. (
Conj_mul_SNo_prop_1__28__18 )
(βx2 : set , x2 β SNoR x β (x * w + x2 * v ) < x2 * w + x * v ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__28__18
Beginning of Section Conj_mul_SNo_prop_1__29__15
L5370 Hypothesis H0 : SNo x
L5371 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5372 Hypothesis H2 : SNo y
L5373 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5374 Hypothesis H4 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5375 Hypothesis H5 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5376 Hypothesis H6 : z β SNoR x
L5377 Hypothesis H7 : w β SNoR y
L5378 Hypothesis H8 : SNo z
L5379 Hypothesis H9 : SNoLev z β SNoLev x
L5380 Hypothesis H10 : x < z
L5381 Hypothesis H11 : SNo w
L5382 Hypothesis H12 : SNoLev w β SNoLev y
L5383 Hypothesis H13 : y < w
L5384 Hypothesis H14 : u β SNoR x
L5385 Hypothesis H16 : SNo u
L5386 Hypothesis H17 : SNoLev u β SNoLev x
L5387 Hypothesis H18 : x < u
L5388 Hypothesis H19 : SNo v
L5389 Hypothesis H20 : v < y
L5390 Hypothesis H21 : SNo (z * y )
L5391 Hypothesis H22 : SNo (x * w )
L5392 Hypothesis H23 : SNo (z * w )
L5393 Hypothesis H24 : SNo (u * y )
L5394 Hypothesis H25 : SNo (x * v )
L5395 Hypothesis H26 : SNo (u * v )
L5396 Hypothesis H27 : SNo (z * v )
L5397 Hypothesis H28 : SNo (u * w )
L5398
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__29__15
Beginning of Section Conj_mul_SNo_prop_1__29__22
L5410 Hypothesis H0 : SNo x
L5411 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5412 Hypothesis H2 : SNo y
L5413 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5414 Hypothesis H4 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5415 Hypothesis H5 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5416 Hypothesis H6 : z β SNoR x
L5417 Hypothesis H7 : w β SNoR y
L5418 Hypothesis H8 : SNo z
L5419 Hypothesis H9 : SNoLev z β SNoLev x
L5420 Hypothesis H10 : x < z
L5421 Hypothesis H11 : SNo w
L5422 Hypothesis H12 : SNoLev w β SNoLev y
L5423 Hypothesis H13 : y < w
L5424 Hypothesis H14 : u β SNoR x
L5425 Hypothesis H15 : v β SNoL y
L5426 Hypothesis H16 : SNo u
L5427 Hypothesis H17 : SNoLev u β SNoLev x
L5428 Hypothesis H18 : x < u
L5429 Hypothesis H19 : SNo v
L5430 Hypothesis H20 : v < y
L5431 Hypothesis H21 : SNo (z * y )
L5432 Hypothesis H23 : SNo (z * w )
L5433 Hypothesis H24 : SNo (u * y )
L5434 Hypothesis H25 : SNo (x * v )
L5435 Hypothesis H26 : SNo (u * v )
L5436 Hypothesis H27 : SNo (z * v )
L5437 Hypothesis H28 : SNo (u * w )
L5438
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__29__22
Beginning of Section Conj_mul_SNo_prop_1__29__23
L5450 Hypothesis H0 : SNo x
L5451 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5452 Hypothesis H2 : SNo y
L5453 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5454 Hypothesis H4 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5455 Hypothesis H5 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5456 Hypothesis H6 : z β SNoR x
L5457 Hypothesis H7 : w β SNoR y
L5458 Hypothesis H8 : SNo z
L5459 Hypothesis H9 : SNoLev z β SNoLev x
L5460 Hypothesis H10 : x < z
L5461 Hypothesis H11 : SNo w
L5462 Hypothesis H12 : SNoLev w β SNoLev y
L5463 Hypothesis H13 : y < w
L5464 Hypothesis H14 : u β SNoR x
L5465 Hypothesis H15 : v β SNoL y
L5466 Hypothesis H16 : SNo u
L5467 Hypothesis H17 : SNoLev u β SNoLev x
L5468 Hypothesis H18 : x < u
L5469 Hypothesis H19 : SNo v
L5470 Hypothesis H20 : v < y
L5471 Hypothesis H21 : SNo (z * y )
L5472 Hypothesis H22 : SNo (x * w )
L5473 Hypothesis H24 : SNo (u * y )
L5474 Hypothesis H25 : SNo (x * v )
L5475 Hypothesis H26 : SNo (u * v )
L5476 Hypothesis H27 : SNo (z * v )
L5477 Hypothesis H28 : SNo (u * w )
L5478
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__29__23
Beginning of Section Conj_mul_SNo_prop_1__29__26
L5490 Hypothesis H0 : SNo x
L5491 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5492 Hypothesis H2 : SNo y
L5493 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5494 Hypothesis H4 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5495 Hypothesis H5 : (βx2 : set , x2 β SNoR x β SNo (x2 * y ) )
L5496 Hypothesis H6 : z β SNoR x
L5497 Hypothesis H7 : w β SNoR y
L5498 Hypothesis H8 : SNo z
L5499 Hypothesis H9 : SNoLev z β SNoLev x
L5500 Hypothesis H10 : x < z
L5501 Hypothesis H11 : SNo w
L5502 Hypothesis H12 : SNoLev w β SNoLev y
L5503 Hypothesis H13 : y < w
L5504 Hypothesis H14 : u β SNoR x
L5505 Hypothesis H15 : v β SNoL y
L5506 Hypothesis H16 : SNo u
L5507 Hypothesis H17 : SNoLev u β SNoLev x
L5508 Hypothesis H18 : x < u
L5509 Hypothesis H19 : SNo v
L5510 Hypothesis H20 : v < y
L5511 Hypothesis H21 : SNo (z * y )
L5512 Hypothesis H22 : SNo (x * w )
L5513 Hypothesis H23 : SNo (z * w )
L5514 Hypothesis H24 : SNo (u * y )
L5515 Hypothesis H25 : SNo (x * v )
L5516 Hypothesis H27 : SNo (z * v )
L5517 Hypothesis H28 : SNo (u * w )
L5518
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__29__26
Beginning of Section Conj_mul_SNo_prop_1__30__3
L5530 Hypothesis H0 : SNo x
L5531 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5532 Hypothesis H2 : SNo y
L5533 Hypothesis H4 : SNo (z * y )
L5534 Hypothesis H5 : SNo (w * y )
L5535 Hypothesis H6 : u β SNoR y
L5536 Hypothesis H7 : SNo (z * u )
L5537 Hypothesis H8 : SNo (w * u )
L5538 Hypothesis H9 : v β SNoR w
L5539 Hypothesis H10 : SNo (v * u )
L5540 Hypothesis H11 : SNo (v * y )
L5541 Hypothesis H12 : (z * y + v * u ) < z * u + v * y
L5542
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__30__3
Beginning of Section Conj_mul_SNo_prop_1__31__4
L5554 Hypothesis H0 : SNo x
L5555 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5556 Hypothesis H2 : SNo y
L5557 Hypothesis H3 : z β SNoR x
L5558 Hypothesis H5 : SNo (z * y )
L5559 Hypothesis H6 : SNo (w * y )
L5560 Hypothesis H7 : u β SNoR y
L5561 Hypothesis H8 : SNo (z * u )
L5562 Hypothesis H9 : SNo (w * u )
L5563 Hypothesis H10 : v β SNoL z
L5564 Hypothesis H11 : v β SNoR w
L5565 Hypothesis H12 : SNo (v * u )
L5566 Hypothesis H13 : SNo (v * y )
L5567
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__31__4
Beginning of Section Conj_mul_SNo_prop_1__32__6
L5579 Hypothesis H0 : SNo x
L5580 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5581 Hypothesis H2 : SNo y
L5582 Hypothesis H3 : z β SNoR x
L5583 Hypothesis H4 : w β SNoL x
L5584 Hypothesis H5 : SNo (z * y )
L5585 Hypothesis H7 : u β SNoR y
L5586 Hypothesis H8 : SNo (z * u )
L5587 Hypothesis H9 : SNo (w * u )
L5588 Hypothesis H10 : v β SNoL z
L5589 Hypothesis H11 : v β SNoR w
L5590 Hypothesis H12 : v β SNoS_ (SNoLev x )
L5591 Hypothesis H13 : SNo (v * u )
L5592
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__32__6
Beginning of Section Conj_mul_SNo_prop_1__32__7
L5604 Hypothesis H0 : SNo x
L5605 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5606 Hypothesis H2 : SNo y
L5607 Hypothesis H3 : z β SNoR x
L5608 Hypothesis H4 : w β SNoL x
L5609 Hypothesis H5 : SNo (z * y )
L5610 Hypothesis H6 : SNo (w * y )
L5611 Hypothesis H8 : SNo (z * u )
L5612 Hypothesis H9 : SNo (w * u )
L5613 Hypothesis H10 : v β SNoL z
L5614 Hypothesis H11 : v β SNoR w
L5615 Hypothesis H12 : v β SNoS_ (SNoLev x )
L5616 Hypothesis H13 : SNo (v * u )
L5617
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__32__7
Beginning of Section Conj_mul_SNo_prop_1__33__2
L5629 Hypothesis H0 : SNo x
L5630 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5631 Hypothesis H3 : z β SNoR x
L5632 Hypothesis H4 : w β SNoL x
L5633 Hypothesis H5 : SNo (z * y )
L5634 Hypothesis H6 : SNo (w * y )
L5635 Hypothesis H7 : u β SNoR y
L5636 Hypothesis H8 : SNo u
L5637 Hypothesis H9 : SNo (z * u )
L5638 Hypothesis H10 : SNo (w * u )
L5639 Hypothesis H11 : v β SNoL z
L5640 Hypothesis H12 : v β SNoR w
L5641 Hypothesis H13 : v β SNoS_ (SNoLev x )
L5642
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__33__2
Beginning of Section Conj_mul_SNo_prop_1__33__6
L5654 Hypothesis H0 : SNo x
L5655 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5656 Hypothesis H2 : SNo y
L5657 Hypothesis H3 : z β SNoR x
L5658 Hypothesis H4 : w β SNoL x
L5659 Hypothesis H5 : SNo (z * y )
L5660 Hypothesis H7 : u β SNoR y
L5661 Hypothesis H8 : SNo u
L5662 Hypothesis H9 : SNo (z * u )
L5663 Hypothesis H10 : SNo (w * u )
L5664 Hypothesis H11 : v β SNoL z
L5665 Hypothesis H12 : v β SNoR w
L5666 Hypothesis H13 : v β SNoS_ (SNoLev x )
L5667
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__33__6
Beginning of Section Conj_mul_SNo_prop_1__35__2
L5679 Hypothesis H0 : SNo x
L5680 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L5681 Hypothesis H3 : z β SNoR x
L5682 Hypothesis H4 : SNoLev z β SNoLev x
L5683 Hypothesis H5 : w β SNoL x
L5684 Hypothesis H6 : SNo (z * y )
L5685 Hypothesis H7 : SNo (w * y )
L5686 Hypothesis H8 : u β SNoR y
L5687 Hypothesis H9 : SNo u
L5688 Hypothesis H10 : SNo (z * u )
L5689 Hypothesis H11 : SNo (w * u )
L5690 Hypothesis H12 : v β SNoL z
L5691 Hypothesis H13 : v β SNoR w
L5692 Hypothesis H14 : SNo v
L5693 Hypothesis H15 : SNoLev v β SNoLev z
L5694
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__35__2
Beginning of Section Conj_mul_SNo_prop_1__39__15
L5707 Hypothesis H0 : SNo y
L5708 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * y2 ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β P ) β P ) )
L5709 Hypothesis H2 : (βy2 : set , y2 β SNoL x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L5710 Hypothesis H3 : (βy2 : set , y2 β SNoR y β SNo (x * y2 ) )
L5711 Hypothesis H4 : w β SNoR y
L5712 Hypothesis H5 : u β SNoL x
L5713 Hypothesis H6 : v β SNoR y
L5714 Hypothesis H7 : SNo (z * y )
L5715 Hypothesis H8 : SNo (x * w )
L5716 Hypothesis H9 : SNo (z * w )
L5717 Hypothesis H10 : SNo (u * y )
L5718 Hypothesis H11 : SNo (x * v )
L5719 Hypothesis H12 : SNo (u * v )
L5720 Hypothesis H13 : SNo (u * w )
L5721 Hypothesis H14 : (z * y + u * w ) < u * y + z * w
L5722 Hypothesis H16 : x2 β SNoL v
L5723 Hypothesis H17 : SNo x2
L5724 Hypothesis H18 : x2 β SNoR y
L5725
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__39__15
Beginning of Section Conj_mul_SNo_prop_1__42__16
L5738 Hypothesis H0 : SNo y
L5739 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * y2 ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β P ) β P ) )
L5740 Hypothesis H2 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L5741 Hypothesis H3 : (βy2 : set , y2 β SNoR y β SNo (x * y2 ) )
L5742 Hypothesis H4 : z β SNoR x
L5743 Hypothesis H5 : w β SNoR y
L5744 Hypothesis H6 : v β SNoR y
L5745 Hypothesis H7 : SNo (z * y )
L5746 Hypothesis H8 : SNo (x * w )
L5747 Hypothesis H9 : SNo (z * w )
L5748 Hypothesis H10 : SNo (u * y )
L5749 Hypothesis H11 : SNo (x * v )
L5750 Hypothesis H12 : SNo (u * v )
L5751 Hypothesis H13 : SNo (z * v )
L5752 Hypothesis H14 : (z * y + u * v ) < u * y + z * v
L5753 Hypothesis H15 : x2 β SNoL w
L5754 Hypothesis H17 : SNo x2
L5755 Hypothesis H18 : x2 β SNoR y
L5756
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__42__16
Beginning of Section Conj_mul_SNo_prop_1__43__9
L5769 Hypothesis H0 : SNo y
L5770 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * y2 ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β P ) β P ) )
L5771 Hypothesis H2 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L5772 Hypothesis H3 : (βy2 : set , y2 β SNoR y β SNo (x * y2 ) )
L5773 Hypothesis H4 : z β SNoR x
L5774 Hypothesis H5 : w β SNoR y
L5775 Hypothesis H6 : v β SNoR y
L5776 Hypothesis H7 : SNo v
L5777 Hypothesis H8 : SNoLev v β SNoLev y
L5778 Hypothesis H10 : SNo (z * y )
L5779 Hypothesis H11 : SNo (x * w )
L5780 Hypothesis H12 : SNo (z * w )
L5781 Hypothesis H13 : SNo (u * y )
L5782 Hypothesis H14 : SNo (x * v )
L5783 Hypothesis H15 : SNo (u * v )
L5784 Hypothesis H16 : SNo (z * v )
L5785 Hypothesis H17 : (z * y + u * v ) < u * y + z * v
L5786 Hypothesis H18 : x2 β SNoL w
L5787 Hypothesis H19 : x2 β SNoR v
L5788 Hypothesis H20 : SNo x2
L5789 Hypothesis H21 : SNoLev x2 β SNoLev v
L5790 Hypothesis H22 : v < x2
L5791
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__43__9
Beginning of Section Conj_mul_SNo_prop_1__43__17
L5804 Hypothesis H0 : SNo y
L5805 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * y2 ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β P ) β P ) )
L5806 Hypothesis H2 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L5807 Hypothesis H3 : (βy2 : set , y2 β SNoR y β SNo (x * y2 ) )
L5808 Hypothesis H4 : z β SNoR x
L5809 Hypothesis H5 : w β SNoR y
L5810 Hypothesis H6 : v β SNoR y
L5811 Hypothesis H7 : SNo v
L5812 Hypothesis H8 : SNoLev v β SNoLev y
L5813 Hypothesis H9 : y < v
L5814 Hypothesis H10 : SNo (z * y )
L5815 Hypothesis H11 : SNo (x * w )
L5816 Hypothesis H12 : SNo (z * w )
L5817 Hypothesis H13 : SNo (u * y )
L5818 Hypothesis H14 : SNo (x * v )
L5819 Hypothesis H15 : SNo (u * v )
L5820 Hypothesis H16 : SNo (z * v )
L5821 Hypothesis H18 : x2 β SNoL w
L5822 Hypothesis H19 : x2 β SNoR v
L5823 Hypothesis H20 : SNo x2
L5824 Hypothesis H21 : SNoLev x2 β SNoLev v
L5825 Hypothesis H22 : v < x2
L5826
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__43__17
Beginning of Section Conj_mul_SNo_prop_1__44__12
L5838 Hypothesis H0 : SNo y
L5839 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5840 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5841 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5842 Hypothesis H4 : (βx2 : set , x2 β SNoR y β SNo (x * x2 ) )
L5843 Hypothesis H5 : z β SNoR x
L5844 Hypothesis H6 : w β SNoR y
L5845 Hypothesis H7 : SNo w
L5846 Hypothesis H8 : SNoLev w β SNoLev y
L5847 Hypothesis H9 : y < w
L5848 Hypothesis H10 : u β SNoL x
L5849 Hypothesis H11 : v β SNoR y
L5850 Hypothesis H13 : SNoLev v β SNoLev y
L5851 Hypothesis H14 : y < v
L5852 Hypothesis H15 : SNo (z * y )
L5853 Hypothesis H16 : SNo (x * w )
L5854 Hypothesis H17 : SNo (z * w )
L5855 Hypothesis H18 : SNo (u * y )
L5856 Hypothesis H19 : SNo (x * v )
L5857 Hypothesis H20 : SNo (u * v )
L5858 Hypothesis H21 : SNo (z * v )
L5859 Hypothesis H22 : SNo (u * w )
L5860 Hypothesis H23 : (z * y + u * w ) < u * y + z * w
L5861 Hypothesis H24 : (z * y + u * v ) < u * y + z * v
L5862 Hypothesis H25 : (x * w + u * v ) < u * w + x * v β (z * y + x * w + u * v ) < u * y + x * v + z * w
L5863 Theorem. (
Conj_mul_SNo_prop_1__44__12 )
((x * w + z * v ) < x * v + z * w β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__44__12
Beginning of Section Conj_mul_SNo_prop_1__44__19
L5875 Hypothesis H0 : SNo y
L5876 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5877 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5878 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5879 Hypothesis H4 : (βx2 : set , x2 β SNoR y β SNo (x * x2 ) )
L5880 Hypothesis H5 : z β SNoR x
L5881 Hypothesis H6 : w β SNoR y
L5882 Hypothesis H7 : SNo w
L5883 Hypothesis H8 : SNoLev w β SNoLev y
L5884 Hypothesis H9 : y < w
L5885 Hypothesis H10 : u β SNoL x
L5886 Hypothesis H11 : v β SNoR y
L5887 Hypothesis H12 : SNo v
L5888 Hypothesis H13 : SNoLev v β SNoLev y
L5889 Hypothesis H14 : y < v
L5890 Hypothesis H15 : SNo (z * y )
L5891 Hypothesis H16 : SNo (x * w )
L5892 Hypothesis H17 : SNo (z * w )
L5893 Hypothesis H18 : SNo (u * y )
L5894 Hypothesis H20 : SNo (u * v )
L5895 Hypothesis H21 : SNo (z * v )
L5896 Hypothesis H22 : SNo (u * w )
L5897 Hypothesis H23 : (z * y + u * w ) < u * y + z * w
L5898 Hypothesis H24 : (z * y + u * v ) < u * y + z * v
L5899 Hypothesis H25 : (x * w + u * v ) < u * w + x * v β (z * y + x * w + u * v ) < u * y + x * v + z * w
L5900 Theorem. (
Conj_mul_SNo_prop_1__44__19 )
((x * w + z * v ) < x * v + z * w β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__44__19
Beginning of Section Conj_mul_SNo_prop_1__44__25
L5912 Hypothesis H0 : SNo y
L5913 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5914 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5915 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5916 Hypothesis H4 : (βx2 : set , x2 β SNoR y β SNo (x * x2 ) )
L5917 Hypothesis H5 : z β SNoR x
L5918 Hypothesis H6 : w β SNoR y
L5919 Hypothesis H7 : SNo w
L5920 Hypothesis H8 : SNoLev w β SNoLev y
L5921 Hypothesis H9 : y < w
L5922 Hypothesis H10 : u β SNoL x
L5923 Hypothesis H11 : v β SNoR y
L5924 Hypothesis H12 : SNo v
L5925 Hypothesis H13 : SNoLev v β SNoLev y
L5926 Hypothesis H14 : y < v
L5927 Hypothesis H15 : SNo (z * y )
L5928 Hypothesis H16 : SNo (x * w )
L5929 Hypothesis H17 : SNo (z * w )
L5930 Hypothesis H18 : SNo (u * y )
L5931 Hypothesis H19 : SNo (x * v )
L5932 Hypothesis H20 : SNo (u * v )
L5933 Hypothesis H21 : SNo (z * v )
L5934 Hypothesis H22 : SNo (u * w )
L5935 Hypothesis H23 : (z * y + u * w ) < u * y + z * w
L5936 Hypothesis H24 : (z * y + u * v ) < u * y + z * v
L5937 Theorem. (
Conj_mul_SNo_prop_1__44__25 )
((x * w + z * v ) < x * v + z * w β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__44__25
Beginning of Section Conj_mul_SNo_prop_1__45__10
L5949 Hypothesis H0 : SNo y
L5950 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5951 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5952 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5953 Hypothesis H4 : (βx2 : set , x2 β SNoR y β SNo (x * x2 ) )
L5954 Hypothesis H5 : z β SNoR x
L5955 Hypothesis H6 : w β SNoR y
L5956 Hypothesis H7 : SNo w
L5957 Hypothesis H8 : SNoLev w β SNoLev y
L5958 Hypothesis H9 : y < w
L5959 Hypothesis H11 : v β SNoR y
L5960 Hypothesis H12 : SNo v
L5961 Hypothesis H13 : SNoLev v β SNoLev y
L5962 Hypothesis H14 : y < v
L5963 Hypothesis H15 : SNo (z * y )
L5964 Hypothesis H16 : SNo (x * w )
L5965 Hypothesis H17 : SNo (z * w )
L5966 Hypothesis H18 : SNo (u * y )
L5967 Hypothesis H19 : SNo (x * v )
L5968 Hypothesis H20 : SNo (u * v )
L5969 Hypothesis H21 : SNo (z * v )
L5970 Hypothesis H22 : SNo (u * w )
L5971 Hypothesis H23 : (z * y + u * w ) < u * y + z * w
L5972 Hypothesis H24 : (z * y + u * v ) < u * y + z * v
L5973 Theorem. (
Conj_mul_SNo_prop_1__45__10 )
((x * w + u * v ) < u * w + x * v β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__45__10
Beginning of Section Conj_mul_SNo_prop_1__46__15
L5985 Hypothesis H0 : SNo y
L5986 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L5987 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5988 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L5989 Hypothesis H4 : (βx2 : set , x2 β SNoR y β SNo (x * x2 ) )
L5990 Hypothesis H5 : z β SNoR x
L5991 Hypothesis H6 : w β SNoR y
L5992 Hypothesis H7 : SNo w
L5993 Hypothesis H8 : SNoLev w β SNoLev y
L5994 Hypothesis H9 : y < w
L5995 Hypothesis H10 : u β SNoL x
L5996 Hypothesis H11 : v β SNoR y
L5997 Hypothesis H12 : SNo v
L5998 Hypothesis H13 : SNoLev v β SNoLev y
L5999 Hypothesis H14 : y < v
L6000 Hypothesis H16 : SNo (x * w )
L6001 Hypothesis H17 : SNo (z * w )
L6002 Hypothesis H18 : SNo (u * y )
L6003 Hypothesis H19 : SNo (x * v )
L6004 Hypothesis H20 : SNo (u * v )
L6005 Hypothesis H21 : SNo (z * v )
L6006 Hypothesis H22 : SNo (u * w )
L6007 Hypothesis H23 : (βx2 : set , x2 β SNoR y β (z * y + u * x2 ) < u * y + z * x2 )
L6008 Hypothesis H24 : (z * y + u * w ) < u * y + z * w
L6009
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__46__15
Beginning of Section Conj_mul_SNo_prop_1__48__5
L6021 Hypothesis H0 : SNo x
L6022 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6023 Hypothesis H2 : SNo y
L6024 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6025 Hypothesis H4 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6026 Hypothesis H6 : (βx2 : set , x2 β SNoR y β SNo (x * x2 ) )
L6027 Hypothesis H7 : z β SNoR x
L6028 Hypothesis H8 : w β SNoR y
L6029 Hypothesis H9 : SNo z
L6030 Hypothesis H10 : SNoLev z β SNoLev x
L6031 Hypothesis H11 : SNo w
L6032 Hypothesis H12 : SNoLev w β SNoLev y
L6033 Hypothesis H13 : y < w
L6034 Hypothesis H14 : u β SNoL x
L6035 Hypothesis H15 : v β SNoR y
L6036 Hypothesis H16 : SNo u
L6037 Hypothesis H17 : SNo v
L6038 Hypothesis H18 : SNoLev v β SNoLev y
L6039 Hypothesis H19 : y < v
L6040 Hypothesis H20 : SNo (z * y )
L6041 Hypothesis H21 : SNo (x * w )
L6042 Hypothesis H22 : SNo (z * w )
L6043 Hypothesis H23 : SNo (u * y )
L6044 Hypothesis H24 : SNo (x * v )
L6045 Hypothesis H25 : SNo (u * v )
L6046 Hypothesis H26 : SNo (z * v )
L6047 Hypothesis H27 : SNo (u * w )
L6048 Hypothesis H28 : u < z
L6049 Theorem. (
Conj_mul_SNo_prop_1__48__5 )
(βx2 : set , x2 β SNoR y β (z * y + u * x2 ) < u * y + z * x2 ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__48__5
Beginning of Section Conj_mul_SNo_prop_1__49__9
L6061 Hypothesis H0 : SNo x
L6062 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6063 Hypothesis H2 : SNo y
L6064 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6065 Hypothesis H4 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6066 Hypothesis H5 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6067 Hypothesis H6 : (βx2 : set , x2 β SNoR y β SNo (x * x2 ) )
L6068 Hypothesis H7 : z β SNoR x
L6069 Hypothesis H8 : w β SNoR y
L6070 Hypothesis H10 : SNoLev z β SNoLev x
L6071 Hypothesis H11 : x < z
L6072 Hypothesis H12 : SNo w
L6073 Hypothesis H13 : SNoLev w β SNoLev y
L6074 Hypothesis H14 : y < w
L6075 Hypothesis H15 : u β SNoL x
L6076 Hypothesis H16 : v β SNoR y
L6077 Hypothesis H17 : SNo u
L6078 Hypothesis H18 : u < x
L6079 Hypothesis H19 : SNo v
L6080 Hypothesis H20 : SNoLev v β SNoLev y
L6081 Hypothesis H21 : y < v
L6082 Hypothesis H22 : SNo (z * y )
L6083 Hypothesis H23 : SNo (x * w )
L6084 Hypothesis H24 : SNo (z * w )
L6085 Hypothesis H25 : SNo (u * y )
L6086 Hypothesis H26 : SNo (x * v )
L6087 Hypothesis H27 : SNo (u * v )
L6088 Hypothesis H28 : SNo (z * v )
L6089 Hypothesis H29 : SNo (u * w )
L6090
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__49__9
Beginning of Section Conj_mul_SNo_prop_1__49__15
L6102 Hypothesis H0 : SNo x
L6103 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6104 Hypothesis H2 : SNo y
L6105 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6106 Hypothesis H4 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6107 Hypothesis H5 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6108 Hypothesis H6 : (βx2 : set , x2 β SNoR y β SNo (x * x2 ) )
L6109 Hypothesis H7 : z β SNoR x
L6110 Hypothesis H8 : w β SNoR y
L6111 Hypothesis H9 : SNo z
L6112 Hypothesis H10 : SNoLev z β SNoLev x
L6113 Hypothesis H11 : x < z
L6114 Hypothesis H12 : SNo w
L6115 Hypothesis H13 : SNoLev w β SNoLev y
L6116 Hypothesis H14 : y < w
L6117 Hypothesis H16 : v β SNoR y
L6118 Hypothesis H17 : SNo u
L6119 Hypothesis H18 : u < x
L6120 Hypothesis H19 : SNo v
L6121 Hypothesis H20 : SNoLev v β SNoLev y
L6122 Hypothesis H21 : y < v
L6123 Hypothesis H22 : SNo (z * y )
L6124 Hypothesis H23 : SNo (x * w )
L6125 Hypothesis H24 : SNo (z * w )
L6126 Hypothesis H25 : SNo (u * y )
L6127 Hypothesis H26 : SNo (x * v )
L6128 Hypothesis H27 : SNo (u * v )
L6129 Hypothesis H28 : SNo (z * v )
L6130 Hypothesis H29 : SNo (u * w )
L6131
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__49__15
Beginning of Section Conj_mul_SNo_prop_1__51__0
L6143 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6144 Hypothesis H2 : SNo y
L6145 Hypothesis H3 : z β SNoL x
L6146 Hypothesis H4 : w β SNoR x
L6147 Hypothesis H5 : SNo (z * y )
L6148 Hypothesis H6 : SNo (w * y )
L6149 Hypothesis H7 : u β SNoL y
L6150 Hypothesis H8 : SNo (z * u )
L6151 Hypothesis H9 : SNo (w * u )
L6152 Hypothesis H10 : v β SNoL w
L6153 Hypothesis H11 : v β SNoR z
L6154 Hypothesis H12 : SNo (v * u )
L6155 Hypothesis H13 : SNo (v * y )
L6156
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__51__0
Beginning of Section Conj_mul_SNo_prop_1__51__2
L6168 Hypothesis H0 : SNo x
L6169 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6170 Hypothesis H3 : z β SNoL x
L6171 Hypothesis H4 : w β SNoR x
L6172 Hypothesis H5 : SNo (z * y )
L6173 Hypothesis H6 : SNo (w * y )
L6174 Hypothesis H7 : u β SNoL y
L6175 Hypothesis H8 : SNo (z * u )
L6176 Hypothesis H9 : SNo (w * u )
L6177 Hypothesis H10 : v β SNoL w
L6178 Hypothesis H11 : v β SNoR z
L6179 Hypothesis H12 : SNo (v * u )
L6180 Hypothesis H13 : SNo (v * y )
L6181
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__51__2
Beginning of Section Conj_mul_SNo_prop_1__51__12
L6193 Hypothesis H0 : SNo x
L6194 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6195 Hypothesis H2 : SNo y
L6196 Hypothesis H3 : z β SNoL x
L6197 Hypothesis H4 : w β SNoR x
L6198 Hypothesis H5 : SNo (z * y )
L6199 Hypothesis H6 : SNo (w * y )
L6200 Hypothesis H7 : u β SNoL y
L6201 Hypothesis H8 : SNo (z * u )
L6202 Hypothesis H9 : SNo (w * u )
L6203 Hypothesis H10 : v β SNoL w
L6204 Hypothesis H11 : v β SNoR z
L6205 Hypothesis H13 : SNo (v * y )
L6206
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__51__12
Beginning of Section Conj_mul_SNo_prop_1__52__12
L6218 Hypothesis H0 : SNo x
L6219 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6220 Hypothesis H2 : SNo y
L6221 Hypothesis H3 : z β SNoL x
L6222 Hypothesis H4 : w β SNoR x
L6223 Hypothesis H5 : SNo (z * y )
L6224 Hypothesis H6 : SNo (w * y )
L6225 Hypothesis H7 : u β SNoL y
L6226 Hypothesis H8 : SNo (z * u )
L6227 Hypothesis H9 : SNo (w * u )
L6228 Hypothesis H10 : v β SNoL w
L6229 Hypothesis H11 : v β SNoR z
L6230 Hypothesis H13 : SNo (v * u )
L6231
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__52__12
Beginning of Section Conj_mul_SNo_prop_1__54__4
L6243 Hypothesis H0 : SNo x
L6244 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6245 Hypothesis H2 : SNo y
L6246 Hypothesis H3 : z β SNoL x
L6247 Hypothesis H5 : SNo (z * y )
L6248 Hypothesis H6 : SNo (w * y )
L6249 Hypothesis H7 : u β SNoL y
L6250 Hypothesis H8 : SNo u
L6251 Hypothesis H9 : SNo (z * u )
L6252 Hypothesis H10 : SNo (w * u )
L6253 Hypothesis H11 : v β SNoL w
L6254 Hypothesis H12 : v β SNoR z
L6255 Hypothesis H13 : SNo v
L6256 Hypothesis H14 : SNoLev v β SNoLev x
L6257
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__54__4
Beginning of Section Conj_mul_SNo_prop_1__55__1
L6269 Hypothesis H0 : SNo x
L6270 Hypothesis H2 : SNo y
L6271 Hypothesis H3 : z β SNoL x
L6272 Hypothesis H4 : SNoLev z β SNoLev x
L6273 Hypothesis H5 : w β SNoR x
L6274 Hypothesis H6 : SNo (z * y )
L6275 Hypothesis H7 : SNo (w * y )
L6276 Hypothesis H8 : u β SNoL y
L6277 Hypothesis H9 : SNo u
L6278 Hypothesis H10 : SNo (z * u )
L6279 Hypothesis H11 : SNo (w * u )
L6280 Hypothesis H12 : v β SNoL w
L6281 Hypothesis H13 : v β SNoR z
L6282 Hypothesis H14 : SNo v
L6283 Hypothesis H15 : SNoLev v β SNoLev z
L6284
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__55__1
Beginning of Section Conj_mul_SNo_prop_1__58__11
L6297 Hypothesis H0 : SNo y
L6298 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * y2 ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β P ) β P ) )
L6299 Hypothesis H2 : (βy2 : set , y2 β SNoL x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L6300 Hypothesis H3 : (βy2 : set , y2 β SNoL y β SNo (x * y2 ) )
L6301 Hypothesis H4 : z β SNoL x
L6302 Hypothesis H5 : v β SNoL y
L6303 Hypothesis H6 : SNo (z * y )
L6304 Hypothesis H7 : SNo (x * w )
L6305 Hypothesis H8 : SNo (z * w )
L6306 Hypothesis H9 : SNo (u * y )
L6307 Hypothesis H10 : SNo (x * v )
L6308 Hypothesis H12 : SNo (z * v )
L6309 Hypothesis H13 : (z * y + u * v ) < u * y + z * v
L6310 Hypothesis H14 : x2 β SNoL v
L6311 Hypothesis H15 : SNo x2
L6312 Hypothesis H16 : x2 β SNoL y
L6313 Hypothesis H17 : (x * w + z * x2 ) < x * x2 + z * w
L6314
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__58__11
Beginning of Section Conj_mul_SNo_prop_1__58__17
L6327 Hypothesis H0 : SNo y
L6328 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * y2 ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β P ) β P ) )
L6329 Hypothesis H2 : (βy2 : set , y2 β SNoL x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L6330 Hypothesis H3 : (βy2 : set , y2 β SNoL y β SNo (x * y2 ) )
L6331 Hypothesis H4 : z β SNoL x
L6332 Hypothesis H5 : v β SNoL y
L6333 Hypothesis H6 : SNo (z * y )
L6334 Hypothesis H7 : SNo (x * w )
L6335 Hypothesis H8 : SNo (z * w )
L6336 Hypothesis H9 : SNo (u * y )
L6337 Hypothesis H10 : SNo (x * v )
L6338 Hypothesis H11 : SNo (u * v )
L6339 Hypothesis H12 : SNo (z * v )
L6340 Hypothesis H13 : (z * y + u * v ) < u * y + z * v
L6341 Hypothesis H14 : x2 β SNoL v
L6342 Hypothesis H15 : SNo x2
L6343 Hypothesis H16 : x2 β SNoL y
L6344
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__58__17
Beginning of Section Conj_mul_SNo_prop_1__62__10
L6357 Hypothesis H0 : SNo y
L6358 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * y2 ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β P ) β P ) )
L6359 Hypothesis H2 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L6360 Hypothesis H3 : (βy2 : set , y2 β SNoL y β SNo (x * y2 ) )
L6361 Hypothesis H4 : w β SNoL y
L6362 Hypothesis H5 : u β SNoR x
L6363 Hypothesis H6 : v β SNoL y
L6364 Hypothesis H7 : SNo (z * y )
L6365 Hypothesis H8 : SNo (x * w )
L6366 Hypothesis H9 : SNo (z * w )
L6367 Hypothesis H11 : SNo (x * v )
L6368 Hypothesis H12 : SNo (u * v )
L6369 Hypothesis H13 : SNo (u * w )
L6370 Hypothesis H14 : (z * y + u * w ) < u * y + z * w
L6371 Hypothesis H15 : x2 β SNoL w
L6372 Hypothesis H16 : x2 β SNoR v
L6373 Hypothesis H17 : SNo x2
L6374 Hypothesis H18 : x2 β SNoL y
L6375
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__62__10
Beginning of Section Conj_mul_SNo_prop_1__62__17
L6388 Hypothesis H0 : SNo y
L6389 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * y2 ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x * w2 ) < x * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y2 β (x * y2 + z2 * w2 ) < z2 * y2 + x * w2 ) ) β P ) β P ) )
L6390 Hypothesis H2 : (βy2 : set , y2 β SNoR x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L6391 Hypothesis H3 : (βy2 : set , y2 β SNoL y β SNo (x * y2 ) )
L6392 Hypothesis H4 : w β SNoL y
L6393 Hypothesis H5 : u β SNoR x
L6394 Hypothesis H6 : v β SNoL y
L6395 Hypothesis H7 : SNo (z * y )
L6396 Hypothesis H8 : SNo (x * w )
L6397 Hypothesis H9 : SNo (z * w )
L6398 Hypothesis H10 : SNo (u * y )
L6399 Hypothesis H11 : SNo (x * v )
L6400 Hypothesis H12 : SNo (u * v )
L6401 Hypothesis H13 : SNo (u * w )
L6402 Hypothesis H14 : (z * y + u * w ) < u * y + z * w
L6403 Hypothesis H15 : x2 β SNoL w
L6404 Hypothesis H16 : x2 β SNoR v
L6405 Hypothesis H18 : x2 β SNoL y
L6406
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__62__17
Beginning of Section Conj_mul_SNo_prop_1__65__5
L6418 Hypothesis H0 : SNo y
L6419 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6420 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6421 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6422 Hypothesis H4 : (βx2 : set , x2 β SNoL y β SNo (x * x2 ) )
L6423 Hypothesis H6 : w β SNoL y
L6424 Hypothesis H7 : SNo w
L6425 Hypothesis H8 : SNoLev w β SNoLev y
L6426 Hypothesis H9 : w < y
L6427 Hypothesis H10 : u β SNoR x
L6428 Hypothesis H11 : v β SNoL y
L6429 Hypothesis H12 : SNo v
L6430 Hypothesis H13 : SNoLev v β SNoLev y
L6431 Hypothesis H14 : v < y
L6432 Hypothesis H15 : SNo (z * y )
L6433 Hypothesis H16 : SNo (x * w )
L6434 Hypothesis H17 : SNo (z * w )
L6435 Hypothesis H18 : SNo (u * y )
L6436 Hypothesis H19 : SNo (x * v )
L6437 Hypothesis H20 : SNo (u * v )
L6438 Hypothesis H21 : SNo (z * v )
L6439 Hypothesis H22 : SNo (u * w )
L6440 Hypothesis H23 : (z * y + u * w ) < u * y + z * w
L6441 Hypothesis H24 : (z * y + u * v ) < u * y + z * v
L6442 Theorem. (
Conj_mul_SNo_prop_1__65__5 )
((x * w + u * v ) < u * w + x * v β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__65__5
Beginning of Section Conj_mul_SNo_prop_1__65__15
L6454 Hypothesis H0 : SNo y
L6455 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6456 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6457 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6458 Hypothesis H4 : (βx2 : set , x2 β SNoL y β SNo (x * x2 ) )
L6459 Hypothesis H5 : z β SNoL x
L6460 Hypothesis H6 : w β SNoL y
L6461 Hypothesis H7 : SNo w
L6462 Hypothesis H8 : SNoLev w β SNoLev y
L6463 Hypothesis H9 : w < y
L6464 Hypothesis H10 : u β SNoR x
L6465 Hypothesis H11 : v β SNoL y
L6466 Hypothesis H12 : SNo v
L6467 Hypothesis H13 : SNoLev v β SNoLev y
L6468 Hypothesis H14 : v < y
L6469 Hypothesis H16 : SNo (x * w )
L6470 Hypothesis H17 : SNo (z * w )
L6471 Hypothesis H18 : SNo (u * y )
L6472 Hypothesis H19 : SNo (x * v )
L6473 Hypothesis H20 : SNo (u * v )
L6474 Hypothesis H21 : SNo (z * v )
L6475 Hypothesis H22 : SNo (u * w )
L6476 Hypothesis H23 : (z * y + u * w ) < u * y + z * w
L6477 Hypothesis H24 : (z * y + u * v ) < u * y + z * v
L6478 Theorem. (
Conj_mul_SNo_prop_1__65__15 )
((x * w + u * v ) < u * w + x * v β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__65__15
Beginning of Section Conj_mul_SNo_prop_1__66__7
L6490 Hypothesis H0 : SNo y
L6491 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6492 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6493 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6494 Hypothesis H4 : (βx2 : set , x2 β SNoL y β SNo (x * x2 ) )
L6495 Hypothesis H5 : z β SNoL x
L6496 Hypothesis H6 : w β SNoL y
L6497 Hypothesis H8 : SNoLev w β SNoLev y
L6498 Hypothesis H9 : w < y
L6499 Hypothesis H10 : u β SNoR x
L6500 Hypothesis H11 : v β SNoL y
L6501 Hypothesis H12 : SNo v
L6502 Hypothesis H13 : SNoLev v β SNoLev y
L6503 Hypothesis H14 : v < y
L6504 Hypothesis H15 : SNo (z * y )
L6505 Hypothesis H16 : SNo (x * w )
L6506 Hypothesis H17 : SNo (z * w )
L6507 Hypothesis H18 : SNo (u * y )
L6508 Hypothesis H19 : SNo (x * v )
L6509 Hypothesis H20 : SNo (u * v )
L6510 Hypothesis H21 : SNo (z * v )
L6511 Hypothesis H22 : SNo (u * w )
L6512 Hypothesis H23 : (βx2 : set , x2 β SNoL y β (z * y + u * x2 ) < u * y + z * x2 )
L6513 Hypothesis H24 : (z * y + u * w ) < u * y + z * w
L6514
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__66__7
Beginning of Section Conj_mul_SNo_prop_1__67__5
L6526 Hypothesis H0 : SNo y
L6527 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6528 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6529 Hypothesis H3 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6530 Hypothesis H4 : (βx2 : set , x2 β SNoL y β SNo (x * x2 ) )
L6531 Hypothesis H6 : w β SNoL y
L6532 Hypothesis H7 : SNo w
L6533 Hypothesis H8 : SNoLev w β SNoLev y
L6534 Hypothesis H9 : w < y
L6535 Hypothesis H10 : u β SNoR x
L6536 Hypothesis H11 : v β SNoL y
L6537 Hypothesis H12 : SNo v
L6538 Hypothesis H13 : SNoLev v β SNoLev y
L6539 Hypothesis H14 : v < y
L6540 Hypothesis H15 : SNo (z * y )
L6541 Hypothesis H16 : SNo (x * w )
L6542 Hypothesis H17 : SNo (z * w )
L6543 Hypothesis H18 : SNo (u * y )
L6544 Hypothesis H19 : SNo (x * v )
L6545 Hypothesis H20 : SNo (u * v )
L6546 Hypothesis H21 : SNo (z * v )
L6547 Hypothesis H22 : SNo (u * w )
L6548 Hypothesis H23 : (βx2 : set , x2 β SNoL y β (z * y + u * x2 ) < u * y + z * x2 )
L6549
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__67__5
Beginning of Section Conj_mul_SNo_prop_1__68__13
L6561 Hypothesis H0 : SNo x
L6562 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6563 Hypothesis H2 : SNo y
L6564 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6565 Hypothesis H4 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6566 Hypothesis H5 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6567 Hypothesis H6 : (βx2 : set , x2 β SNoL y β SNo (x * x2 ) )
L6568 Hypothesis H7 : z β SNoL x
L6569 Hypothesis H8 : w β SNoL y
L6570 Hypothesis H9 : SNo z
L6571 Hypothesis H10 : SNoLev z β SNoLev x
L6572 Hypothesis H11 : SNo w
L6573 Hypothesis H12 : SNoLev w β SNoLev y
L6574 Hypothesis H14 : u β SNoR x
L6575 Hypothesis H15 : v β SNoL y
L6576 Hypothesis H16 : SNo u
L6577 Hypothesis H17 : SNo v
L6578 Hypothesis H18 : SNoLev v β SNoLev y
L6579 Hypothesis H19 : v < y
L6580 Hypothesis H20 : SNo (z * y )
L6581 Hypothesis H21 : SNo (x * w )
L6582 Hypothesis H22 : SNo (z * w )
L6583 Hypothesis H23 : SNo (u * y )
L6584 Hypothesis H24 : SNo (x * v )
L6585 Hypothesis H25 : SNo (u * v )
L6586 Hypothesis H26 : SNo (z * v )
L6587 Hypothesis H27 : SNo (u * w )
L6588 Hypothesis H28 : z < u
L6589 Theorem. (
Conj_mul_SNo_prop_1__68__13 )
(βx2 : set , x2 β SNoL y β (z * y + u * x2 ) < u * y + z * x2 ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__68__13
Beginning of Section Conj_mul_SNo_prop_1__69__0
L6601 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6602 Hypothesis H2 : SNo y
L6603 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6604 Hypothesis H4 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6605 Hypothesis H5 : (βx2 : set , x2 β SNoR x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6606 Hypothesis H6 : (βx2 : set , x2 β SNoL y β SNo (x * x2 ) )
L6607 Hypothesis H7 : z β SNoL x
L6608 Hypothesis H8 : w β SNoL y
L6609 Hypothesis H9 : SNo z
L6610 Hypothesis H10 : SNoLev z β SNoLev x
L6611 Hypothesis H11 : z < x
L6612 Hypothesis H12 : SNo w
L6613 Hypothesis H13 : SNoLev w β SNoLev y
L6614 Hypothesis H14 : w < y
L6615 Hypothesis H15 : u β SNoR x
L6616 Hypothesis H16 : v β SNoL y
L6617 Hypothesis H17 : SNo u
L6618 Hypothesis H18 : x < u
L6619 Hypothesis H19 : SNo v
L6620 Hypothesis H20 : SNoLev v β SNoLev y
L6621 Hypothesis H21 : v < y
L6622 Hypothesis H22 : SNo (z * y )
L6623 Hypothesis H23 : SNo (x * w )
L6624 Hypothesis H24 : SNo (z * w )
L6625 Hypothesis H25 : SNo (u * y )
L6626 Hypothesis H26 : SNo (x * v )
L6627 Hypothesis H27 : SNo (u * v )
L6628 Hypothesis H28 : SNo (z * v )
L6629 Hypothesis H29 : SNo (u * w )
L6630
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__69__0
Beginning of Section Conj_mul_SNo_prop_1__71__10
L6642 Hypothesis H0 : SNo y
L6643 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6644 Hypothesis H2 : z β SNoL y
L6645 Hypothesis H3 : w β SNoR y
L6646 Hypothesis H4 : SNo (x * z )
L6647 Hypothesis H5 : SNo (x * w )
L6648 Hypothesis H6 : u β SNoL x
L6649 Hypothesis H7 : SNo (u * z )
L6650 Hypothesis H8 : SNo (u * w )
L6651 Hypothesis H9 : v β SNoL w
L6652 Hypothesis H11 : SNo (u * v )
L6653 Hypothesis H12 : SNo (x * v )
L6654
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__71__10
Beginning of Section Conj_mul_SNo_prop_1__73__4
L6666 Hypothesis H0 : SNo y
L6667 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L6668 Hypothesis H2 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6669 Hypothesis H3 : z β SNoL y
L6670 Hypothesis H5 : SNo (x * z )
L6671 Hypothesis H6 : SNo (x * w )
L6672 Hypothesis H7 : u β SNoL x
L6673 Hypothesis H8 : SNo (u * z )
L6674 Hypothesis H9 : SNo (u * w )
L6675 Hypothesis H10 : v β SNoL w
L6676 Hypothesis H11 : v β SNoR z
L6677 Hypothesis H12 : SNo v
L6678 Hypothesis H13 : v β SNoS_ (SNoLev y )
L6679
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__73__4
Beginning of Section Conj_mul_SNo_prop_1__76__0
L6690 Hypothesis H1 : (βv : set , v β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * v ) β (βx2 : set , x2 β SNoL x β (βy2 : set , y2 β SNoL v β (x2 * v + x * y2 ) < x * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoR x β (βy2 : set , y2 β SNoR v β (x2 * v + x * y2 ) < x * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoL x β (βy2 : set , y2 β SNoR v β (x * v + x2 * y2 ) < x2 * v + x * y2 ) ) β (βx2 : set , x2 β SNoR x β (βy2 : set , y2 β SNoL v β (x * v + x2 * y2 ) < x2 * v + x * y2 ) ) β P ) β P ) )
L6691 Hypothesis H2 : (βv : set , v β SNoL x β (βx2 : set , SNo x2 β SNo (v * x2 ) ) )
L6692 Hypothesis H3 : z β SNoL y
L6693 Hypothesis H4 : SNo z
L6694 Hypothesis H5 : SNoLev z β SNoLev y
L6695 Hypothesis H6 : w β SNoR y
L6696 Hypothesis H7 : SNo w
L6697 Hypothesis H8 : SNo (x * z )
L6698 Hypothesis H9 : SNo (x * w )
L6699 Hypothesis H10 : z < w
L6700 Hypothesis H11 : u β SNoL x
L6701
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__76__0
Beginning of Section Conj_mul_SNo_prop_1__78__0
L6714 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L6715 Hypothesis H2 : SNo y
L6716 Hypothesis H3 : (βy2 : set , y2 β SNoL x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L6717 Hypothesis H4 : (βy2 : set , y2 β SNoL x β SNo (y2 * y ) )
L6718 Hypothesis H5 : z β SNoL x
L6719 Hypothesis H6 : w β SNoL y
L6720 Hypothesis H7 : SNo w
L6721 Hypothesis H8 : SNo u
L6722 Hypothesis H9 : SNoLev u β SNoLev x
L6723 Hypothesis H10 : u < x
L6724 Hypothesis H11 : SNo (z * y )
L6725 Hypothesis H12 : SNo (x * w )
L6726 Hypothesis H13 : SNo (z * w )
L6727 Hypothesis H14 : SNo (u * y )
L6728 Hypothesis H15 : SNo (x * v )
L6729 Hypothesis H16 : SNo (u * v )
L6730 Hypothesis H17 : SNo (u * w )
L6731 Hypothesis H18 : (x * w + u * v ) < u * w + x * v
L6732 Hypothesis H19 : x2 β SNoR z
L6733 Hypothesis H20 : x2 β SNoL u
L6734 Hypothesis H21 : (x2 * y + u * w ) < u * y + x2 * w
L6735
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__78__0
Beginning of Section Conj_mul_SNo_prop_1__81__2
L6748 Hypothesis H0 : SNo x
L6749 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L6750 Hypothesis H3 : (βy2 : set , y2 β SNoL x β (βz2 : set , SNo z2 β SNo (y2 * z2 ) ) )
L6751 Hypothesis H4 : (βy2 : set , y2 β SNoL x β SNo (y2 * y ) )
L6752 Hypothesis H5 : SNo z
L6753 Hypothesis H6 : SNoLev z β SNoLev x
L6754 Hypothesis H7 : z < x
L6755 Hypothesis H8 : u β SNoL x
L6756 Hypothesis H9 : v β SNoR y
L6757 Hypothesis H10 : SNo v
L6758 Hypothesis H11 : SNo (z * y )
L6759 Hypothesis H12 : SNo (x * w )
L6760 Hypothesis H13 : SNo (z * w )
L6761 Hypothesis H14 : SNo (u * y )
L6762 Hypothesis H15 : SNo (x * v )
L6763 Hypothesis H16 : SNo (u * v )
L6764 Hypothesis H17 : SNo (z * v )
L6765 Hypothesis H18 : (x * w + z * v ) < z * w + x * v
L6766 Hypothesis H19 : x2 β SNoL z
L6767 Hypothesis H20 : x2 β SNoR u
L6768 Hypothesis H21 : (z * y + x2 * v ) < x2 * y + z * v
L6769
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__81__2
Beginning of Section Conj_mul_SNo_prop_1__81__3
L6782 Hypothesis H0 : SNo x
L6783 Hypothesis H1 : (βy2 : set , y2 β SNoS_ (SNoLev x ) β (βz2 : set , SNo z2 β (βP : prop , (SNo (y2 * z2 ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoL z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoR z2 β (w2 * z2 + y2 * u2 ) < y2 * z2 + w2 * u2 ) ) β (βw2 : set , w2 β SNoL y2 β (βu2 : set , u2 β SNoR z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β (βw2 : set , w2 β SNoR y2 β (βu2 : set , u2 β SNoL z2 β (y2 * z2 + w2 * u2 ) < w2 * z2 + y2 * u2 ) ) β P ) β P ) ) )
L6784 Hypothesis H2 : SNo y
L6785 Hypothesis H4 : (βy2 : set , y2 β SNoL x β SNo (y2 * y ) )
L6786 Hypothesis H5 : SNo z
L6787 Hypothesis H6 : SNoLev z β SNoLev x
L6788 Hypothesis H7 : z < x
L6789 Hypothesis H8 : u β SNoL x
L6790 Hypothesis H9 : v β SNoR y
L6791 Hypothesis H10 : SNo v
L6792 Hypothesis H11 : SNo (z * y )
L6793 Hypothesis H12 : SNo (x * w )
L6794 Hypothesis H13 : SNo (z * w )
L6795 Hypothesis H14 : SNo (u * y )
L6796 Hypothesis H15 : SNo (x * v )
L6797 Hypothesis H16 : SNo (u * v )
L6798 Hypothesis H17 : SNo (z * v )
L6799 Hypothesis H18 : (x * w + z * v ) < z * w + x * v
L6800 Hypothesis H19 : x2 β SNoL z
L6801 Hypothesis H20 : x2 β SNoR u
L6802 Hypothesis H21 : (z * y + x2 * v ) < x2 * y + z * v
L6803
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__81__3
Beginning of Section Conj_mul_SNo_prop_1__83__6
L6815 Hypothesis H0 : SNo x
L6816 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6817 Hypothesis H2 : SNo y
L6818 Hypothesis H3 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6819 Hypothesis H4 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L6820 Hypothesis H5 : z β SNoL x
L6821 Hypothesis H7 : SNo z
L6822 Hypothesis H8 : SNoLev z β SNoLev x
L6823 Hypothesis H9 : z < x
L6824 Hypothesis H10 : SNo w
L6825 Hypothesis H11 : u β SNoL x
L6826 Hypothesis H12 : v β SNoR y
L6827 Hypothesis H13 : SNo u
L6828 Hypothesis H14 : SNoLev u β SNoLev x
L6829 Hypothesis H15 : u < x
L6830 Hypothesis H16 : SNo v
L6831 Hypothesis H17 : SNo (z * y )
L6832 Hypothesis H18 : SNo (x * w )
L6833 Hypothesis H19 : SNo (z * w )
L6834 Hypothesis H20 : SNo (u * y )
L6835 Hypothesis H21 : SNo (x * v )
L6836 Hypothesis H22 : SNo (u * v )
L6837 Hypothesis H23 : SNo (z * v )
L6838 Hypothesis H24 : SNo (u * w )
L6839 Hypothesis H25 : (x * w + z * v ) < z * w + x * v
L6840 Hypothesis H26 : (x * w + u * v ) < u * w + x * v
L6841 Hypothesis H27 : (z * y + u * v ) < u * y + z * v β (z * y + x * w + u * v ) < u * y + x * v + z * w
L6842 Theorem. (
Conj_mul_SNo_prop_1__83__6 )
((z * y + u * w ) < u * y + z * w β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__83__6
Beginning of Section Conj_mul_SNo_prop_1__83__21
L6854 Hypothesis H0 : SNo x
L6855 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6856 Hypothesis H2 : SNo y
L6857 Hypothesis H3 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6858 Hypothesis H4 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L6859 Hypothesis H5 : z β SNoL x
L6860 Hypothesis H6 : w β SNoL y
L6861 Hypothesis H7 : SNo z
L6862 Hypothesis H8 : SNoLev z β SNoLev x
L6863 Hypothesis H9 : z < x
L6864 Hypothesis H10 : SNo w
L6865 Hypothesis H11 : u β SNoL x
L6866 Hypothesis H12 : v β SNoR y
L6867 Hypothesis H13 : SNo u
L6868 Hypothesis H14 : SNoLev u β SNoLev x
L6869 Hypothesis H15 : u < x
L6870 Hypothesis H16 : SNo v
L6871 Hypothesis H17 : SNo (z * y )
L6872 Hypothesis H18 : SNo (x * w )
L6873 Hypothesis H19 : SNo (z * w )
L6874 Hypothesis H20 : SNo (u * y )
L6875 Hypothesis H22 : SNo (u * v )
L6876 Hypothesis H23 : SNo (z * v )
L6877 Hypothesis H24 : SNo (u * w )
L6878 Hypothesis H25 : (x * w + z * v ) < z * w + x * v
L6879 Hypothesis H26 : (x * w + u * v ) < u * w + x * v
L6880 Hypothesis H27 : (z * y + u * v ) < u * y + z * v β (z * y + x * w + u * v ) < u * y + x * v + z * w
L6881 Theorem. (
Conj_mul_SNo_prop_1__83__21 )
((z * y + u * w ) < u * y + z * w β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__83__21
Beginning of Section Conj_mul_SNo_prop_1__84__18
L6893 Hypothesis H0 : SNo x
L6894 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6895 Hypothesis H2 : SNo y
L6896 Hypothesis H3 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6897 Hypothesis H4 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L6898 Hypothesis H5 : z β SNoL x
L6899 Hypothesis H6 : w β SNoL y
L6900 Hypothesis H7 : SNo z
L6901 Hypothesis H8 : SNoLev z β SNoLev x
L6902 Hypothesis H9 : z < x
L6903 Hypothesis H10 : SNo w
L6904 Hypothesis H11 : u β SNoL x
L6905 Hypothesis H12 : v β SNoR y
L6906 Hypothesis H13 : SNo u
L6907 Hypothesis H14 : SNoLev u β SNoLev x
L6908 Hypothesis H15 : u < x
L6909 Hypothesis H16 : SNo v
L6910 Hypothesis H17 : SNo (z * y )
L6911 Hypothesis H19 : SNo (z * w )
L6912 Hypothesis H20 : SNo (u * y )
L6913 Hypothesis H21 : SNo (x * v )
L6914 Hypothesis H22 : SNo (u * v )
L6915 Hypothesis H23 : SNo (z * v )
L6916 Hypothesis H24 : SNo (u * w )
L6917 Hypothesis H25 : (x * w + z * v ) < z * w + x * v
L6918 Hypothesis H26 : (x * w + u * v ) < u * w + x * v
L6919 Theorem. (
Conj_mul_SNo_prop_1__84__18 )
((z * y + u * v ) < u * y + z * v β (z * y + x * w + u * v ) < u * y + x * v + z * w ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__84__18
Beginning of Section Conj_mul_SNo_prop_1__85__16
L6931 Hypothesis H0 : SNo x
L6932 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6933 Hypothesis H2 : SNo y
L6934 Hypothesis H3 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6935 Hypothesis H4 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L6936 Hypothesis H5 : z β SNoL x
L6937 Hypothesis H6 : w β SNoL y
L6938 Hypothesis H7 : SNo z
L6939 Hypothesis H8 : SNoLev z β SNoLev x
L6940 Hypothesis H9 : z < x
L6941 Hypothesis H10 : SNo w
L6942 Hypothesis H11 : u β SNoL x
L6943 Hypothesis H12 : v β SNoR y
L6944 Hypothesis H13 : SNo u
L6945 Hypothesis H14 : SNoLev u β SNoLev x
L6946 Hypothesis H15 : u < x
L6947 Hypothesis H17 : SNo (z * y )
L6948 Hypothesis H18 : SNo (x * w )
L6949 Hypothesis H19 : SNo (z * w )
L6950 Hypothesis H20 : SNo (u * y )
L6951 Hypothesis H21 : SNo (x * v )
L6952 Hypothesis H22 : SNo (u * v )
L6953 Hypothesis H23 : SNo (z * v )
L6954 Hypothesis H24 : SNo (u * w )
L6955 Hypothesis H25 : (βx2 : set , x2 β SNoL x β (x * w + x2 * v ) < x2 * w + x * v )
L6956 Hypothesis H26 : (x * w + z * v ) < z * w + x * v
L6957
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__85__16
Beginning of Section Conj_mul_SNo_prop_1__85__24
L6969 Hypothesis H0 : SNo x
L6970 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L6971 Hypothesis H2 : SNo y
L6972 Hypothesis H3 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L6973 Hypothesis H4 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L6974 Hypothesis H5 : z β SNoL x
L6975 Hypothesis H6 : w β SNoL y
L6976 Hypothesis H7 : SNo z
L6977 Hypothesis H8 : SNoLev z β SNoLev x
L6978 Hypothesis H9 : z < x
L6979 Hypothesis H10 : SNo w
L6980 Hypothesis H11 : u β SNoL x
L6981 Hypothesis H12 : v β SNoR y
L6982 Hypothesis H13 : SNo u
L6983 Hypothesis H14 : SNoLev u β SNoLev x
L6984 Hypothesis H15 : u < x
L6985 Hypothesis H16 : SNo v
L6986 Hypothesis H17 : SNo (z * y )
L6987 Hypothesis H18 : SNo (x * w )
L6988 Hypothesis H19 : SNo (z * w )
L6989 Hypothesis H20 : SNo (u * y )
L6990 Hypothesis H21 : SNo (x * v )
L6991 Hypothesis H22 : SNo (u * v )
L6992 Hypothesis H23 : SNo (z * v )
L6993 Hypothesis H25 : (βx2 : set , x2 β SNoL x β (x * w + x2 * v ) < x2 * w + x * v )
L6994 Hypothesis H26 : (x * w + z * v ) < z * w + x * v
L6995
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__85__24
Beginning of Section Conj_mul_SNo_prop_1__86__11
L7007 Hypothesis H0 : SNo x
L7008 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L7009 Hypothesis H2 : SNo y
L7010 Hypothesis H3 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L7011 Hypothesis H4 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L7012 Hypothesis H5 : z β SNoL x
L7013 Hypothesis H6 : w β SNoL y
L7014 Hypothesis H7 : SNo z
L7015 Hypothesis H8 : SNoLev z β SNoLev x
L7016 Hypothesis H9 : z < x
L7017 Hypothesis H10 : SNo w
L7018 Hypothesis H12 : v β SNoR y
L7019 Hypothesis H13 : SNo u
L7020 Hypothesis H14 : SNoLev u β SNoLev x
L7021 Hypothesis H15 : u < x
L7022 Hypothesis H16 : SNo v
L7023 Hypothesis H17 : SNo (z * y )
L7024 Hypothesis H18 : SNo (x * w )
L7025 Hypothesis H19 : SNo (z * w )
L7026 Hypothesis H20 : SNo (u * y )
L7027 Hypothesis H21 : SNo (x * v )
L7028 Hypothesis H22 : SNo (u * v )
L7029 Hypothesis H23 : SNo (z * v )
L7030 Hypothesis H24 : SNo (u * w )
L7031 Hypothesis H25 : (βx2 : set , x2 β SNoL x β (x * w + x2 * v ) < x2 * w + x * v )
L7032
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__86__11
Beginning of Section Conj_mul_SNo_prop_1__86__25
L7044 Hypothesis H0 : SNo x
L7045 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L7046 Hypothesis H2 : SNo y
L7047 Hypothesis H3 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L7048 Hypothesis H4 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L7049 Hypothesis H5 : z β SNoL x
L7050 Hypothesis H6 : w β SNoL y
L7051 Hypothesis H7 : SNo z
L7052 Hypothesis H8 : SNoLev z β SNoLev x
L7053 Hypothesis H9 : z < x
L7054 Hypothesis H10 : SNo w
L7055 Hypothesis H11 : u β SNoL x
L7056 Hypothesis H12 : v β SNoR y
L7057 Hypothesis H13 : SNo u
L7058 Hypothesis H14 : SNoLev u β SNoLev x
L7059 Hypothesis H15 : u < x
L7060 Hypothesis H16 : SNo v
L7061 Hypothesis H17 : SNo (z * y )
L7062 Hypothesis H18 : SNo (x * w )
L7063 Hypothesis H19 : SNo (z * w )
L7064 Hypothesis H20 : SNo (u * y )
L7065 Hypothesis H21 : SNo (x * v )
L7066 Hypothesis H22 : SNo (u * v )
L7067 Hypothesis H23 : SNo (z * v )
L7068 Hypothesis H24 : SNo (u * w )
L7069
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__86__25
Beginning of Section Conj_mul_SNo_prop_1__87__23
L7081 Hypothesis H0 : SNo x
L7082 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L7083 Hypothesis H2 : SNo y
L7084 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L7085 Hypothesis H4 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L7086 Hypothesis H5 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L7087 Hypothesis H6 : z β SNoL x
L7088 Hypothesis H7 : w β SNoL y
L7089 Hypothesis H8 : SNo z
L7090 Hypothesis H9 : SNoLev z β SNoLev x
L7091 Hypothesis H10 : z < x
L7092 Hypothesis H11 : SNo w
L7093 Hypothesis H12 : SNoLev w β SNoLev y
L7094 Hypothesis H13 : u β SNoL x
L7095 Hypothesis H14 : v β SNoR y
L7096 Hypothesis H15 : SNo u
L7097 Hypothesis H16 : SNoLev u β SNoLev x
L7098 Hypothesis H17 : u < x
L7099 Hypothesis H18 : SNo v
L7100 Hypothesis H19 : SNo (z * y )
L7101 Hypothesis H20 : SNo (x * w )
L7102 Hypothesis H21 : SNo (z * w )
L7103 Hypothesis H22 : SNo (u * y )
L7104 Hypothesis H24 : SNo (u * v )
L7105 Hypothesis H25 : SNo (z * v )
L7106 Hypothesis H26 : SNo (u * w )
L7107 Hypothesis H27 : w < v
L7108 Theorem. (
Conj_mul_SNo_prop_1__87__23 )
(βx2 : set , x2 β SNoL x β (x * w + x2 * v ) < x2 * w + x * v ) β (z * y + x * w + u * v ) < u * y + x * v + z * w
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__87__23
Beginning of Section Conj_mul_SNo_prop_1__88__25
L7120 Hypothesis H0 : SNo x
L7121 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L7122 Hypothesis H2 : SNo y
L7123 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L7124 Hypothesis H4 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L7125 Hypothesis H5 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L7126 Hypothesis H6 : z β SNoL x
L7127 Hypothesis H7 : w β SNoL y
L7128 Hypothesis H8 : SNo z
L7129 Hypothesis H9 : SNoLev z β SNoLev x
L7130 Hypothesis H10 : z < x
L7131 Hypothesis H11 : SNo w
L7132 Hypothesis H12 : SNoLev w β SNoLev y
L7133 Hypothesis H13 : w < y
L7134 Hypothesis H14 : u β SNoL x
L7135 Hypothesis H15 : v β SNoR y
L7136 Hypothesis H16 : SNo u
L7137 Hypothesis H17 : SNoLev u β SNoLev x
L7138 Hypothesis H18 : u < x
L7139 Hypothesis H19 : SNo v
L7140 Hypothesis H20 : y < v
L7141 Hypothesis H21 : SNo (z * y )
L7142 Hypothesis H22 : SNo (x * w )
L7143 Hypothesis H23 : SNo (z * w )
L7144 Hypothesis H24 : SNo (u * y )
L7145 Hypothesis H26 : SNo (u * v )
L7146 Hypothesis H27 : SNo (z * v )
L7147 Hypothesis H28 : SNo (u * w )
L7148
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__88__25
Beginning of Section Conj_mul_SNo_prop_1__88__27
L7160 Hypothesis H0 : SNo x
L7161 Hypothesis H1 : (βx2 : set , x2 β SNoS_ (SNoLev x ) β (βy2 : set , SNo y2 β (βP : prop , (SNo (x2 * y2 ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoL y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoR y2 β (z2 * y2 + x2 * w2 ) < x2 * y2 + z2 * w2 ) ) β (βz2 : set , z2 β SNoL x2 β (βw2 : set , w2 β SNoR y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β (βz2 : set , z2 β SNoR x2 β (βw2 : set , w2 β SNoL y2 β (x2 * y2 + z2 * w2 ) < z2 * y2 + x2 * w2 ) ) β P ) β P ) ) )
L7162 Hypothesis H2 : SNo y
L7163 Hypothesis H3 : (βx2 : set , x2 β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * x2 ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoL x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR x2 β (y2 * x2 + x * z2 ) < x * x2 + y2 * z2 ) ) β (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL x2 β (x * x2 + y2 * z2 ) < y2 * x2 + x * z2 ) ) β P ) β P ) )
L7164 Hypothesis H4 : (βx2 : set , x2 β SNoL x β (βy2 : set , SNo y2 β SNo (x2 * y2 ) ) )
L7165 Hypothesis H5 : (βx2 : set , x2 β SNoL x β SNo (x2 * y ) )
L7166 Hypothesis H6 : z β SNoL x
L7167 Hypothesis H7 : w β SNoL y
L7168 Hypothesis H8 : SNo z
L7169 Hypothesis H9 : SNoLev z β SNoLev x
L7170 Hypothesis H10 : z < x
L7171 Hypothesis H11 : SNo w
L7172 Hypothesis H12 : SNoLev w β SNoLev y
L7173 Hypothesis H13 : w < y
L7174 Hypothesis H14 : u β SNoL x
L7175 Hypothesis H15 : v β SNoR y
L7176 Hypothesis H16 : SNo u
L7177 Hypothesis H17 : SNoLev u β SNoLev x
L7178 Hypothesis H18 : u < x
L7179 Hypothesis H19 : SNo v
L7180 Hypothesis H20 : y < v
L7181 Hypothesis H21 : SNo (z * y )
L7182 Hypothesis H22 : SNo (x * w )
L7183 Hypothesis H23 : SNo (z * w )
L7184 Hypothesis H24 : SNo (u * y )
L7185 Hypothesis H25 : SNo (x * v )
L7186 Hypothesis H26 : SNo (u * v )
L7187 Hypothesis H28 : SNo (u * w )
L7188
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__88__27
Beginning of Section Conj_mul_SNo_prop_1__94__4
L7198 Hypothesis H0 : SNo y
L7199 Hypothesis H1 : (βu : set , u β SNoL x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β z ) )
L7200 Hypothesis H2 : (βu : set , u β SNoR x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β z ) )
L7201 Hypothesis H3 : (βu : set , u β SNoL x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β w ) )
L7202 Hypothesis H5 : x * y = SNoCut z w
L7203 Hypothesis H6 : (βu : set , u β SNoL x β (βv : set , SNo v β SNo (u * v ) ) )
L7204 Hypothesis H7 : (βu : set , u β SNoR x β (βv : set , SNo v β SNo (u * v ) ) )
L7205 Hypothesis H8 : (βu : set , u β SNoL y β SNo (x * u ) )
L7206 Hypothesis H9 : (βu : set , u β SNoR y β SNo (x * u ) )
L7207 Hypothesis H10 : SNoCutP z w
L7208 Theorem. (
Conj_mul_SNo_prop_1__94__4 )
SNo (x * y ) β (βP : prop , (SNo (x * y ) β (βu : set , u β SNoL x β (βv : set , v β SNoL y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoR y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoL x β (βv : set , v β SNoR y β (x * y + u * v ) < u * y + x * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoL y β (x * y + u * v ) < u * y + x * v ) ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__94__4
Beginning of Section Conj_mul_SNo_prop_1__96__3
L7218 Hypothesis H0 : SNo x
L7219 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β (βP : prop , (SNo (u * v ) β (βx2 : set , x2 β SNoL u β (βy2 : set , y2 β SNoL v β (x2 * v + u * y2 ) < u * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoR u β (βy2 : set , y2 β SNoR v β (x2 * v + u * y2 ) < u * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoL u β (βy2 : set , y2 β SNoR v β (u * v + x2 * y2 ) < x2 * v + u * y2 ) ) β (βx2 : set , x2 β SNoR u β (βy2 : set , y2 β SNoL v β (u * v + x2 * y2 ) < x2 * v + u * y2 ) ) β P ) β P ) ) )
L7220 Hypothesis H2 : SNo y
L7221 Hypothesis H4 : (βu : set , u β z β (βP : prop , (βv : set , v β SNoL x β (βx2 : set , x2 β SNoL y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoR y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β P ) )
L7222 Hypothesis H5 : (βu : set , u β SNoL x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β z ) )
L7223 Hypothesis H6 : (βu : set , u β SNoR x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β z ) )
L7224 Hypothesis H7 : (βu : set , u β w β (βP : prop , (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoL y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β P ) )
L7225 Hypothesis H8 : (βu : set , u β SNoL x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β w ) )
L7226 Hypothesis H9 : (βu : set , u β SNoR x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β w ) )
L7227 Hypothesis H10 : x * y = SNoCut z w
L7228 Hypothesis H11 : (βu : set , u β SNoL x β (βv : set , SNo v β SNo (u * v ) ) )
L7229 Hypothesis H12 : (βu : set , u β SNoR x β (βv : set , SNo v β SNo (u * v ) ) )
L7230 Hypothesis H13 : (βu : set , u β SNoL x β SNo (u * y ) )
L7231 Hypothesis H14 : (βu : set , u β SNoR x β SNo (u * y ) )
L7232 Hypothesis H15 : (βu : set , u β SNoL y β SNo (x * u ) )
L7233 Theorem. (
Conj_mul_SNo_prop_1__96__3 )
(βu : set , u β SNoR y β SNo (x * u ) ) β (βP : prop , (SNo (x * y ) β (βu : set , u β SNoL x β (βv : set , v β SNoL y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoR y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoL x β (βv : set , v β SNoR y β (x * y + u * v ) < u * y + x * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoL y β (x * y + u * v ) < u * y + x * v ) ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__96__3
Beginning of Section Conj_mul_SNo_prop_1__97__6
L7243 Hypothesis H0 : SNo x
L7244 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β (βP : prop , (SNo (u * v ) β (βx2 : set , x2 β SNoL u β (βy2 : set , y2 β SNoL v β (x2 * v + u * y2 ) < u * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoR u β (βy2 : set , y2 β SNoR v β (x2 * v + u * y2 ) < u * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoL u β (βy2 : set , y2 β SNoR v β (u * v + x2 * y2 ) < x2 * v + u * y2 ) ) β (βx2 : set , x2 β SNoR u β (βy2 : set , y2 β SNoL v β (u * v + x2 * y2 ) < x2 * v + u * y2 ) ) β P ) β P ) ) )
L7245 Hypothesis H2 : SNo y
L7246 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * u ) β (βv : set , v β SNoL x β (βx2 : set , x2 β SNoL u β (v * u + x * x2 ) < x * u + v * x2 ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoR u β (v * u + x * x2 ) < x * u + v * x2 ) ) β (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR u β (x * u + v * x2 ) < v * u + x * x2 ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoL u β (x * u + v * x2 ) < v * u + x * x2 ) ) β P ) β P ) )
L7247 Hypothesis H4 : (βu : set , u β z β (βP : prop , (βv : set , v β SNoL x β (βx2 : set , x2 β SNoL y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoR y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β P ) )
L7248 Hypothesis H5 : (βu : set , u β SNoL x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β z ) )
L7249 Hypothesis H7 : (βu : set , u β w β (βP : prop , (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoL y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β P ) )
L7250 Hypothesis H8 : (βu : set , u β SNoL x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β w ) )
L7251 Hypothesis H9 : (βu : set , u β SNoR x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β w ) )
L7252 Hypothesis H10 : x * y = SNoCut z w
L7253 Hypothesis H11 : (βu : set , u β SNoL x β (βv : set , SNo v β SNo (u * v ) ) )
L7254 Hypothesis H12 : (βu : set , u β SNoR x β (βv : set , SNo v β SNo (u * v ) ) )
L7255 Hypothesis H13 : (βu : set , u β SNoL x β SNo (u * y ) )
L7256 Hypothesis H14 : (βu : set , u β SNoR x β SNo (u * y ) )
L7257 Theorem. (
Conj_mul_SNo_prop_1__97__6 )
(βu : set , u β SNoL y β SNo (x * u ) ) β (βP : prop , (SNo (x * y ) β (βu : set , u β SNoL x β (βv : set , v β SNoL y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoR y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoL x β (βv : set , v β SNoR y β (x * y + u * v ) < u * y + x * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoL y β (x * y + u * v ) < u * y + x * v ) ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__97__6
Beginning of Section Conj_mul_SNo_prop_1__98__11
L7267 Hypothesis H0 : SNo x
L7268 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β (βP : prop , (SNo (u * v ) β (βx2 : set , x2 β SNoL u β (βy2 : set , y2 β SNoL v β (x2 * v + u * y2 ) < u * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoR u β (βy2 : set , y2 β SNoR v β (x2 * v + u * y2 ) < u * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoL u β (βy2 : set , y2 β SNoR v β (u * v + x2 * y2 ) < x2 * v + u * y2 ) ) β (βx2 : set , x2 β SNoR u β (βy2 : set , y2 β SNoL v β (u * v + x2 * y2 ) < x2 * v + u * y2 ) ) β P ) β P ) ) )
L7269 Hypothesis H2 : SNo y
L7270 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * u ) β (βv : set , v β SNoL x β (βx2 : set , x2 β SNoL u β (v * u + x * x2 ) < x * u + v * x2 ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoR u β (v * u + x * x2 ) < x * u + v * x2 ) ) β (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR u β (x * u + v * x2 ) < v * u + x * x2 ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoL u β (x * u + v * x2 ) < v * u + x * x2 ) ) β P ) β P ) )
L7271 Hypothesis H4 : (βu : set , u β z β (βP : prop , (βv : set , v β SNoL x β (βx2 : set , x2 β SNoL y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoR y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β P ) )
L7272 Hypothesis H5 : (βu : set , u β SNoL x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β z ) )
L7273 Hypothesis H6 : (βu : set , u β SNoR x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β z ) )
L7274 Hypothesis H7 : (βu : set , u β w β (βP : prop , (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoL y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β P ) )
L7275 Hypothesis H8 : (βu : set , u β SNoL x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β w ) )
L7276 Hypothesis H9 : (βu : set , u β SNoR x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β w ) )
L7277 Hypothesis H10 : x * y = SNoCut z w
L7278 Hypothesis H12 : (βu : set , u β SNoR x β (βv : set , SNo v β SNo (u * v ) ) )
L7279 Hypothesis H13 : (βu : set , u β SNoL x β SNo (u * y ) )
L7280 Theorem. (
Conj_mul_SNo_prop_1__98__11 )
(βu : set , u β SNoR x β SNo (u * y ) ) β (βP : prop , (SNo (x * y ) β (βu : set , u β SNoL x β (βv : set , v β SNoL y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoR y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoL x β (βv : set , v β SNoR y β (x * y + u * v ) < u * y + x * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoL y β (x * y + u * v ) < u * y + x * v ) ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__98__11
Beginning of Section Conj_mul_SNo_prop_1__101__4
L7290 Hypothesis H0 : SNo x
L7291 Hypothesis H1 : (βu : set , u β SNoS_ (SNoLev x ) β (βv : set , SNo v β (βP : prop , (SNo (u * v ) β (βx2 : set , x2 β SNoL u β (βy2 : set , y2 β SNoL v β (x2 * v + u * y2 ) < u * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoR u β (βy2 : set , y2 β SNoR v β (x2 * v + u * y2 ) < u * v + x2 * y2 ) ) β (βx2 : set , x2 β SNoL u β (βy2 : set , y2 β SNoR v β (u * v + x2 * y2 ) < x2 * v + u * y2 ) ) β (βx2 : set , x2 β SNoR u β (βy2 : set , y2 β SNoL v β (u * v + x2 * y2 ) < x2 * v + u * y2 ) ) β P ) β P ) ) )
L7292 Hypothesis H2 : SNo y
L7293 Hypothesis H3 : (βu : set , u β SNoS_ (SNoLev y ) β (βP : prop , (SNo (x * u ) β (βv : set , v β SNoL x β (βx2 : set , x2 β SNoL u β (v * u + x * x2 ) < x * u + v * x2 ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoR u β (v * u + x * x2 ) < x * u + v * x2 ) ) β (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR u β (x * u + v * x2 ) < v * u + x * x2 ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoL u β (x * u + v * x2 ) < v * u + x * x2 ) ) β P ) β P ) )
L7294 Hypothesis H5 : (βu : set , u β SNoL x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β z ) )
L7295 Hypothesis H6 : (βu : set , u β SNoR x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β z ) )
L7296 Hypothesis H7 : (βu : set , u β w β (βP : prop , (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β (βv : set , v β SNoR x β (βx2 : set , x2 β SNoL y β u = v * y + x * x2 + - (v * x2 ) β P ) ) β P ) )
L7297 Hypothesis H8 : (βu : set , u β SNoL x β (βv : set , v β SNoR y β u * y + x * v + - (u * v ) β w ) )
L7298 Hypothesis H9 : (βu : set , u β SNoR x β (βv : set , v β SNoL y β u * y + x * v + - (u * v ) β w ) )
L7299 Hypothesis H10 : x * y = SNoCut z w
L7300 Theorem. (
Conj_mul_SNo_prop_1__101__4 )
(βu : set , u β SNoL x β (βv : set , SNo v β SNo (u * v ) ) ) β (βP : prop , (SNo (x * y ) β (βu : set , u β SNoL x β (βv : set , v β SNoL y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoR y β (u * y + x * v ) < x * y + u * v ) ) β (βu : set , u β SNoL x β (βv : set , v β SNoR y β (x * y + u * v ) < u * y + x * v ) ) β (βu : set , u β SNoR x β (βv : set , v β SNoL y β (x * y + u * v ) < u * y + x * v ) ) β P ) β P )
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_prop_1__101__4
Beginning of Section Conj_mul_SNo_eq_3__2__1
L7314 Hypothesis H0 : SNo x
L7315 Hypothesis H2 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7316 Hypothesis H3 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7317 Hypothesis H4 : u β SNoR x
L7318 Hypothesis H5 : v β SNoR y
L7319 Hypothesis H6 : z = u * y + x * v + - (u * v )
L7320 Hypothesis H7 : SNo (u * y )
L7321 Hypothesis H8 : SNo (x * v )
L7322 Hypothesis H9 : SNo (u * v )
L7323 Hypothesis H10 : x2 β SNoR x
L7324 Hypothesis H11 : y2 β SNoL y
L7325 Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2 )
L7326 Hypothesis H13 : SNo x2
L7327 Hypothesis H14 : SNo y2
L7328 Hypothesis H15 : SNo (x2 * y )
L7329
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__2__1
Beginning of Section Conj_mul_SNo_eq_3__2__9
L7343 Hypothesis H0 : SNo x
L7344 Hypothesis H1 : SNo (x * y )
L7345 Hypothesis H2 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7346 Hypothesis H3 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7347 Hypothesis H4 : u β SNoR x
L7348 Hypothesis H5 : v β SNoR y
L7349 Hypothesis H6 : z = u * y + x * v + - (u * v )
L7350 Hypothesis H7 : SNo (u * y )
L7351 Hypothesis H8 : SNo (x * v )
L7352 Hypothesis H10 : x2 β SNoR x
L7353 Hypothesis H11 : y2 β SNoL y
L7354 Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2 )
L7355 Hypothesis H13 : SNo x2
L7356 Hypothesis H14 : SNo y2
L7357 Hypothesis H15 : SNo (x2 * y )
L7358
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__2__9
Beginning of Section Conj_mul_SNo_eq_3__3__10
L7372 Hypothesis H0 : SNo x
L7373 Hypothesis H1 : SNo y
L7374 Hypothesis H2 : SNo (x * y )
L7375 Hypothesis H3 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7376 Hypothesis H4 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7377 Hypothesis H5 : u β SNoR x
L7378 Hypothesis H6 : v β SNoR y
L7379 Hypothesis H7 : z = u * y + x * v + - (u * v )
L7380 Hypothesis H8 : SNo (u * y )
L7381 Hypothesis H9 : SNo (x * v )
L7382 Hypothesis H11 : x2 β SNoR x
L7383 Hypothesis H12 : y2 β SNoL y
L7384 Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2 )
L7385 Hypothesis H14 : SNo x2
L7386 Hypothesis H15 : SNo y2
L7387
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__3__10
Beginning of Section Conj_mul_SNo_eq_3__3__13
L7401 Hypothesis H0 : SNo x
L7402 Hypothesis H1 : SNo y
L7403 Hypothesis H2 : SNo (x * y )
L7404 Hypothesis H3 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoR y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7405 Hypothesis H4 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7406 Hypothesis H5 : u β SNoR x
L7407 Hypothesis H6 : v β SNoR y
L7408 Hypothesis H7 : z = u * y + x * v + - (u * v )
L7409 Hypothesis H8 : SNo (u * y )
L7410 Hypothesis H9 : SNo (x * v )
L7411 Hypothesis H10 : SNo (u * v )
L7412 Hypothesis H11 : x2 β SNoR x
L7413 Hypothesis H12 : y2 β SNoL y
L7414 Hypothesis H14 : SNo x2
L7415 Hypothesis H15 : SNo y2
L7416
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__3__13
Beginning of Section Conj_mul_SNo_eq_3__7__14
L7429 Hypothesis H0 : SNo x
L7430 Hypothesis H1 : SNo y
L7431 Hypothesis H2 : (βy2 : set , y2 β z β (βP : prop , (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β P ) )
L7432 Hypothesis H3 : SNo (x * y )
L7433 Hypothesis H4 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR y β (y2 * y + x * z2 ) < x * y + y2 * z2 ) )
L7434 Hypothesis H5 : (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7435 Hypothesis H6 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7437 Hypothesis H8 : v β SNoR x
L7438 Hypothesis H9 : x2 β SNoR y
L7439 Hypothesis H10 : w = v * y + x * x2 + - (v * x2 )
L7440 Hypothesis H11 : SNo v
L7441 Hypothesis H12 : SNo x2
L7442 Hypothesis H13 : SNo (v * y )
L7443
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__7__14
Beginning of Section Conj_mul_SNo_eq_3__8__0
L7456 Hypothesis H1 : SNo y
L7457 Hypothesis H2 : (βy2 : set , y2 β z β (βP : prop , (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β P ) )
L7458 Hypothesis H3 : SNo (x * y )
L7459 Hypothesis H4 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR y β (y2 * y + x * z2 ) < x * y + y2 * z2 ) )
L7460 Hypothesis H5 : (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7461 Hypothesis H6 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7463 Hypothesis H8 : v β SNoR x
L7464 Hypothesis H9 : x2 β SNoR y
L7465 Hypothesis H10 : w = v * y + x * x2 + - (v * x2 )
L7466 Hypothesis H11 : SNo v
L7467 Hypothesis H12 : SNo x2
L7468 Hypothesis H13 : SNo (v * y )
L7469
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__8__0
Beginning of Section Conj_mul_SNo_eq_3__8__2
L7482 Hypothesis H0 : SNo x
L7483 Hypothesis H1 : SNo y
L7484 Hypothesis H3 : SNo (x * y )
L7485 Hypothesis H4 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR y β (y2 * y + x * z2 ) < x * y + y2 * z2 ) )
L7486 Hypothesis H5 : (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7487 Hypothesis H6 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7489 Hypothesis H8 : v β SNoR x
L7490 Hypothesis H9 : x2 β SNoR y
L7491 Hypothesis H10 : w = v * y + x * x2 + - (v * x2 )
L7492 Hypothesis H11 : SNo v
L7493 Hypothesis H12 : SNo x2
L7494 Hypothesis H13 : SNo (v * y )
L7495
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__8__2
Beginning of Section Conj_mul_SNo_eq_3__8__4
L7508 Hypothesis H0 : SNo x
L7509 Hypothesis H1 : SNo y
L7510 Hypothesis H2 : (βy2 : set , y2 β z β (βP : prop , (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β P ) )
L7511 Hypothesis H3 : SNo (x * y )
L7512 Hypothesis H5 : (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7513 Hypothesis H6 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7515 Hypothesis H8 : v β SNoR x
L7516 Hypothesis H9 : x2 β SNoR y
L7517 Hypothesis H10 : w = v * y + x * x2 + - (v * x2 )
L7518 Hypothesis H11 : SNo v
L7519 Hypothesis H12 : SNo x2
L7520 Hypothesis H13 : SNo (v * y )
L7521
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__8__4
Beginning of Section Conj_mul_SNo_eq_3__8__8
L7534 Hypothesis H0 : SNo x
L7535 Hypothesis H1 : SNo y
L7536 Hypothesis H2 : (βy2 : set , y2 β z β (βP : prop , (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β P ) )
L7537 Hypothesis H3 : SNo (x * y )
L7538 Hypothesis H4 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR y β (y2 * y + x * z2 ) < x * y + y2 * z2 ) )
L7539 Hypothesis H5 : (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7540 Hypothesis H6 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7542 Hypothesis H9 : x2 β SNoR y
L7543 Hypothesis H10 : w = v * y + x * x2 + - (v * x2 )
L7544 Hypothesis H11 : SNo v
L7545 Hypothesis H12 : SNo x2
L7546 Hypothesis H13 : SNo (v * y )
L7547
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__8__8
Beginning of Section Conj_mul_SNo_eq_3__8__12
L7560 Hypothesis H0 : SNo x
L7561 Hypothesis H1 : SNo y
L7562 Hypothesis H2 : (βy2 : set , y2 β z β (βP : prop , (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β y2 = z2 * y + x * w2 + - (z2 * w2 ) β P ) ) β P ) )
L7563 Hypothesis H3 : SNo (x * y )
L7564 Hypothesis H4 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoR y β (y2 * y + x * z2 ) < x * y + y2 * z2 ) )
L7565 Hypothesis H5 : (βy2 : set , y2 β SNoL x β (βz2 : set , z2 β SNoR y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7566 Hypothesis H6 : (βy2 : set , y2 β SNoR x β (βz2 : set , z2 β SNoL y β (x * y + y2 * z2 ) < y2 * y + x * z2 ) )
L7568 Hypothesis H8 : v β SNoR x
L7569 Hypothesis H9 : x2 β SNoR y
L7570 Hypothesis H10 : w = v * y + x * x2 + - (v * x2 )
L7571 Hypothesis H11 : SNo v
L7572 Hypothesis H13 : SNo (v * y )
L7573
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__8__12
Beginning of Section Conj_mul_SNo_eq_3__10__3
L7587 Hypothesis H0 : SNo (x * y )
L7588 Hypothesis H1 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7589 Hypothesis H2 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7590 Hypothesis H4 : v β SNoL y
L7591 Hypothesis H5 : z = u * y + x * v + - (u * v )
L7592 Hypothesis H6 : SNo (u * y )
L7593 Hypothesis H7 : SNo (x * v )
L7594 Hypothesis H8 : SNo (u * v )
L7595 Hypothesis H9 : x2 β SNoR x
L7596 Hypothesis H10 : y2 β SNoL y
L7597 Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2 )
L7598 Hypothesis H12 : SNo x2
L7599 Hypothesis H13 : SNo y2
L7600 Hypothesis H14 : SNo (x2 * y )
L7601 Hypothesis H15 : SNo (x * y2 )
L7602
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__10__3
Beginning of Section Conj_mul_SNo_eq_3__10__14
L7616 Hypothesis H0 : SNo (x * y )
L7617 Hypothesis H1 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7618 Hypothesis H2 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7619 Hypothesis H3 : u β SNoL x
L7620 Hypothesis H4 : v β SNoL y
L7621 Hypothesis H5 : z = u * y + x * v + - (u * v )
L7622 Hypothesis H6 : SNo (u * y )
L7623 Hypothesis H7 : SNo (x * v )
L7624 Hypothesis H8 : SNo (u * v )
L7625 Hypothesis H9 : x2 β SNoR x
L7626 Hypothesis H10 : y2 β SNoL y
L7627 Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2 )
L7628 Hypothesis H12 : SNo x2
L7629 Hypothesis H13 : SNo y2
L7630 Hypothesis H15 : SNo (x * y2 )
L7631
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__10__14
Beginning of Section Conj_mul_SNo_eq_3__10__15
L7645 Hypothesis H0 : SNo (x * y )
L7646 Hypothesis H1 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7647 Hypothesis H2 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7648 Hypothesis H3 : u β SNoL x
L7649 Hypothesis H4 : v β SNoL y
L7650 Hypothesis H5 : z = u * y + x * v + - (u * v )
L7651 Hypothesis H6 : SNo (u * y )
L7652 Hypothesis H7 : SNo (x * v )
L7653 Hypothesis H8 : SNo (u * v )
L7654 Hypothesis H9 : x2 β SNoR x
L7655 Hypothesis H10 : y2 β SNoL y
L7656 Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2 )
L7657 Hypothesis H12 : SNo x2
L7658 Hypothesis H13 : SNo y2
L7659 Hypothesis H14 : SNo (x2 * y )
L7660
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__10__15
Beginning of Section Conj_mul_SNo_eq_3__12__1
L7674 Hypothesis H0 : SNo x
L7675 Hypothesis H2 : SNo (x * y )
L7676 Hypothesis H3 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7677 Hypothesis H4 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7678 Hypothesis H5 : u β SNoL x
L7679 Hypothesis H6 : v β SNoL y
L7680 Hypothesis H7 : z = u * y + x * v + - (u * v )
L7681 Hypothesis H8 : SNo (u * y )
L7682 Hypothesis H9 : SNo (x * v )
L7683 Hypothesis H10 : SNo (u * v )
L7684 Hypothesis H11 : x2 β SNoR x
L7685 Hypothesis H12 : y2 β SNoL y
L7686 Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2 )
L7687 Hypothesis H14 : SNo x2
L7688 Hypothesis H15 : SNo y2
L7689
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__12__1
Beginning of Section Conj_mul_SNo_eq_3__12__15
L7703 Hypothesis H0 : SNo x
L7704 Hypothesis H1 : SNo y
L7705 Hypothesis H2 : SNo (x * y )
L7706 Hypothesis H3 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7707 Hypothesis H4 : (βz2 : set , z2 β SNoR x β (βw2 : set , w2 β SNoL y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7708 Hypothesis H5 : u β SNoL x
L7709 Hypothesis H6 : v β SNoL y
L7710 Hypothesis H7 : z = u * y + x * v + - (u * v )
L7711 Hypothesis H8 : SNo (u * y )
L7712 Hypothesis H9 : SNo (x * v )
L7713 Hypothesis H10 : SNo (u * v )
L7714 Hypothesis H11 : x2 β SNoR x
L7715 Hypothesis H12 : y2 β SNoL y
L7716 Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2 )
L7717 Hypothesis H14 : SNo x2
L7718
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__12__15
Beginning of Section Conj_mul_SNo_eq_3__13__5
L7732 Hypothesis H0 : SNo (x * y )
L7733 Hypothesis H1 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7734 Hypothesis H2 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7735 Hypothesis H3 : u β SNoL x
L7736 Hypothesis H4 : v β SNoL y
L7737 Hypothesis H6 : SNo (u * y )
L7738 Hypothesis H7 : SNo (x * v )
L7739 Hypothesis H8 : SNo (u * v )
L7740 Hypothesis H9 : x2 β SNoL x
L7741 Hypothesis H10 : y2 β SNoR y
L7742 Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2 )
L7743 Hypothesis H12 : SNo x2
L7744 Hypothesis H13 : SNo y2
L7745 Hypothesis H14 : SNo (x2 * y )
L7746 Hypothesis H15 : SNo (x * y2 )
L7747
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__13__5
Beginning of Section Conj_mul_SNo_eq_3__13__8
L7761 Hypothesis H0 : SNo (x * y )
L7762 Hypothesis H1 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7763 Hypothesis H2 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7764 Hypothesis H3 : u β SNoL x
L7765 Hypothesis H4 : v β SNoL y
L7766 Hypothesis H5 : z = u * y + x * v + - (u * v )
L7767 Hypothesis H6 : SNo (u * y )
L7768 Hypothesis H7 : SNo (x * v )
L7769 Hypothesis H9 : x2 β SNoL x
L7770 Hypothesis H10 : y2 β SNoR y
L7771 Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2 )
L7772 Hypothesis H12 : SNo x2
L7773 Hypothesis H13 : SNo y2
L7774 Hypothesis H14 : SNo (x2 * y )
L7775 Hypothesis H15 : SNo (x * y2 )
L7776
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__13__8
Beginning of Section Conj_mul_SNo_eq_3__13__13
L7790 Hypothesis H0 : SNo (x * y )
L7791 Hypothesis H1 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7792 Hypothesis H2 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7793 Hypothesis H3 : u β SNoL x
L7794 Hypothesis H4 : v β SNoL y
L7795 Hypothesis H5 : z = u * y + x * v + - (u * v )
L7796 Hypothesis H6 : SNo (u * y )
L7797 Hypothesis H7 : SNo (x * v )
L7798 Hypothesis H8 : SNo (u * v )
L7799 Hypothesis H9 : x2 β SNoL x
L7800 Hypothesis H10 : y2 β SNoR y
L7801 Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2 )
L7802 Hypothesis H12 : SNo x2
L7803 Hypothesis H14 : SNo (x2 * y )
L7804 Hypothesis H15 : SNo (x * y2 )
L7805
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__13__13
Beginning of Section Conj_mul_SNo_eq_3__13__14
L7819 Hypothesis H0 : SNo (x * y )
L7820 Hypothesis H1 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7821 Hypothesis H2 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7822 Hypothesis H3 : u β SNoL x
L7823 Hypothesis H4 : v β SNoL y
L7824 Hypothesis H5 : z = u * y + x * v + - (u * v )
L7825 Hypothesis H6 : SNo (u * y )
L7826 Hypothesis H7 : SNo (x * v )
L7827 Hypothesis H8 : SNo (u * v )
L7828 Hypothesis H9 : x2 β SNoL x
L7829 Hypothesis H10 : y2 β SNoR y
L7830 Hypothesis H11 : w = x2 * y + x * y2 + - (x2 * y2 )
L7831 Hypothesis H12 : SNo x2
L7832 Hypothesis H13 : SNo y2
L7833 Hypothesis H15 : SNo (x * y2 )
L7834
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__13__14
Beginning of Section Conj_mul_SNo_eq_3__14__2
L7848 Hypothesis H0 : SNo x
L7849 Hypothesis H1 : SNo (x * y )
L7850 Hypothesis H3 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7851 Hypothesis H4 : u β SNoL x
L7852 Hypothesis H5 : v β SNoL y
L7853 Hypothesis H6 : z = u * y + x * v + - (u * v )
L7854 Hypothesis H7 : SNo (u * y )
L7855 Hypothesis H8 : SNo (x * v )
L7856 Hypothesis H9 : SNo (u * v )
L7857 Hypothesis H10 : x2 β SNoL x
L7858 Hypothesis H11 : y2 β SNoR y
L7859 Hypothesis H12 : w = x2 * y + x * y2 + - (x2 * y2 )
L7860 Hypothesis H13 : SNo x2
L7861 Hypothesis H14 : SNo y2
L7862 Hypothesis H15 : SNo (x2 * y )
L7863
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__14__2
Beginning of Section Conj_mul_SNo_eq_3__14__12
L7877 Hypothesis H0 : SNo x
L7878 Hypothesis H1 : SNo (x * y )
L7879 Hypothesis H2 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7880 Hypothesis H3 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7881 Hypothesis H4 : u β SNoL x
L7882 Hypothesis H5 : v β SNoL y
L7883 Hypothesis H6 : z = u * y + x * v + - (u * v )
L7884 Hypothesis H7 : SNo (u * y )
L7885 Hypothesis H8 : SNo (x * v )
L7886 Hypothesis H9 : SNo (u * v )
L7887 Hypothesis H10 : x2 β SNoL x
L7888 Hypothesis H11 : y2 β SNoR y
L7889 Hypothesis H13 : SNo x2
L7890 Hypothesis H14 : SNo y2
L7891 Hypothesis H15 : SNo (x2 * y )
L7892
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__14__12
Beginning of Section Conj_mul_SNo_eq_3__15__4
L7906 Hypothesis H0 : SNo x
L7907 Hypothesis H1 : SNo y
L7908 Hypothesis H2 : SNo (x * y )
L7909 Hypothesis H3 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7910 Hypothesis H5 : u β SNoL x
L7911 Hypothesis H6 : v β SNoL y
L7912 Hypothesis H7 : z = u * y + x * v + - (u * v )
L7913 Hypothesis H8 : SNo (u * y )
L7914 Hypothesis H9 : SNo (x * v )
L7915 Hypothesis H10 : SNo (u * v )
L7916 Hypothesis H11 : x2 β SNoL x
L7917 Hypothesis H12 : y2 β SNoR y
L7918 Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2 )
L7919 Hypothesis H14 : SNo x2
L7920 Hypothesis H15 : SNo y2
L7921
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__15__4
Beginning of Section Conj_mul_SNo_eq_3__15__15
L7935 Hypothesis H0 : SNo x
L7936 Hypothesis H1 : SNo y
L7937 Hypothesis H2 : SNo (x * y )
L7938 Hypothesis H3 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoL y β (z2 * y + x * w2 ) < x * y + z2 * w2 ) )
L7939 Hypothesis H4 : (βz2 : set , z2 β SNoL x β (βw2 : set , w2 β SNoR y β (x * y + z2 * w2 ) < z2 * y + x * w2 ) )
L7940 Hypothesis H5 : u β SNoL x
L7941 Hypothesis H6 : v β SNoL y
L7942 Hypothesis H7 : z = u * y + x * v + - (u * v )
L7943 Hypothesis H8 : SNo (u * y )
L7944 Hypothesis H9 : SNo (x * v )
L7945 Hypothesis H10 : SNo (u * v )
L7946 Hypothesis H11 : x2 β SNoL x
L7947 Hypothesis H12 : y2 β SNoR y
L7948 Hypothesis H13 : w = x2 * y + x * y2 + - (x2 * y2 )
L7949 Hypothesis H14 : SNo x2
L7950
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_eq_3__15__15
Beginning of Section Conj_mul_SNo_Lt__8__12
L7961 Hypothesis H0 : SNo z
L7962 Hypothesis H1 : SNo (x * y )
L7963 Hypothesis H2 : SNo (z * y )
L7964 Hypothesis H3 : (βv : set , v β SNoR z β (βx2 : set , x2 β SNoL y β (z * y + v * x2 ) < v * y + z * x2 ) )
L7965 Hypothesis H4 : SNo (x * w )
L7966 Hypothesis H5 : SNo (z * w )
L7967 Hypothesis H6 : (βv : set , v β SNoR z β (βx2 : set , x2 β SNoR w β (v * w + z * x2 ) < z * w + v * x2 ) )
L7968 Hypothesis H7 : SNo (z * y + x * w )
L7969 Hypothesis H8 : SNo (x * y + z * w )
L7970 Hypothesis H9 : x β SNoR z
L7971 Hypothesis H10 : SNo u
L7972 Hypothesis H11 : u β SNoL y
L7973 Hypothesis H13 : SNo (x * u )
L7974
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__8__12
Beginning of Section Conj_mul_SNo_Lt__10__5
L7985 Hypothesis H0 : SNo x
L7986 Hypothesis H1 : SNo z
L7987 Hypothesis H2 : SNo w
L7988 Hypothesis H3 : SNo (x * y )
L7989 Hypothesis H4 : SNo (z * y )
L7990 Hypothesis H6 : SNo (x * w )
L7991 Hypothesis H7 : SNo (z * w )
L7992 Hypothesis H8 : (βv : set , v β SNoR z β (βx2 : set , x2 β SNoR w β (v * w + z * x2 ) < z * w + v * x2 ) )
L7993 Hypothesis H9 : SNo (z * y + x * w )
L7994 Hypothesis H10 : SNo (x * y + z * w )
L7995 Hypothesis H11 : x β SNoR z
L7996 Hypothesis H12 : SNo u
L7997 Hypothesis H13 : w < u
L7998 Hypothesis H14 : SNoLev u β SNoLev w
L7999 Hypothesis H15 : u β SNoL y
L8000
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__10__5
Beginning of Section Conj_mul_SNo_Lt__13__5
L8010 Hypothesis H0 : SNo y
L8011 Hypothesis H1 : SNo w
L8012 Hypothesis H2 : w < y
L8013 Hypothesis H3 : SNo (x * y )
L8014 Hypothesis H4 : SNo (z * y )
L8015 Hypothesis H6 : (βu : set , u β SNoL x β (βv : set , v β SNoR w β (x * w + u * v ) < u * w + x * v ) )
L8016 Hypothesis H7 : SNo (z * w )
L8017 Hypothesis H8 : z β SNoL x
L8018 Hypothesis H9 : SNoLev y β SNoLev w
L8019
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__13__5
Beginning of Section Conj_mul_SNo_Lt__15__6
L8030 Hypothesis H0 : SNo (x * y )
L8031 Hypothesis H1 : SNo (z * y )
L8032 Hypothesis H2 : SNo (x * w )
L8033 Hypothesis H3 : (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR w β (x * w + v * x2 ) < v * w + x * x2 ) )
L8034 Hypothesis H4 : SNo (z * w )
L8035 Hypothesis H5 : SNo (z * y + x * w )
L8036 Hypothesis H7 : z β SNoL x
L8037 Hypothesis H8 : u β SNoR w
L8038 Hypothesis H9 : SNo (x * u )
L8039 Hypothesis H10 : SNo (z * u )
L8040 Hypothesis H11 : SNo (z * y + x * u )
L8041 Hypothesis H12 : SNo (z * w + x * u )
L8042 Hypothesis H13 : SNo (x * y + z * u )
L8043 Hypothesis H14 : SNo (x * w + z * u )
L8044 Hypothesis H15 : (z * y + x * u ) < x * y + z * u
L8045
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__15__6
Beginning of Section Conj_mul_SNo_Lt__18__9
L8056 Hypothesis H0 : SNo (x * y )
L8057 Hypothesis H1 : (βv : set , v β SNoL x β (βx2 : set , x2 β SNoL y β (v * y + x * x2 ) < x * y + v * x2 ) )
L8058 Hypothesis H2 : SNo (z * y )
L8059 Hypothesis H3 : SNo (x * w )
L8060 Hypothesis H4 : (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR w β (x * w + v * x2 ) < v * w + x * x2 ) )
L8061 Hypothesis H5 : SNo (z * w )
L8062 Hypothesis H6 : SNo (z * y + x * w )
L8063 Hypothesis H7 : SNo (x * y + z * w )
L8064 Hypothesis H8 : z β SNoL x
L8065 Hypothesis H10 : u β SNoR w
L8066 Hypothesis H11 : SNo (x * u )
L8067 Hypothesis H12 : SNo (z * u )
L8068 Hypothesis H13 : SNo (z * y + x * u )
L8069 Hypothesis H14 : SNo (z * w + x * u )
L8070
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__18__9
Beginning of Section Conj_mul_SNo_Lt__19__2
L8081 Hypothesis H0 : SNo (x * y )
L8082 Hypothesis H1 : (βv : set , v β SNoL x β (βx2 : set , x2 β SNoL y β (v * y + x * x2 ) < x * y + v * x2 ) )
L8083 Hypothesis H3 : SNo (x * w )
L8084 Hypothesis H4 : (βv : set , v β SNoL x β (βx2 : set , x2 β SNoR w β (x * w + v * x2 ) < v * w + x * x2 ) )
L8085 Hypothesis H5 : SNo (z * w )
L8086 Hypothesis H6 : SNo (z * y + x * w )
L8087 Hypothesis H7 : SNo (x * y + z * w )
L8088 Hypothesis H8 : z β SNoL x
L8089 Hypothesis H9 : u β SNoL y
L8090 Hypothesis H10 : u β SNoR w
L8091 Hypothesis H11 : SNo (x * u )
L8092 Hypothesis H12 : SNo (z * u )
L8093 Hypothesis H13 : SNo (z * y + x * u )
L8094
Proof: Load proof Proof not loaded.
End of Section Conj_mul_SNo_Lt__19__2