Beginning of Section A9978
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use <= as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
(*** $I sig/OEISPreamble.mgs ***)
(*** Bounty 1 PFG TMKmJp5xkN1JyuQ2ahSV9BPMrNswHXnepTi ***)
L9
Variable F1 : setset
L10
Hypothesis HF1 : ∀x0int, F1 x0 int
L11
Variable G1 : set
L12
Hypothesis HG1 : G1 int
L13
Variable H1 : set
L14
Hypothesis HH1 : H1 int
L15
Variable U1 : setsetset
L16
Hypothesis HU1 : ∀x0int, ∀x1int, U1 x0 x1 int
L17
Variable V1 : set
L18
Hypothesis HV1 : V1 int
L19
Variable F0 : setset
L20
Hypothesis HF0 : ∀x0int, F0 x0 int
L21
Variable G0 : setset
L22
Hypothesis HG0 : ∀x0int, G0 x0 int
L23
Variable H0 : set
L24
Hypothesis HH0 : H0 int
L25
Variable U0 : setsetset
L26
Hypothesis HU0 : ∀x0int, ∀x1int, U0 x0 x1 int
L27
Variable V0 : setset
L28
Hypothesis HV0 : ∀x0int, V0 x0 int
L29
Variable SMALL : setset
L30
Hypothesis HSMALL : ∀x0int, SMALL x0 int
L31
Variable F2 : setsetset
L32
Hypothesis HF2 : ∀x0int, ∀x1int, F2 x0 x1 int
L33
Variable G2 : setsetset
L34
Hypothesis HG2 : ∀x0int, ∀x1int, G2 x0 x1 int
L35
Variable H2 : setset
L36
Hypothesis HH2 : ∀x0int, H2 x0 int
L37
Variable I2 : set
L38
Hypothesis HI2 : I2 int
L39
Variable J2 : set
L40
Hypothesis HJ2 : J2 int
L41
Variable U2 : setsetsetset
L42
Hypothesis HU2 : ∀x0int, ∀x1int, ∀x2int, U2 x0 x1 x2 int
L43
Variable V2 : setsetsetset
L44
Hypothesis HV2 : ∀x0int, ∀x1int, ∀x2int, V2 x0 x1 x2 int
L45
Variable W2 : setset
L46
Hypothesis HW2 : ∀x0int, W2 x0 int
L47
Variable FAST : setset
L48
Hypothesis HFAST : ∀x0int, FAST x0 int
L49
Hypothesis H1 : (∀Xint, ((F1 X) = (X * X)))
L50
Hypothesis H2 : (G1 = 2)
L51
Hypothesis H3 : (H1 = 2)
L52
Hypothesis H4 : (∀Xint, (∀Yint, ((U1 X Y) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y))))))
L53
Hypothesis H5 : (V1 = (U1 G1 H1))
L54
Hypothesis H6 : (∀Xint, ((F0 X) = (2 * ((V1 * X) + X))))
L55
Hypothesis H7 : (∀Xint, ((G0 X) = X))
L56
Hypothesis H8 : (H0 = 1)
L57
Hypothesis H9 : (∀Xint, (∀Yint, ((U0 X Y) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y))))))
L58
Hypothesis H10 : (∀Xint, ((V0 X) = (U0 (G0 X) H0)))
L59
Hypothesis H11 : (∀Xint, ((SMALL X) = (V0 X)))
L60
Hypothesis H12 : (∀Xint, (∀Yint, ((F2 X Y) = (X * Y))))
L61
Hypothesis H13 : (∀Xint, (∀Yint, ((G2 X Y) = Y)))
L62
Hypothesis H14 : (∀Xint, ((H2 X) = X))
L63
Hypothesis H15 : (I2 = 1)
L64
Hypothesis H16 : (J2 = (2 + (2 * (2 * (2 * (2 + 2))))))
L65
Hypothesis H17 : (∀Xint, (∀Yint, (∀Zint, ((U2 X Y Z) = (if (X <= 0) then Y else (F2 (U2 (X + - 1) Y Z) (V2 (X + - 1) Y Z)))))))
L66
Hypothesis H18 : (∀Xint, (∀Yint, (∀Zint, ((V2 X Y Z) = (if (X <= 0) then Z else (G2 (U2 (X + - 1) Y Z) (V2 (X + - 1) Y Z)))))))
L67
Hypothesis H19 : (∀Xint, ((W2 X) = (U2 (H2 X) I2 J2)))
L68
Hypothesis H20 : (∀Xint, ((FAST X) = (W2 X)))
L69
Theorem. (A9978)
(∀Nint, ((0 <= N)((SMALL N) = (FAST N))))
Proof:
Proof not loaded.
End of Section A9978