Beginning of Section A6625
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use <= as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
(*** $I sig/OEISPreamble.mgs ***)
(*** Bounty 1 PFG TMbQ5C8QXXFoLEFWGtBus4qBcs7if6t4KNf ***)
L9
Variable F0 : setsetset
L10
Hypothesis HF0 : ∀x0int, ∀x1int, F0 x0 x1 int
L11
Variable G0 : setset
L12
Hypothesis HG0 : ∀x0int, G0 x0 int
L13
Variable H0 : setset
L14
Hypothesis HH0 : ∀x0int, H0 x0 int
L15
Variable U0 : setsetset
L16
Hypothesis HU0 : ∀x0int, ∀x1int, U0 x0 x1 int
L17
Variable V0 : setset
L18
Hypothesis HV0 : ∀x0int, V0 x0 int
L19
Variable SMALL : setset
L20
Hypothesis HSMALL : ∀x0int, SMALL x0 int
L21
Variable F1 : setsetset
L22
Hypothesis HF1 : ∀x0int, ∀x1int, F1 x0 x1 int
L23
Variable G1 : setset
L24
Hypothesis HG1 : ∀x0int, G1 x0 int
L25
Variable H1 : setset
L26
Hypothesis HH1 : ∀x0int, H1 x0 int
L27
Variable U1 : setsetset
L28
Hypothesis HU1 : ∀x0int, ∀x1int, U1 x0 x1 int
L29
Variable V1 : setset
L30
Hypothesis HV1 : ∀x0int, V1 x0 int
L31
Variable FAST : setset
L32
Hypothesis HFAST : ∀x0int, FAST x0 int
L33
Hypothesis H1 : (∀Xint, (∀Yint, ((F0 X Y) = (1 + (X + Y)))))
L34
Hypothesis H2 : (∀Xint, ((G0 X) = ((2 + X) + 2)))
L35
Hypothesis H3 : (∀Xint, ((H0 X) = (if (X <= 0) then 0 else 1)))
L36
Hypothesis H4 : (∀Xint, (∀Yint, ((U0 X Y) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y) X)))))
L37
Hypothesis H5 : (∀Xint, ((V0 X) = (U0 (G0 X) (H0 X))))
L38
Hypothesis H6 : (∀Xint, ((SMALL X) = (V0 X)))
L39
Hypothesis H7 : (∀Xint, (∀Yint, ((F1 X Y) = (X + Y))))
L40
Hypothesis H8 : (∀Xint, ((G1 X) = (X + - 2)))
L41
Hypothesis H9 : (∀Xint, ((H1 X) = ((2 + X) * (1 + (2 + (2 + 2))))))
L42
Hypothesis H10 : (∀Xint, (∀Yint, ((U1 X Y) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y) X)))))
L43
Hypothesis H11 : (∀Xint, ((V1 X) = (U1 (G1 X) (H1 X))))
L44
Hypothesis H12 : (∀Xint, ((FAST X) = (V1 X)))
L45
Theorem. (A6625)
(∀Nint, ((0 <= N)((SMALL N) = (FAST N))))
Proof:
Proof not loaded.
End of Section A6625