Beginning of Section A298677
Notation. We use 
- as a prefix operator with priority 358 corresponding to applying term 
minus_SNo.
 
Notation. We use 
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term 
add_SNo.
 
Notation. We use 
* as an infix operator with priority 355 and which associates to the right corresponding to applying term 
mul_SNo.
 
Notation. We use 
< as an infix operator with priority 490 and no associativity corresponding to applying term 
SNoLt.
 
Notation. We use 
<= as an infix operator with priority 490 and no associativity corresponding to applying term 
SNoLe.
 
Variable  F1 : set → set → set
Hypothesis HF1 : ∀x0 ∈ int,  ∀x1 ∈ int,  F1 x0 x1  ∈  int 
Variable  G1 : set
Hypothesis HG1 : G1  ∈  int 
Variable  H1 : set
Hypothesis HH1 : H1  ∈  int 
Variable  U1 : set → set → set
Hypothesis HU1 : ∀x0 ∈ int,  ∀x1 ∈ int,  U1 x0 x1  ∈  int 
Variable  V1 : set
Hypothesis HV1 : V1  ∈  int 
Variable  F0 : set → set → set
Hypothesis HF0 : ∀x0 ∈ int,  ∀x1 ∈ int,  F0 x0 x1  ∈  int 
Variable  G0 : set → set
Hypothesis HG0 : ∀x0 ∈ int,  G0 x0  ∈  int 
Variable  H0 : set → set
Hypothesis HH0 : ∀x0 ∈ int,  H0 x0  ∈  int 
Variable  I0 : set
Hypothesis HI0 : I0  ∈  int 
Variable  J0 : set
Hypothesis HJ0 : J0  ∈  int 
Variable  U0 : set → set → set → set
Hypothesis HU0 : ∀x0 ∈ int,  ∀x1 ∈ int,  ∀x2 ∈ int,  U0 x0 x1 x2  ∈  int 
Variable  V0 : set → set → set → set
Hypothesis HV0 : ∀x0 ∈ int,  ∀x1 ∈ int,  ∀x2 ∈ int,  V0 x0 x1 x2  ∈  int 
Variable  W0 : set → set
Hypothesis HW0 : ∀x0 ∈ int,  W0 x0  ∈  int 
Variable  SMALL : set → set
Hypothesis HSMALL : ∀x0 ∈ int,  SMALL x0  ∈  int 
Variable  F3 : set → set
Hypothesis HF3 : ∀x0 ∈ int,  F3 x0  ∈  int 
Variable  G3 : set
Hypothesis HG3 : G3  ∈  int 
Variable  H3 : set
Hypothesis HH3 : H3  ∈  int 
Variable  U3 : set → set → set
Hypothesis HU3 : ∀x0 ∈ int,  ∀x1 ∈ int,  U3 x0 x1  ∈  int 
Variable  V3 : set
Hypothesis HV3 : V3  ∈  int 
Variable  F2 : set → set → set
Hypothesis HF2 : ∀x0 ∈ int,  ∀x1 ∈ int,  F2 x0 x1  ∈  int 
Variable  G2 : set → set
Hypothesis HG2 : ∀x0 ∈ int,  G2 x0  ∈  int 
Variable  H2 : set → set
Hypothesis HH2 : ∀x0 ∈ int,  H2 x0  ∈  int 
Variable  I2 : set
Hypothesis HI2 : I2  ∈  int 
Variable  J2 : set
Hypothesis HJ2 : J2  ∈  int 
Variable  U2 : set → set → set → set
Hypothesis HU2 : ∀x0 ∈ int,  ∀x1 ∈ int,  ∀x2 ∈ int,  U2 x0 x1 x2  ∈  int 
Variable  V2 : set → set → set → set
Hypothesis HV2 : ∀x0 ∈ int,  ∀x1 ∈ int,  ∀x2 ∈ int,  V2 x0 x1 x2  ∈  int 
Variable  W2 : set → set
Hypothesis HW2 : ∀x0 ∈ int,  W2 x0  ∈  int 
Variable  FAST : set → set
Hypothesis HFAST : ∀x0 ∈ int,  FAST x0  ∈  int 
Hypothesis H1 : (∀X ∈ int,  (∀Y ∈ int,  ((F1 X Y) = ((1 + X) * (X + Y))))) 
Hypothesis H2 : (G1 = 2)
Hypothesis H3 : (H1 = 2)
Hypothesis H4 : (∀X ∈ int,  (∀Y ∈ int,  ((U1 X Y) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y) X))))) 
Hypothesis H5 : (V1 = (U1 G1 H1))
Hypothesis H6 : (∀X ∈ int,  (∀Y ∈ int,  ((F0 X Y) = ((V1 * X) + Y)))) 
Hypothesis H7 : (∀X ∈ int,  ((G0 X) = (0 + - X))) 
Hypothesis H8 : (∀X ∈ int,  ((H0 X) = X)) 
Hypothesis H9 : (I0 = 1)
Hypothesis H10 : (J0 = 1)
Hypothesis H11 : (∀X ∈ int,  (∀Y ∈ int,  (∀Z ∈ int,  ((U0 X Y Z) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z))))))) 
Hypothesis H12 : (∀X ∈ int,  (∀Y ∈ int,  (∀Z ∈ int,  ((V0 X Y Z) = (if (X <= 0) then Z else (G0 (U0 (X + - 1) Y Z))))))) 
Hypothesis H13 : (∀X ∈ int,  ((W0 X) = (U0 (H0 X) I0 J0))) 
Hypothesis H14 : (∀X ∈ int,  ((SMALL X) = (W0 X))) 
Hypothesis H15 : (∀X ∈ int,  ((F3 X) = ((X * X) + X))) 
Hypothesis H16 : (G3 = 1)
Hypothesis H17 : (H3 = (2 + (2 * (2 + 2)))) 
Hypothesis H18 : (∀X ∈ int,  (∀Y ∈ int,  ((U3 X Y) = (if (X <= 0) then Y else (F3 (U3 (X + - 1) Y)))))) 
Hypothesis H19 : (V3 = (U3 G3 H3))
Hypothesis H20 : (∀X ∈ int,  (∀Y ∈ int,  ((F2 X Y) = ((V3 * X) + - Y)))) 
Hypothesis H21 : (∀X ∈ int,  ((G2 X) = X)) 
Hypothesis H22 : (∀X ∈ int,  ((H2 X) = X)) 
Hypothesis H23 : (I2 = 1)
Hypothesis H24 : (J2 = (0 + - 1)) 
Hypothesis H25 : (∀X ∈ int,  (∀Y ∈ int,  (∀Z ∈ int,  ((U2 X Y Z) = (if (X <= 0) then Y else (F2 (U2 (X + - 1) Y Z) (V2 (X + - 1) Y Z))))))) 
Hypothesis H26 : (∀X ∈ int,  (∀Y ∈ int,  (∀Z ∈ int,  ((V2 X Y Z) = (if (X <= 0) then Z else (G2 (U2 (X + - 1) Y Z))))))) 
Hypothesis H27 : (∀X ∈ int,  ((W2 X) = (U2 (H2 X) I2 J2))) 
Hypothesis H28 : (∀X ∈ int,  ((FAST X) = (W2 X))) 
Theorem. (
A298677) 
(∀N ∈ int,  ((0 <= N) → ((SMALL N) = (FAST N))))  
Proof:The rest of the proof is missing.