Beginning of Section A29697
Notation. We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo.
Notation. We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo.
Notation. We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo.
Notation. We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt.
Notation. We use
<= as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe.
Variable F0 : set → set → set
Hypothesis HF0 : ∀x0 ∈ int, ∀x1 ∈ int, F0 x0 x1 ∈ int
Variable G0 : set → set → set
Hypothesis HG0 : ∀x0 ∈ int, ∀x1 ∈ int, G0 x0 x1 ∈ int
Variable H0 : set → set
Hypothesis HH0 : ∀x0 ∈ int, H0 x0 ∈ int
Variable I0 : set
Hypothesis HI0 : I0 ∈ int
Variable J0 : set
Hypothesis HJ0 : J0 ∈ int
Variable U0 : set → set → set → set
Hypothesis HU0 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, U0 x0 x1 x2 ∈ int
Variable V0 : set → set → set → set
Hypothesis HV0 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, V0 x0 x1 x2 ∈ int
Variable W0 : set → set
Hypothesis HW0 : ∀x0 ∈ int, W0 x0 ∈ int
Variable SMALL : set → set
Hypothesis HSMALL : ∀x0 ∈ int, SMALL x0 ∈ int
Variable F1 : set → set → set
Hypothesis HF1 : ∀x0 ∈ int, ∀x1 ∈ int, F1 x0 x1 ∈ int
Variable G1 : set → set → set
Hypothesis HG1 : ∀x0 ∈ int, ∀x1 ∈ int, G1 x0 x1 ∈ int
Variable H1 : set → set
Hypothesis HH1 : ∀x0 ∈ int, H1 x0 ∈ int
Variable I1 : set
Hypothesis HI1 : I1 ∈ int
Variable J1 : set
Hypothesis HJ1 : J1 ∈ int
Variable U1 : set → set → set → set
Hypothesis HU1 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, U1 x0 x1 x2 ∈ int
Variable V1 : set → set → set → set
Hypothesis HV1 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, V1 x0 x1 x2 ∈ int
Variable W1 : set → set
Hypothesis HW1 : ∀x0 ∈ int, W1 x0 ∈ int
Variable F2 : set → set
Hypothesis HF2 : ∀x0 ∈ int, F2 x0 ∈ int
Variable G2 : set
Hypothesis HG2 : G2 ∈ int
Variable F3 : set → set
Hypothesis HF3 : ∀x0 ∈ int, F3 x0 ∈ int
Variable G3 : set → set
Hypothesis HG3 : ∀x0 ∈ int, G3 x0 ∈ int
Variable H3 : set
Hypothesis HH3 : H3 ∈ int
Variable U3 : set → set → set
Hypothesis HU3 : ∀x0 ∈ int, ∀x1 ∈ int, U3 x0 x1 ∈ int
Variable V3 : set → set
Hypothesis HV3 : ∀x0 ∈ int, V3 x0 ∈ int
Variable H2 : set → set
Hypothesis HH2 : ∀x0 ∈ int, H2 x0 ∈ int
Variable U2 : set → set → set
Hypothesis HU2 : ∀x0 ∈ int, ∀x1 ∈ int, U2 x0 x1 ∈ int
Variable V2 : set → set
Hypothesis HV2 : ∀x0 ∈ int, V2 x0 ∈ int
Variable FAST : set → set
Hypothesis HFAST : ∀x0 ∈ int, FAST x0 ∈ int
Hypothesis H1 : (∀X ∈ int, (∀Y ∈ int, ((F0 X Y) = ((X + X) + Y))))
Hypothesis H2 : (∀X ∈ int, (∀Y ∈ int, ((G0 X Y) = (2 * ((Y + Y) + Y)))))
Hypothesis H3 : (∀X ∈ int, ((H0 X) = (1 + (X + X))))
Hypothesis H4 : (I0 = 2)
Hypothesis H5 : (J0 = 2)
Hypothesis H6 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((U0 X Y Z) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z)))))))
Hypothesis H7 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((V0 X Y Z) = (if (X <= 0) then Z else (G0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z)))))))
Hypothesis H8 : (∀X ∈ int, ((W0 X) = (U0 (H0 X) I0 J0)))
Hypothesis H9 : (∀X ∈ int, ((SMALL X) = (W0 X)))
Hypothesis H10 : (∀X ∈ int, (∀Y ∈ int, ((F1 X Y) = (X * Y))))
Hypothesis H11 : (∀X ∈ int, (∀Y ∈ int, ((G1 X Y) = Y)))
Hypothesis H12 : (∀X ∈ int, ((H1 X) = X))
Hypothesis H13 : (I1 = (1 + 2))
Hypothesis H14 : (J1 = (1 + (2 * (2 + 2))))
Hypothesis H15 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((U1 X Y Z) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y Z) (V1 (X + - 1) Y Z)))))))
Hypothesis H16 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((V1 X Y Z) = (if (X <= 0) then Z else (G1 (U1 (X + - 1) Y Z) (V1 (X + - 1) Y Z)))))))
Hypothesis H17 : (∀X ∈ int, ((W1 X) = (U1 (H1 X) I1 J1)))
Hypothesis H18 : (∀X ∈ int, ((F2 X) = (X * X)))
Hypothesis H19 : (G2 = 1)
Hypothesis H20 : (∀X ∈ int, ((F3 X) = (X + X)))
Hypothesis H21 : (∀X ∈ int, ((G3 X) = X))
Hypothesis H22 : (H3 = 1)
Hypothesis H23 : (∀X ∈ int, (∀Y ∈ int, ((U3 X Y) = (if (X <= 0) then Y else (F3 (U3 (X + - 1) Y))))))
Hypothesis H24 : (∀X ∈ int, ((V3 X) = (U3 (G3 X) H3)))
Hypothesis H25 : (∀X ∈ int, ((H2 X) = (V3 X)))
Hypothesis H26 : (∀X ∈ int, (∀Y ∈ int, ((U2 X Y) = (if (X <= 0) then Y else (F2 (U2 (X + - 1) Y))))))
Hypothesis H27 : (∀X ∈ int, ((V2 X) = (U2 G2 (H2 X))))
Hypothesis H28 : (∀X ∈ int, ((FAST X) = ((1 + (2 + (W1 X))) * (V2 X))))
Theorem. (
A29697)
(∀N ∈ int, ((0 <= N) → ((SMALL N) = (FAST N))))
Proof:The rest of the proof is missing.