Beginning of Section A294318
Notation. We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo.
Notation. We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo.
Notation. We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo.
Notation. We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt.
Notation. We use
<= as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe.
L9Variable F1 : set → set → set
L10Hypothesis HF1 : ∀x0 ∈ int, ∀x1 ∈ int, F1 x0 x1 ∈ int
L11Variable G1 : set → set → set
L12Hypothesis HG1 : ∀x0 ∈ int, ∀x1 ∈ int, G1 x0 x1 ∈ int
L13Variable H1 : set → set
L14Hypothesis HH1 : ∀x0 ∈ int, H1 x0 ∈ int
L15Variable U1 : set → set → set
L16Hypothesis HU1 : ∀x0 ∈ int, ∀x1 ∈ int, U1 x0 x1 ∈ int
L17Variable V1 : set → set → set
L18Hypothesis HV1 : ∀x0 ∈ int, ∀x1 ∈ int, V1 x0 x1 ∈ int
L19Variable F0 : set → set → set
L20Hypothesis HF0 : ∀x0 ∈ int, ∀x1 ∈ int, F0 x0 x1 ∈ int
L21Variable G0 : set → set
L22Hypothesis HG0 : ∀x0 ∈ int, G0 x0 ∈ int
L24Hypothesis HH0 : H0 ∈ int
L25Variable U0 : set → set → set
L26Hypothesis HU0 : ∀x0 ∈ int, ∀x1 ∈ int, U0 x0 x1 ∈ int
L27Variable V0 : set → set
L28Hypothesis HV0 : ∀x0 ∈ int, V0 x0 ∈ int
L29Variable SMALL : set → set
L30Hypothesis HSMALL : ∀x0 ∈ int, SMALL x0 ∈ int
L31Variable F2 : set → set → set
L32Hypothesis HF2 : ∀x0 ∈ int, ∀x1 ∈ int, F2 x0 x1 ∈ int
L33Variable G2 : set → set
L34Hypothesis HG2 : ∀x0 ∈ int, G2 x0 ∈ int
L36Hypothesis HH2 : H2 ∈ int
L37Variable U2 : set → set → set
L38Hypothesis HU2 : ∀x0 ∈ int, ∀x1 ∈ int, U2 x0 x1 ∈ int
L39Variable V2 : set → set
L40Hypothesis HV2 : ∀x0 ∈ int, V2 x0 ∈ int
L41Variable F4 : set → set → set
L42Hypothesis HF4 : ∀x0 ∈ int, ∀x1 ∈ int, F4 x0 x1 ∈ int
L43Variable G4 : set → set → set
L44Hypothesis HG4 : ∀x0 ∈ int, ∀x1 ∈ int, G4 x0 x1 ∈ int
L46Hypothesis HH4 : H4 ∈ int
L47Variable U4 : set → set → set
L48Hypothesis HU4 : ∀x0 ∈ int, ∀x1 ∈ int, U4 x0 x1 ∈ int
L49Variable V4 : set → set → set
L50Hypothesis HV4 : ∀x0 ∈ int, ∀x1 ∈ int, V4 x0 x1 ∈ int
L51Variable F3 : set → set → set
L52Hypothesis HF3 : ∀x0 ∈ int, ∀x1 ∈ int, F3 x0 x1 ∈ int
L53Variable G3 : set → set
L54Hypothesis HG3 : ∀x0 ∈ int, G3 x0 ∈ int
L56Hypothesis HH3 : H3 ∈ int
L57Variable U3 : set → set → set
L58Hypothesis HU3 : ∀x0 ∈ int, ∀x1 ∈ int, U3 x0 x1 ∈ int
L59Variable V3 : set → set
L60Hypothesis HV3 : ∀x0 ∈ int, V3 x0 ∈ int
L61Variable FAST : set → set
L62Hypothesis HFAST : ∀x0 ∈ int, FAST x0 ∈ int
L63Hypothesis H1 : (∀X ∈ int, (∀Y ∈ int, ((F1 X Y) = ((X * Y) + X))))
L64Hypothesis H2 : (∀X ∈ int, (∀Y ∈ int, ((G1 X Y) = ((Y + Y) + Y))))
L65Hypothesis H3 : (∀X ∈ int, ((H1 X) = X))
L66Hypothesis H4 : (∀X ∈ int, (∀Y ∈ int, ((U1 X Y) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y) X)))))
L67Hypothesis H5 : (∀X ∈ int, (∀Y ∈ int, ((V1 X Y) = (U1 (G1 X Y) (H1 X)))))
L68Hypothesis H6 : (∀X ∈ int, (∀Y ∈ int, ((F0 X Y) = (V1 X Y))))
L69Hypothesis H7 : (∀X ∈ int, ((G0 X) = X))
L70Hypothesis H8 : (H0 = 1)
L71Hypothesis H9 : (∀X ∈ int, (∀Y ∈ int, ((U0 X Y) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y) X)))))
L72Hypothesis H10 : (∀X ∈ int, ((V0 X) = (U0 (G0 X) H0)))
L73Hypothesis H11 : (∀X ∈ int, ((SMALL X) = (V0 X)))
L74Hypothesis H12 : (∀X ∈ int, (∀Y ∈ int, ((F2 X Y) = (((1 + 2) * (X * Y)) + X))))
L75Hypothesis H13 : (∀X ∈ int, ((G2 X) = X))
L76Hypothesis H14 : (H2 = 1)
L77Hypothesis H15 : (∀X ∈ int, (∀Y ∈ int, ((U2 X Y) = (if (X <= 0) then Y else (F2 (U2 (X + - 1) Y) X)))))
L78Hypothesis H16 : (∀X ∈ int, ((V2 X) = (U2 (G2 X) H2)))
L79Hypothesis H17 : (∀X ∈ int, (∀Y ∈ int, ((F4 X Y) = (X * Y))))
L80Hypothesis H18 : (∀X ∈ int, (∀Y ∈ int, ((G4 X Y) = ((Y + Y) + Y))))
L81Hypothesis H19 : (H4 = 1)
L82Hypothesis H20 : (∀X ∈ int, (∀Y ∈ int, ((U4 X Y) = (if (X <= 0) then Y else (F4 (U4 (X + - 1) Y) X)))))
L83Hypothesis H21 : (∀X ∈ int, (∀Y ∈ int, ((V4 X Y) = (U4 (G4 X Y) H4))))
L84Hypothesis H22 : (∀X ∈ int, (∀Y ∈ int, ((F3 X Y) = ((V4 X Y) * X))))
L85Hypothesis H23 : (∀X ∈ int, ((G3 X) = X))
L86Hypothesis H24 : (H3 = 1)
L87Hypothesis H25 : (∀X ∈ int, (∀Y ∈ int, ((U3 X Y) = (if (X <= 0) then Y else (F3 (U3 (X + - 1) Y) X)))))
L88Hypothesis H26 : (∀X ∈ int, ((V3 X) = (U3 (G3 X) H3)))
L89Hypothesis H27 : (∀X ∈ int, ((FAST X) = ((V2 X) * (V3 X))))
L90Theorem. (
A294318)
(∀N ∈ int, ((0 <= N) → ((SMALL N) = (FAST N))))
Proof: Proof not loaded.