Beginning of Section A291264
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use <= as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
(*** $I sig/OEISPreamble.mgs ***)
(*** Bounty 1 PFG TMH5ewpJDGJwHgd94DngQgcgP3ueBxtqZjp ***)
L9
Variable F0 : setsetset
L10
Hypothesis HF0 : ∀x0int, ∀x1int, F0 x0 x1 int
L11
Variable G0 : setset
L12
Hypothesis HG0 : ∀x0int, G0 x0 int
L13
Variable H0 : setset
L14
Hypothesis HH0 : ∀x0int, H0 x0 int
L15
Variable I0 : setset
L16
Hypothesis HI0 : ∀x0int, I0 x0 int
L17
Variable J0 : setset
L18
Hypothesis HJ0 : ∀x0int, J0 x0 int
L19
Variable U0 : setsetsetset
L20
Hypothesis HU0 : ∀x0int, ∀x1int, ∀x2int, U0 x0 x1 x2 int
L21
Variable V0 : setsetsetset
L22
Hypothesis HV0 : ∀x0int, ∀x1int, ∀x2int, V0 x0 x1 x2 int
L23
Variable W0 : setset
L24
Hypothesis HW0 : ∀x0int, W0 x0 int
L25
Variable SMALL : setset
L26
Hypothesis HSMALL : ∀x0int, SMALL x0 int
L27
Variable F1 : setsetset
L28
Hypothesis HF1 : ∀x0int, ∀x1int, F1 x0 x1 int
L29
Variable G1 : setset
L30
Hypothesis HG1 : ∀x0int, G1 x0 int
L31
Variable H1 : setset
L32
Hypothesis HH1 : ∀x0int, H1 x0 int
L33
Variable I1 : setset
L34
Hypothesis HI1 : ∀x0int, I1 x0 int
L35
Variable J1 : setset
L36
Hypothesis HJ1 : ∀x0int, J1 x0 int
L37
Variable U1 : setsetsetset
L38
Hypothesis HU1 : ∀x0int, ∀x1int, ∀x2int, U1 x0 x1 x2 int
L39
Variable V1 : setsetsetset
L40
Hypothesis HV1 : ∀x0int, ∀x1int, ∀x2int, V1 x0 x1 x2 int
L41
Variable W1 : setset
L42
Hypothesis HW1 : ∀x0int, W1 x0 int
L43
Variable FAST : setset
L44
Hypothesis HFAST : ∀x0int, FAST x0 int
L45
Hypothesis H1 : (∀Xint, (∀Yint, ((F0 X Y) = ((X + X) + Y))))
L46
Hypothesis H2 : (∀Xint, ((G0 X) = X))
L47
Hypothesis H3 : (∀Xint, ((H0 X) = (X + 1)))
L48
Hypothesis H4 : (∀Xint, ((I0 X) = (1 + X)))
L49
Hypothesis H5 : (∀Xint, ((J0 X) = (2 + - X)))
L50
Hypothesis H6 : (∀Xint, (∀Yint, (∀Zint, ((U0 X Y Z) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z)))))))
L51
Hypothesis H7 : (∀Xint, (∀Yint, (∀Zint, ((V0 X Y Z) = (if (X <= 0) then Z else (G0 (U0 (X + - 1) Y Z)))))))
L52
Hypothesis H8 : (∀Xint, ((W0 X) = (U0 (H0 X) (I0 X) (J0 X))))
L53
Hypothesis H9 : (∀Xint, ((SMALL X) = (W0 X)))
L54
Hypothesis H10 : (∀Xint, (∀Yint, ((F1 X Y) = ((X + X) + Y))))
L55
Hypothesis H11 : (∀Xint, ((G1 X) = X))
L56
Hypothesis H12 : (∀Xint, ((H1 X) = X))
L57
Hypothesis H13 : (∀Xint, ((I1 X) = (2 + (2 + X))))
L58
Hypothesis H14 : (∀Xint, ((J1 X) = (1 + X)))
L59
Hypothesis H15 : (∀Xint, (∀Yint, (∀Zint, ((U1 X Y Z) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y Z) (V1 (X + - 1) Y Z)))))))
L60
Hypothesis H16 : (∀Xint, (∀Yint, (∀Zint, ((V1 X Y Z) = (if (X <= 0) then Z else (G1 (U1 (X + - 1) Y Z)))))))
L61
Hypothesis H17 : (∀Xint, ((W1 X) = (U1 (H1 X) (I1 X) (J1 X))))
L62
Hypothesis H18 : (∀Xint, ((FAST X) = (W1 X)))
L63
Theorem. (A291264)
(∀Nint, ((0 <= N)((SMALL N) = (FAST N))))
Proof:
Proof not loaded.
End of Section A291264