Beginning of Section A291264
Notation. We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo.
Notation. We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo.
Notation. We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo.
Notation. We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt.
Notation. We use
<= as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe.
L9Variable F0 : set → set → set
L10Hypothesis HF0 : ∀x0 ∈ int, ∀x1 ∈ int, F0 x0 x1 ∈ int
L11Variable G0 : set → set
L12Hypothesis HG0 : ∀x0 ∈ int, G0 x0 ∈ int
L13Variable H0 : set → set
L14Hypothesis HH0 : ∀x0 ∈ int, H0 x0 ∈ int
L15Variable I0 : set → set
L16Hypothesis HI0 : ∀x0 ∈ int, I0 x0 ∈ int
L17Variable J0 : set → set
L18Hypothesis HJ0 : ∀x0 ∈ int, J0 x0 ∈ int
L19Variable U0 : set → set → set → set
L20Hypothesis HU0 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, U0 x0 x1 x2 ∈ int
L21Variable V0 : set → set → set → set
L22Hypothesis HV0 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, V0 x0 x1 x2 ∈ int
L23Variable W0 : set → set
L24Hypothesis HW0 : ∀x0 ∈ int, W0 x0 ∈ int
L25Variable SMALL : set → set
L26Hypothesis HSMALL : ∀x0 ∈ int, SMALL x0 ∈ int
L27Variable F1 : set → set → set
L28Hypothesis HF1 : ∀x0 ∈ int, ∀x1 ∈ int, F1 x0 x1 ∈ int
L29Variable G1 : set → set
L30Hypothesis HG1 : ∀x0 ∈ int, G1 x0 ∈ int
L31Variable H1 : set → set
L32Hypothesis HH1 : ∀x0 ∈ int, H1 x0 ∈ int
L33Variable I1 : set → set
L34Hypothesis HI1 : ∀x0 ∈ int, I1 x0 ∈ int
L35Variable J1 : set → set
L36Hypothesis HJ1 : ∀x0 ∈ int, J1 x0 ∈ int
L37Variable U1 : set → set → set → set
L38Hypothesis HU1 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, U1 x0 x1 x2 ∈ int
L39Variable V1 : set → set → set → set
L40Hypothesis HV1 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, V1 x0 x1 x2 ∈ int
L41Variable W1 : set → set
L42Hypothesis HW1 : ∀x0 ∈ int, W1 x0 ∈ int
L43Variable FAST : set → set
L44Hypothesis HFAST : ∀x0 ∈ int, FAST x0 ∈ int
L45Hypothesis H1 : (∀X ∈ int, (∀Y ∈ int, ((F0 X Y) = ((X + X) + Y))))
L46Hypothesis H2 : (∀X ∈ int, ((G0 X) = X))
L47Hypothesis H3 : (∀X ∈ int, ((H0 X) = (X + 1)))
L48Hypothesis H4 : (∀X ∈ int, ((I0 X) = (1 + X)))
L49Hypothesis H5 : (∀X ∈ int, ((J0 X) = (2 + - X)))
L50Hypothesis H6 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((U0 X Y Z) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z)))))))
L51Hypothesis H7 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((V0 X Y Z) = (if (X <= 0) then Z else (G0 (U0 (X + - 1) Y Z)))))))
L52Hypothesis H8 : (∀X ∈ int, ((W0 X) = (U0 (H0 X) (I0 X) (J0 X))))
L53Hypothesis H9 : (∀X ∈ int, ((SMALL X) = (W0 X)))
L54Hypothesis H10 : (∀X ∈ int, (∀Y ∈ int, ((F1 X Y) = ((X + X) + Y))))
L55Hypothesis H11 : (∀X ∈ int, ((G1 X) = X))
L56Hypothesis H12 : (∀X ∈ int, ((H1 X) = X))
L57Hypothesis H13 : (∀X ∈ int, ((I1 X) = (2 + (2 + X))))
L58Hypothesis H14 : (∀X ∈ int, ((J1 X) = (1 + X)))
L59Hypothesis H15 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((U1 X Y Z) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y Z) (V1 (X + - 1) Y Z)))))))
L60Hypothesis H16 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((V1 X Y Z) = (if (X <= 0) then Z else (G1 (U1 (X + - 1) Y Z)))))))
L61Hypothesis H17 : (∀X ∈ int, ((W1 X) = (U1 (H1 X) (I1 X) (J1 X))))
L62Hypothesis H18 : (∀X ∈ int, ((FAST X) = (W1 X)))
L63Theorem. (
A291264)
(∀N ∈ int, ((0 <= N) → ((SMALL N) = (FAST N))))
Proof: Proof not loaded.