Beginning of Section A256512
Notation. We use
- as a prefix operator with priority 358 corresponding to applying term
minus_SNo.
Notation. We use
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term
add_SNo.
Notation. We use
* as an infix operator with priority 355 and which associates to the right corresponding to applying term
mul_SNo.
Notation. We use
< as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLt.
Notation. We use
<= as an infix operator with priority 490 and no associativity corresponding to applying term
SNoLe.
L9Variable F0 : set → set → set
L10Hypothesis HF0 : ∀x0 ∈ int, ∀x1 ∈ int, F0 x0 x1 ∈ int
L11Variable G0 : set → set → set
L12Hypothesis HG0 : ∀x0 ∈ int, ∀x1 ∈ int, G0 x0 x1 ∈ int
L13Variable H0 : set → set
L14Hypothesis HH0 : ∀x0 ∈ int, H0 x0 ∈ int
L15Variable I0 : set → set
L16Hypothesis HI0 : ∀x0 ∈ int, I0 x0 ∈ int
L17Variable J0 : set → set
L18Hypothesis HJ0 : ∀x0 ∈ int, J0 x0 ∈ int
L19Variable U0 : set → set → set → set
L20Hypothesis HU0 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, U0 x0 x1 x2 ∈ int
L21Variable V0 : set → set → set → set
L22Hypothesis HV0 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, V0 x0 x1 x2 ∈ int
L23Variable W0 : set → set
L24Hypothesis HW0 : ∀x0 ∈ int, W0 x0 ∈ int
L25Variable SMALL : set → set
L26Hypothesis HSMALL : ∀x0 ∈ int, SMALL x0 ∈ int
L27Variable F1 : set → set
L28Hypothesis HF1 : ∀x0 ∈ int, F1 x0 ∈ int
L29Variable G1 : set → set
L30Hypothesis HG1 : ∀x0 ∈ int, G1 x0 ∈ int
L31Variable H1 : set → set
L32Hypothesis HH1 : ∀x0 ∈ int, H1 x0 ∈ int
L33Variable U1 : set → set → set
L34Hypothesis HU1 : ∀x0 ∈ int, ∀x1 ∈ int, U1 x0 x1 ∈ int
L35Variable V1 : set → set
L36Hypothesis HV1 : ∀x0 ∈ int, V1 x0 ∈ int
L37Variable F2 : set → set → set
L38Hypothesis HF2 : ∀x0 ∈ int, ∀x1 ∈ int, F2 x0 x1 ∈ int
L39Variable G2 : set → set → set
L40Hypothesis HG2 : ∀x0 ∈ int, ∀x1 ∈ int, G2 x0 x1 ∈ int
L41Variable H2 : set → set
L42Hypothesis HH2 : ∀x0 ∈ int, H2 x0 ∈ int
L43Variable I2 : set → set
L44Hypothesis HI2 : ∀x0 ∈ int, I2 x0 ∈ int
L45Variable J2 : set → set
L46Hypothesis HJ2 : ∀x0 ∈ int, J2 x0 ∈ int
L47Variable U2 : set → set → set → set
L48Hypothesis HU2 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, U2 x0 x1 x2 ∈ int
L49Variable V2 : set → set → set → set
L50Hypothesis HV2 : ∀x0 ∈ int, ∀x1 ∈ int, ∀x2 ∈ int, V2 x0 x1 x2 ∈ int
L51Variable W2 : set → set
L52Hypothesis HW2 : ∀x0 ∈ int, W2 x0 ∈ int
L53Variable FAST : set → set
L54Hypothesis HFAST : ∀x0 ∈ int, FAST x0 ∈ int
L55Hypothesis H1 : (∀X ∈ int, (∀Y ∈ int, ((F0 X Y) = (2 * (X * Y)))))
L56Hypothesis H2 : (∀X ∈ int, (∀Y ∈ int, ((G0 X Y) = Y)))
L57Hypothesis H3 : (∀X ∈ int, ((H0 X) = X))
L58Hypothesis H4 : (∀X ∈ int, ((I0 X) = X))
L59Hypothesis H5 : (∀X ∈ int, ((J0 X) = X))
L60Hypothesis H6 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((U0 X Y Z) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z)))))))
L61Hypothesis H7 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((V0 X Y Z) = (if (X <= 0) then Z else (G0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z)))))))
L62Hypothesis H8 : (∀X ∈ int, ((W0 X) = (U0 (H0 X) (I0 X) (J0 X))))
L63Hypothesis H9 : (∀X ∈ int, ((SMALL X) = (X + (W0 X))))
L64Hypothesis H10 : (∀X ∈ int, ((F1 X) = (X + X)))
L65Hypothesis H11 : (∀X ∈ int, ((G1 X) = X))
L66Hypothesis H12 : (∀X ∈ int, ((H1 X) = X))
L67Hypothesis H13 : (∀X ∈ int, (∀Y ∈ int, ((U1 X Y) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y))))))
L68Hypothesis H14 : (∀X ∈ int, ((V1 X) = (U1 (G1 X) (H1 X))))
L69Hypothesis H15 : (∀X ∈ int, (∀Y ∈ int, ((F2 X Y) = (X * Y))))
L70Hypothesis H16 : (∀X ∈ int, (∀Y ∈ int, ((G2 X Y) = Y)))
L71Hypothesis H17 : (∀X ∈ int, ((H2 X) = (X + - 2)))
L72Hypothesis H18 : (∀X ∈ int, ((I2 X) = X))
L73Hypothesis H19 : (∀X ∈ int, ((J2 X) = X))
L74Hypothesis H20 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((U2 X Y Z) = (if (X <= 0) then Y else (F2 (U2 (X + - 1) Y Z) (V2 (X + - 1) Y Z)))))))
L75Hypothesis H21 : (∀X ∈ int, (∀Y ∈ int, (∀Z ∈ int, ((V2 X Y Z) = (if (X <= 0) then Z else (G2 (U2 (X + - 1) Y Z) (V2 (X + - 1) Y Z)))))))
L76Hypothesis H22 : (∀X ∈ int, ((W2 X) = (U2 (H2 X) (I2 X) (J2 X))))
L77Hypothesis H23 : (∀X ∈ int, ((FAST X) = ((((V1 X) * X) * (W2 X)) + X)))
L78Theorem. (
A256512)
(∀N ∈ int, ((0 <= N) → ((SMALL N) = (FAST N))))
Proof: Proof not loaded.