Beginning of Section A220528
Notation. We use - as a prefix operator with priority 358 corresponding to applying term minus_SNo.
Notation. We use + as an infix operator with priority 360 and which associates to the right corresponding to applying term add_SNo.
Notation. We use * as an infix operator with priority 355 and which associates to the right corresponding to applying term mul_SNo.
Notation. We use < as an infix operator with priority 490 and no associativity corresponding to applying term SNoLt.
Notation. We use <= as an infix operator with priority 490 and no associativity corresponding to applying term SNoLe.
Variable F0 : setsetset
Hypothesis HF0 : ∀x0int, ∀x1int, F0 x0 x1 int
Variable G0 : setsetset
Hypothesis HG0 : ∀x0int, ∀x1int, G0 x0 x1 int
Variable H0 : set
Hypothesis HH0 : H0 int
Variable I0 : setset
Hypothesis HI0 : ∀x0int, I0 x0 int
Variable J0 : setset
Hypothesis HJ0 : ∀x0int, J0 x0 int
Variable U0 : setsetsetset
Hypothesis HU0 : ∀x0int, ∀x1int, ∀x2int, U0 x0 x1 x2 int
Variable V0 : setsetsetset
Hypothesis HV0 : ∀x0int, ∀x1int, ∀x2int, V0 x0 x1 x2 int
Variable W0 : setset
Hypothesis HW0 : ∀x0int, W0 x0 int
Variable F1 : setset
Hypothesis HF1 : ∀x0int, F1 x0 int
Variable G1 : setset
Hypothesis HG1 : ∀x0int, G1 x0 int
Variable H1 : set
Hypothesis HH1 : H1 int
Variable U1 : setsetset
Hypothesis HU1 : ∀x0int, ∀x1int, U1 x0 x1 int
Variable V1 : setset
Hypothesis HV1 : ∀x0int, V1 x0 int
Variable SMALL : setset
Hypothesis HSMALL : ∀x0int, SMALL x0 int
Variable F2 : setset
Hypothesis HF2 : ∀x0int, F2 x0 int
Variable G2 : set
Hypothesis HG2 : G2 int
Variable H2 : setset
Hypothesis HH2 : ∀x0int, H2 x0 int
Variable U2 : setsetset
Hypothesis HU2 : ∀x0int, ∀x1int, U2 x0 x1 int
Variable V2 : setset
Hypothesis HV2 : ∀x0int, V2 x0 int
Variable F3 : setsetset
Hypothesis HF3 : ∀x0int, ∀x1int, F3 x0 x1 int
Variable G3 : setsetset
Hypothesis HG3 : ∀x0int, ∀x1int, G3 x0 x1 int
Variable H3 : setset
Hypothesis HH3 : ∀x0int, H3 x0 int
Variable I3 : set
Hypothesis HI3 : I3 int
Variable J3 : set
Hypothesis HJ3 : J3 int
Variable U3 : setsetsetset
Hypothesis HU3 : ∀x0int, ∀x1int, ∀x2int, U3 x0 x1 x2 int
Variable V3 : setsetsetset
Hypothesis HV3 : ∀x0int, ∀x1int, ∀x2int, V3 x0 x1 x2 int
Variable W3 : setset
Hypothesis HW3 : ∀x0int, W3 x0 int
Variable FAST : setset
Hypothesis HFAST : ∀x0int, FAST x0 int
Hypothesis H1 : (∀Xint, (∀Yint, ((F0 X Y) = ((X * X) * Y))))
Hypothesis H2 : (∀Xint, (∀Yint, ((G0 X Y) = Y)))
Hypothesis H3 : (H0 = 2)
Hypothesis H4 : (∀Xint, ((I0 X) = X))
Hypothesis H5 : (∀Xint, ((J0 X) = X))
Hypothesis H6 : (∀Xint, (∀Yint, (∀Zint, ((U0 X Y Z) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z)))))))
Hypothesis H7 : (∀Xint, (∀Yint, (∀Zint, ((V0 X Y Z) = (if (X <= 0) then Z else (G0 (U0 (X + - 1) Y Z) (V0 (X + - 1) Y Z)))))))
Hypothesis H8 : (∀Xint, ((W0 X) = (U0 H0 (I0 X) (J0 X))))
Hypothesis H9 : (∀Xint, ((F1 X) = ((2 * ((X + X) + X)) + X)))
Hypothesis H10 : (∀Xint, ((G1 X) = X))
Hypothesis H11 : (H1 = 1)
Hypothesis H12 : (∀Xint, (∀Yint, ((U1 X Y) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y))))))
Hypothesis H13 : (∀Xint, ((V1 X) = (U1 (G1 X) H1)))
Hypothesis H14 : (∀Xint, ((SMALL X) = (((W0 X) + (V1 X)) + ((2 * ((X + X) + X)) + X))))
Hypothesis H15 : (∀Xint, ((F2 X) = ((X * X) * X)))
Hypothesis H16 : (G2 = 1)
Hypothesis H17 : (∀Xint, ((H2 X) = (X * X)))
Hypothesis H18 : (∀Xint, (∀Yint, ((U2 X Y) = (if (X <= 0) then Y else (F2 (U2 (X + - 1) Y))))))
Hypothesis H19 : (∀Xint, ((V2 X) = (U2 G2 (H2 X))))
Hypothesis H20 : (∀Xint, (∀Yint, ((F3 X Y) = (X * Y))))
Hypothesis H21 : (∀Xint, (∀Yint, ((G3 X Y) = Y)))
Hypothesis H22 : (∀Xint, ((H3 X) = X))
Hypothesis H23 : (I3 = 1)
Hypothesis H24 : (J3 = (1 + (2 + (2 + 2))))
Hypothesis H25 : (∀Xint, (∀Yint, (∀Zint, ((U3 X Y Z) = (if (X <= 0) then Y else (F3 (U3 (X + - 1) Y Z) (V3 (X + - 1) Y Z)))))))
Hypothesis H26 : (∀Xint, (∀Yint, (∀Zint, ((V3 X Y Z) = (if (X <= 0) then Z else (G3 (U3 (X + - 1) Y Z) (V3 (X + - 1) Y Z)))))))
Hypothesis H27 : (∀Xint, ((W3 X) = (U3 (H3 X) I3 J3)))
Hypothesis H28 : (∀Xint, ((FAST X) = ((((V2 X) * X) + (W3 X)) + (((2 * X) * (1 + 2)) + X))))
Theorem. (A220528)
(∀Nint, ((0 <= N)((SMALL N) = (FAST N))))
Proof:
The rest of the proof is missing.

End of Section A220528