Beginning of Section A13830
Notation. We use 
- as a prefix operator with priority 358 corresponding to applying term 
minus_SNo.
 
Notation. We use 
+ as an infix operator with priority 360 and which associates to the right corresponding to applying term 
add_SNo.
 
Notation. We use 
* as an infix operator with priority 355 and which associates to the right corresponding to applying term 
mul_SNo.
 
Notation. We use 
< as an infix operator with priority 490 and no associativity corresponding to applying term 
SNoLt.
 
Notation. We use 
<= as an infix operator with priority 490 and no associativity corresponding to applying term 
SNoLe.
 
Variable  F0 : set → set
Hypothesis HF0 : ∀x0 ∈ int,  F0 x0  ∈  int 
Variable  G0 : set → set
Hypothesis HG0 : ∀x0 ∈ int,  G0 x0  ∈  int 
Variable  H0 : set
Hypothesis HH0 : H0  ∈  int 
Variable  U0 : set → set → set
Hypothesis HU0 : ∀x0 ∈ int,  ∀x1 ∈ int,  U0 x0 x1  ∈  int 
Variable  V0 : set → set
Hypothesis HV0 : ∀x0 ∈ int,  V0 x0  ∈  int 
Variable  SMALL : set → set
Hypothesis HSMALL : ∀x0 ∈ int,  SMALL x0  ∈  int 
Variable  F1 : set → set
Hypothesis HF1 : ∀x0 ∈ int,  F1 x0  ∈  int 
Variable  G1 : set
Hypothesis HG1 : G1  ∈  int 
Variable  F2 : set → set
Hypothesis HF2 : ∀x0 ∈ int,  F2 x0  ∈  int 
Variable  G2 : set
Hypothesis HG2 : G2  ∈  int 
Variable  F3 : set → set
Hypothesis HF3 : ∀x0 ∈ int,  F3 x0  ∈  int 
Variable  G3 : set → set
Hypothesis HG3 : ∀x0 ∈ int,  G3 x0  ∈  int 
Variable  H3 : set
Hypothesis HH3 : H3  ∈  int 
Variable  U3 : set → set → set
Hypothesis HU3 : ∀x0 ∈ int,  ∀x1 ∈ int,  U3 x0 x1  ∈  int 
Variable  V3 : set → set
Hypothesis HV3 : ∀x0 ∈ int,  V3 x0  ∈  int 
Variable  H2 : set → set
Hypothesis HH2 : ∀x0 ∈ int,  H2 x0  ∈  int 
Variable  U2 : set → set → set
Hypothesis HU2 : ∀x0 ∈ int,  ∀x1 ∈ int,  U2 x0 x1  ∈  int 
Variable  V2 : set → set
Hypothesis HV2 : ∀x0 ∈ int,  V2 x0  ∈  int 
Variable  H1 : set → set
Hypothesis HH1 : ∀x0 ∈ int,  H1 x0  ∈  int 
Variable  U1 : set → set → set
Hypothesis HU1 : ∀x0 ∈ int,  ∀x1 ∈ int,  U1 x0 x1  ∈  int 
Variable  V1 : set → set
Hypothesis HV1 : ∀x0 ∈ int,  V1 x0  ∈  int 
Variable  F4 : set → set
Hypothesis HF4 : ∀x0 ∈ int,  F4 x0  ∈  int 
Variable  G4 : set
Hypothesis HG4 : G4  ∈  int 
Variable  F5 : set → set
Hypothesis HF5 : ∀x0 ∈ int,  F5 x0  ∈  int 
Variable  G5 : set
Hypothesis HG5 : G5  ∈  int 
Variable  F6 : set → set
Hypothesis HF6 : ∀x0 ∈ int,  F6 x0  ∈  int 
Variable  G6 : set → set
Hypothesis HG6 : ∀x0 ∈ int,  G6 x0  ∈  int 
Variable  H6 : set
Hypothesis HH6 : H6  ∈  int 
Variable  U6 : set → set → set
Hypothesis HU6 : ∀x0 ∈ int,  ∀x1 ∈ int,  U6 x0 x1  ∈  int 
Variable  V6 : set → set
Hypothesis HV6 : ∀x0 ∈ int,  V6 x0  ∈  int 
Variable  H5 : set → set
Hypothesis HH5 : ∀x0 ∈ int,  H5 x0  ∈  int 
Variable  U5 : set → set → set
Hypothesis HU5 : ∀x0 ∈ int,  ∀x1 ∈ int,  U5 x0 x1  ∈  int 
Variable  V5 : set → set
Hypothesis HV5 : ∀x0 ∈ int,  V5 x0  ∈  int 
Variable  H4 : set → set
Hypothesis HH4 : ∀x0 ∈ int,  H4 x0  ∈  int 
Variable  U4 : set → set → set
Hypothesis HU4 : ∀x0 ∈ int,  ∀x1 ∈ int,  U4 x0 x1  ∈  int 
Variable  V4 : set → set
Hypothesis HV4 : ∀x0 ∈ int,  V4 x0  ∈  int 
Variable  FAST : set → set
Hypothesis HFAST : ∀x0 ∈ int,  FAST x0  ∈  int 
Hypothesis H1 : (∀X ∈ int,  ((F0 X) = (X + X))) 
Hypothesis H2 : (∀X ∈ int,  ((G0 X) = (2 * ((2 * (X + X)) + X)))) 
Hypothesis H3 : (H0 = 2)
Hypothesis H4 : (∀X ∈ int,  (∀Y ∈ int,  ((U0 X Y) = (if (X <= 0) then Y else (F0 (U0 (X + - 1) Y)))))) 
Hypothesis H5 : (∀X ∈ int,  ((V0 X) = (U0 (G0 X) H0))) 
Hypothesis H6 : (∀X ∈ int,  ((SMALL X) = (2 * (V0 X)))) 
Hypothesis H7 : (∀X ∈ int,  ((F1 X) = ((X * X) * X))) 
Hypothesis H8 : (G1 = 1)
Hypothesis H9 : (∀X ∈ int,  ((F2 X) = (X * X))) 
Hypothesis H10 : (G2 = 1)
Hypothesis H11 : (∀X ∈ int,  ((F3 X) = (X + X))) 
Hypothesis H12 : (∀X ∈ int,  ((G3 X) = X)) 
Hypothesis H13 : (H3 = 1)
Hypothesis H14 : (∀X ∈ int,  (∀Y ∈ int,  ((U3 X Y) = (if (X <= 0) then Y else (F3 (U3 (X + - 1) Y)))))) 
Hypothesis H15 : (∀X ∈ int,  ((V3 X) = (U3 (G3 X) H3))) 
Hypothesis H16 : (∀X ∈ int,  ((H2 X) = (V3 X))) 
Hypothesis H17 : (∀X ∈ int,  (∀Y ∈ int,  ((U2 X Y) = (if (X <= 0) then Y else (F2 (U2 (X + - 1) Y)))))) 
Hypothesis H18 : (∀X ∈ int,  ((V2 X) = (U2 G2 (H2 X)))) 
Hypothesis H19 : (∀X ∈ int,  ((H1 X) = (V2 X))) 
Hypothesis H20 : (∀X ∈ int,  (∀Y ∈ int,  ((U1 X Y) = (if (X <= 0) then Y else (F1 (U1 (X + - 1) Y)))))) 
Hypothesis H21 : (∀X ∈ int,  ((V1 X) = (U1 G1 (H1 X)))) 
Hypothesis H22 : (∀X ∈ int,  ((F4 X) = (X * X))) 
Hypothesis H23 : (G4 = 1)
Hypothesis H24 : (∀X ∈ int,  ((F5 X) = ((X * 2) * X))) 
Hypothesis H25 : (G5 = 1)
Hypothesis H26 : (∀X ∈ int,  ((F6 X) = (X + X))) 
Hypothesis H27 : (∀X ∈ int,  ((G6 X) = X)) 
Hypothesis H28 : (H6 = 1)
Hypothesis H29 : (∀X ∈ int,  (∀Y ∈ int,  ((U6 X Y) = (if (X <= 0) then Y else (F6 (U6 (X + - 1) Y)))))) 
Hypothesis H30 : (∀X ∈ int,  ((V6 X) = (U6 (G6 X) H6))) 
Hypothesis H31 : (∀X ∈ int,  ((H5 X) = (V6 X))) 
Hypothesis H32 : (∀X ∈ int,  (∀Y ∈ int,  ((U5 X Y) = (if (X <= 0) then Y else (F5 (U5 (X + - 1) Y)))))) 
Hypothesis H33 : (∀X ∈ int,  ((V5 X) = (U5 G5 (H5 X)))) 
Hypothesis H34 : (∀X ∈ int,  ((H4 X) = (V5 X))) 
Hypothesis H35 : (∀X ∈ int,  (∀Y ∈ int,  ((U4 X Y) = (if (X <= 0) then Y else (F4 (U4 (X + - 1) Y)))))) 
Hypothesis H36 : (∀X ∈ int,  ((V4 X) = (U4 G4 (H4 X)))) 
Hypothesis H37 : (∀X ∈ int,  ((FAST X) = ((V1 X) * (V4 X)))) 
Theorem. (
A13830) 
(∀N ∈ int,  ((0 <= N) → ((SMALL N) = (FAST N))))  
Proof:The rest of the proof is missing.