Let U be given.
Assume HUT: TransSet U.
Assume HU: ZF_closed U.
Let X be given.
Let Y be given.
We will
prove ({Inj0 x|x ∈ X} ∪ {Inj1 y|y ∈ Y}) ∈ U.
Apply ZF_binunion_closed U HU to the current goal.
We will
prove {Inj0 x|x ∈ X} ∈ U.
Apply ZF_Repl_closed U HU X HX Inj0 to the current goal.
Let x be given.
We will
prove Inj0 x ∈ U.
An exact proof term for the current goal is HUT X HX x Hx.
Apply ZF_Repl_closed U HU Y HY Inj1 to the current goal.
Let y be given.
We will
prove Inj1 y ∈ U.
An exact proof term for the current goal is HUT Y HY y Hy.
∎