Let U be given.
Assume HUT: TransSet U.
Assume HU: ZF_closed U.
Let X be given.
Assume HX: X U.
Let Y be given.
Assume HY: Y U.
We will prove ({Inj0 x|x ∈ X}{Inj1 y|y ∈ Y}) U.
Apply ZF_binunion_closed U HU to the current goal.
We will prove {Inj0 x|x ∈ X} U.
Apply ZF_Repl_closed U HU X HX Inj0 to the current goal.
Let x be given.
Assume Hx: x X.
We will prove Inj0 x U.
Apply ZF_Inj0_closed U HUT HU x to the current goal.
We will prove x U.
An exact proof term for the current goal is HUT X HX x Hx.
Apply ZF_Repl_closed U HU Y HY Inj1 to the current goal.
Let y be given.
Assume Hy: y Y.
We will prove Inj1 y U.
Apply ZF_Inj1_closed U HUT HU y to the current goal.
We will prove y U.
An exact proof term for the current goal is HUT Y HY y Hy.