Let U be given.
Assume HUT: TransSet U.
Assume HU: ZF_closed U.
Apply ZF_closed_E U HU to the current goal.
Assume HUU HUP HUR.
Let X be given.
Let Y be given.
We will
prove (⋃x ∈ X{setsum x y|y ∈ Y x}) ∈ U.
An exact proof term for the current goal is HUU.
An exact proof term for the current goal is HUR.
Apply L1 X HX (λx ⇒ {setsum x y|y ∈ Y x}) to the current goal.
Let x be given.
We will
prove {setsum x y|y ∈ Y x} ∈ U.
Apply HUR (Y x) (HY x Hx) (λy ⇒ setsum x y) to the current goal.
Let y be given.
We will
prove setsum x y ∈ U.
An exact proof term for the current goal is HUT X HX x Hx.
An exact proof term for the current goal is HUT (Y x) (HY x Hx) y Hy.
∎