Let U be given.
Assume HUT: TransSet U.
Assume HU: ZF_closed U.
Apply ZF_closed_E U HU to the current goal.
Assume HUU HUP HUR.
Let X be given.
Assume HX: X U.
Let Y be given.
Assume HY: ∀xX, Y x U.
We will prove (x ∈ X{setsum x y|y ∈ Y x}) U.
We prove the intermediate claim L1: famunion_closed U.
Apply Union_Repl_famunion_closed to the current goal.
An exact proof term for the current goal is HUU.
An exact proof term for the current goal is HUR.
Apply L1 X HX (λx ⇒ {setsum x y|y ∈ Y x}) to the current goal.
Let x be given.
Assume Hx: x X.
We will prove {setsum x y|y ∈ Y x} U.
Apply HUR (Y x) (HY x Hx) (λy ⇒ setsum x y) to the current goal.
Let y be given.
Assume Hy: y Y x.
We will prove setsum x y U.
Apply ZF_setsum_closed U HUT HU to the current goal.
We will prove x U.
An exact proof term for the current goal is HUT X HX x Hx.
We will prove y U.
An exact proof term for the current goal is HUT (Y x) (HY x Hx) y Hy.