Let U be given.
Assume HUT: TransSet U.
Assume HU: ZF_closed U.
Apply ZF_closed_E U HU to the current goal.
Assume HUU HUP HUR.
Let X be given.
Assume HX: X U.
Let Y be given.
Assume HY: ∀xX, Y x U.
We will prove (∏x ∈ X, Y x) U.
We prove the intermediate claim L1: (∏x ∈ X, Y x) 𝒫 (𝒫 (∑x ∈ X, (Y x))).
An exact proof term for the current goal is Sep_In_Power (𝒫 (∑x ∈ X, (Y x))) (λf ⇒ ∀xX, f x Y x).
We prove the intermediate claim L2: (𝒫 (𝒫 (∑x ∈ X, (Y x)))) U.
Apply HUP to the current goal.
Apply HUP to the current goal.
Apply ZF_Sigma_closed U HUT HU X HX (λx ⇒ (Y x)) to the current goal.
Let x be given.
Assume Hx: x X.
We will prove (Y x) U.
Apply HUU to the current goal.
An exact proof term for the current goal is HY x Hx.
An exact proof term for the current goal is HUT (𝒫 (𝒫 (∑x ∈ X, (Y x)))) L2 (∏x ∈ X, Y x) L1.