Let U be given.
Assume HUT: TransSet U.
Assume HU: ZF_closed U.
Apply ZF_closed_E U HU to the current goal.
Assume HUU HUP HUR.
Let X be given.
Let Y be given.
We will
prove (∏x ∈ X, Y x) ∈ U.
We prove the intermediate
claim L1:
(∏x ∈ X, Y x) ∈ 𝒫 (𝒫 (∑x ∈ X, ⋃ (Y x))).
An
exact proof term for the current goal is
Sep_In_Power (𝒫 (∑x ∈ X, ⋃ (Y x))) (λf ⇒ ∀x ∈ X, f x ∈ Y x).
We prove the intermediate
claim L2:
(𝒫 (𝒫 (∑x ∈ X, ⋃ (Y x)))) ∈ U.
Apply HUP to the current goal.
Apply HUP to the current goal.
Let x be given.
We will
prove ⋃ (Y x) ∈ U.
Apply HUU to the current goal.
An exact proof term for the current goal is HY x Hx.
An exact proof term for the current goal is HUT (𝒫 (𝒫 (∑x ∈ X, ⋃ (Y x)))) L2 (∏x ∈ X, Y x) L1.
∎