Assume HA.
Assume HA1 HG Heta Heps HA5.
Assume HC HC' HF.
Set T0 to be the term λX ⇒ G0 (F0 X) of type set → set.
Set T1 to be the term λX Y f ⇒ G1 (F0 X) (F0 Y) (F1 X Y f) of type set → set → set → set.
Set mu to be the term λX ⇒ G1 (F0 (G0 (F0 X))) (F0 X) (eps (F0 X)) of type set → set.
We prove the intermediate
claim LT:
MetaFunctor Obj Hom id comp Obj Hom id comp T0 T1.
An
exact proof term for the current goal is
MetaCat_CompFunctors Obj Hom id comp Obj' Hom' id' comp' Obj Hom id comp F0 F1 G0 G1 HF HG.
We prove the intermediate
claim LTT:
MetaFunctor Obj Hom id comp Obj Hom id comp (λX ⇒ T0 (T0 X)) (λX Y f ⇒ T1 (T0 X) (T0 Y) (T1 X Y f)).
An
exact proof term for the current goal is
MetaCat_CompFunctors Obj Hom id comp Obj Hom id comp Obj Hom id comp T0 T1 T0 T1 LT LT.
We prove the intermediate
claim LFT:
MetaFunctor Obj Hom id comp Obj' Hom' id' comp' (λX ⇒ F0 (T0 X)) (λX Y f ⇒ F1 (T0 X) (T0 Y) (T1 X Y f)).
An
exact proof term for the current goal is
MetaCat_CompFunctors Obj Hom id comp Obj Hom id comp Obj' Hom' id' comp' T0 T1 F0 F1 LT HF.
We prove the intermediate
claim LepsF:
MetaNatTrans Obj Hom id comp Obj' Hom' id' comp' (λX ⇒ F0 (G0 (F0 X))) (λX Y f ⇒ F1 (G0 (F0 X)) (G0 (F0 Y)) (G1 (F0 X) (F0 Y) (F1 X Y f))) F0 F1 (λX ⇒ eps (F0 X)).
An
exact proof term for the current goal is
MetaCat_CompNatTransFunctor Obj Hom id comp Obj' Hom' id' comp' Obj' Hom' id' comp' (λX ⇒ F0 (G0 X)) (λX Y f ⇒ F1 (G0 X) (G0 Y) (G1 X Y f)) (λX ⇒ X) (λX Y f ⇒ f) F0 F1 eps Heps HF.
We prove the intermediate
claim Lmu:
MetaNatTrans Obj Hom id comp Obj Hom id comp (λY ⇒ T0 (T0 Y)) (λX Y g ⇒ T1 (T0 X) (T0 Y) (T1 X Y g)) T0 T1 mu.
An
exact proof term for the current goal is
MetaCat_CompFunctorNatTrans Obj Hom id comp Obj' Hom' id' comp' Obj Hom id comp (λX ⇒ F0 (G0 (F0 X))) (λX Y f ⇒ F1 (G0 (F0 X)) (G0 (F0 Y)) (G1 (F0 X) (F0 Y) (F1 X Y f))) F0 F1 G0 G1 (λX ⇒ eps (F0 X)) LFT HF LepsF HG.
An exact proof term for the current goal is HC.
An exact proof term for the current goal is HC.
An exact proof term for the current goal is LT.
We will
prove MetaNatTrans Obj Hom id comp Obj Hom id comp (λX ⇒ X) (λX Y f ⇒ f) (λX ⇒ G0 (F0 X)) (λX Y f ⇒ G1 (F0 X) (F0 Y) (F1 X Y f)) eta.
An exact proof term for the current goal is Heta.
An exact proof term for the current goal is HC.
An exact proof term for the current goal is HC.
An exact proof term for the current goal is LTT.
An exact proof term for the current goal is LT.
We will
prove MetaNatTrans Obj Hom id comp Obj Hom id comp (λY ⇒ T0 (T0 Y)) (λX Y g ⇒ T1 (T0 X) (T0 Y) (T1 X Y g)) T0 T1 mu.
An exact proof term for the current goal is Lmu.
∎